D55 - Matemàtiques amb GeoGebra
Mòdul 2 - Pràctica 2
En aquesta pràctica dibuixareu triangles de diferents tipus amb regle i compàs. Tot seguit, fareu servir una nova eina molt útil per a la dinamització de les construccions: els punts lliscants.
És molt fàcil dibuixar un triangle equilàter en un paper fent servir regle i compàs. Ara ho fareu amb el GeoGebra i veureu com les eines del programa simulen les eines materials.
Suposem que teniu la finestra algebraica tancada i la zona gràfica sense eixos ni graella.
Amb l'eina Segment entre dos punts seleccionada, cliqueu dos cops en la zona gràfica per dibuixar els punts que seran els extrems del segment.
Obriu la finestra algebraica i observeu quin nom ha assignat al segment. Suposem que sigui a.
Trieu l'eina Circumferència donats el centre i el radi i cliqueu sobre el punt A. Tot seguit s'obrirà una finestra que us demanarà que entreu el radi. Entreu a, que és el nom del segment inicial. Premeu Aplica.
Repetiu aquest últim procediment fent que el centre sigui ara B, i el radi, el mateix.
Trieu l'eina Intersecció de dos objectes i apropeu el cursor a la intersecció que està per sobre del segment. Quan les dues circumferències estiguin seleccionades, feu clic. Apareix el vèrtex C.
Trieu l'eina Polígon i aneu clicant sobre els vèrtexs A, B, C i A.
Ja teniu el triangle equilàter dibuixat. Ara podeu acabar els detalls estètics fins arribar a:
A continuació fareu servir per primer cop els punts lliscants, una de les eines més útils del GeoGebra per modificar figures de manera controlada. En la finestra següent ho podeu apreciar.
Els punts lliscants són els botons mòbils de la part superior. Si els moveu, observareu com els catets del triangle rectangle es van modificant. També notareu que si desplaceu els punts A i B, el triangle es mou d'una manera diferent. Passem a la construcció.
En aquest cas, activeu l'opció Opcions | Etiquetes | Automàtic. Deixeu la zona gràfica sense eixos ni graella.
Trieu l'eina Punt lliscant i feu clic sobre la zona gràfica.
Apareix una finestra per configurar-lo. Feu que el mínim sigui 0 i el màxim 8. Premeu Aplica.
Repetiu el procediment anterior per dibuixar l'altre.
Moveu-los, amb l'eina Mou seleccionada, per tal que els valors no siguin igual a zero.
Trieu l'eina Segment amb longitud donada des d'un punt i cliqueu sobre la zona gràfica. Així heu dibuixat el punt A i tot seguit apareix una finestra que us demana la longitud del segment. Entreu a, que és el nom del primer punt lliscant. Acabeu amb D'acord.
Fixeu-vos que si modifiqueu el valor del punt lliscant a, amb l'eina Mou seleccionada, la longitud del segment també va variant. Noteu també que podeu desplaçar el segment, però que el moviment és diferent si moveu el punt A o el B. A continuació dibuixareu l'altre catet.
Trieu l'eina Recta perpendicular i feu clic sobre A i sobre el segment. Apareix una perpendicular al segment que passa per A.
Trieu l'eina Circumferència donats el centre i el radi i cliqueu sobre el punt A. Surt la finestra que demana el radi. Entreu com a radi b, que és el nom del segon punt lliscant. Premeu D'acord
Trieu l'eina Intersecció de dos objectes i moveu el cursor fins que la recta i la circumferència quedin seleccionades. Aleshores feu clic i apareixerà el vèrtex C.
Trieu ara l'eina Polígon i cliqueu, com ja heu fet abans, sobre els tres vèrtexs acabant pel primer. Ja teniu el triangle dibuixat.
Feu invisibles la circumferència i la recta perpendicular de la mateixa manera que ja ho heu fet abans amb altres objectes.
Si moveu els punts lliscants, ja podeu apreciar com va canviant el triangle. A continuació acabareu alguns detalls més. Per començar, definireu els angles interns.
A continuació, canviareu les etiquetes i els colors.
Accediu a Edita | Propietats.
Seleccioneu, fent servir la tecla Ctrl, els tres angles i els tres costats del triangle.
Amb aquests objectes seleccionats, comproveu que l'opció de la fitxa Bàsic Mostra etiqueta està activada (si no és així, activeu-la) i del desplegable de la seva dreta trieu l'opció Valor.
Abans de prémer Tanca aprofiteu per canviar alguns colors.
Moveu els punts lliscants i observeu-ne els efectes.
Els punts lliscants són una de les eines més importats del GeoGebra per poder fer construccions dinàmiques. Però quina relació hi ha entre aquesta eina i els valors numèrics entrats directament en la línia d'entrada? Per respondre aquesta pregunta fareu una senzilla construcció:
Entreu en la línia d'entrada el valor numèric r=3. Aquest serà el radi d'una circumferència. Veureu que en la finestra algebraica apareix l'expressió r=3 precedida d'un petit cercle de color blanc. Aquest símbol davant de qualsevol objecte de la finestra algebraica ens indica que l'objecte no és visible. Més avall veureu quin significat té en aquest cas.
Trieu l'eina Circumferència donats el centre i el radi.
Feu un clic a la zona gràfica, serà el centre de la circumferència, i entreu r a la finestra que apareix tot seguit.
Haureu dibuixat una circumferència de radi 3. I si ara volem variar aquest radi?
Amb l'eina Mou triada, feu un clic en l'expressió r=3 (sense tocar el cercle de davant!) de la finestra algebraica. Veureu que queda seleccionada.
Premeu les tecles de les fletxes de la dreta del teclat i observeu. Amb aquestes tecles esteu fent variar el valor numèric r i, per tant, el radi de la circumferència.
A continuació feu clic en el cercle blanc de r, en la finestra algebraica i… apareix el punt lliscant! Aquí està la curiositat.
En definitiva, podem considerar que un punt lliscant no és més que un valor numèric visible i que podem canviar directament amb el ratolí.