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Toomates Coolección 
 

Los documentos de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados 

mediante un ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de 
texto pueden ser digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. 

Es más: Suele suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un 

hecho. Lo que no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales 
pretenden cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una 

bajísima calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, 

pretende convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, 
pretende pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a 

aquellos que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer 
todo el libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Este documento se comparte bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve 
y se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los documentos se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” 

de MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 
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1st United States of America Junior Mathematical Olympiad 2010

Day I 12:30 PM – 5 PM EDT

April 27, 2010

1. A permutation of the set of positive integers [n] = {1, 2, . . . , n} is a sequence (a1, a2, . . . , an)

such that each element of [n] appears precisely one time as a term of the sequence. For

example, (3, 5, 1, 2, 4) is a permutation of [5]. Let P (n) be the number of permutations of

[n] for which kak is a perfect square for all 1 ≤ k ≤ n. Find with proof the smallest n

such that P (n) is a multiple of 2010.

2. Let n > 1 be an integer. Find, with proof, all sequences x1, x2, . . . , xn−1 of positive

integers with the following three properties:

(a) x1 < x2 < · · · < xn−1;

(b) xi + xn−i = 2n for all i = 1, 2, . . . , n− 1;

(c) given any two indices i and j (not necessarily distinct) for which xi + xj < 2n, there

is an index k such that xi + xj = xk.

3. Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by

P, Q,R, S the feet of the perpendiculars from Y onto lines AX, BX,AZ,BZ, respectively.

Prove that the acute angle formed by lines PQ and RS is half the size of ∠XOZ, where

O is the midpoint of segment AB.
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1st United States of America Junior Mathematical Olympiad 2010

Day II 12:30 PM – 5 PM EDT

April 28, 2010

4. A triangle is called a parabolic triangle if its vertices lie on a parabola y = x2. Prove that

for every nonnegative integer n, there is an odd number m and a parabolic triangle with

vertices at three distinct points with integer coordinates with area (2nm)2.

5. Two permutations a1, a2, . . . , a2010 and b1, b2, . . . , b2010 of the numbers 1, 2, . . . , 2010 are

said to intersect if ak = bk for some value of k in the range 1 ≤ k ≤ 2010. Show that

there exist 1006 permutations of the numbers 1, 2, . . . , 2010 such that any other such

permutation is guaranteed to intersect at least one of these 1006 permutations.

6. Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,

respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and CE

meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID,CI, IE

to all have integer lengths.

Copyright c© Mathematical Association of America



1st United States of America Junior Mathematical Olympiad 2010

1. Solution from Andy Niedermier: Every integer in [n] can be

uniquely written in the form x2 · q, where q either 1 or square free,

that is, a product of distinct primes. Let 〈q〉 denote the set {12 · q, 22 ·
q, 32 · q, . . .} ⊆ [n].

Note that for f to satisfy the square-free property, it must permute

〈q〉 for every q = 1, 2, 3, . . . . To see this, notice that given an arbitrary

square-free q, in order for q·f(q) to be a square, f(q) needs to contribute

one of every prime factor in q, after which it can take only even powers

of primes. Thus, f(q) is equal to the product of q and some perfect

square.

The number of f that permute the 〈q〉 is equal to

∏
q≤n

q is square-free

⌊√
n

q

⌋
!

For 2010 = 2 · 3 · 5 · 67 to divide P (n), we simply need 67! to appear in

this product, which will first happen in 〈1〉 so long as
√

n/q ≥ 67 for

some n and q. The smallest such n is 672 = 4489.

This problem was proposed by Andy Niedermier.

2. Solution from Răzvan Gelca: There is a unique sequence 2, 4, 6, . . . , 2n−
2 satisfying the conditions of the problem.

Note that (b) implies xi < 2n for all i. We will examine the possible

values of x1.

If x1 = 1, then (c) implies that all numbers less than 2n should be

terms of the sequence, which is impossible since the sequence has only

n− 1 terms.



If x1 = 2, then by (c) the numbers 2, 4, 6, . . . , 2n − 2 are terms of the

sequence, and because the sequence has exactly n − 1 terms we get

xi = 2i, i = 1, 2, . . . , n − 1. This sequence satisfies conditions (a) and

(b) as well, so it is a solution to the problem.

For x1 ≥ 3, we will show that there is no sequences satisfying the

conditions of the problem. Assume on the contrary that for some n

there is such a sequence with x1 ≥ 3. If n = 2, the only possibility is

x1 = 3, which violates (b). If n = 3, then by (a) we have the possibilities

(x1, x2) = (3, 4), or (3, 5), or (4, 5), all three of which violate (b). Now

we assume that n > 3. By (c), the numbers

x1, 2x1, . . . ,

⌊
2n

xi

⌋
· x (1)

are terms of the sequence, and no other multiples of x1 are. Because

x1 ≥ 3, the above accounts for at most 2n
3

terms of the sequence. For

n > 3, we have 2n
3

< n− 1, and so there must be another term besides

the terms in (1). Let xj be the smallest term of the sequence that does

not appear in (1). Then the first j terms of the sequence are

x1, x2 = 2x1, . . . , xj−1 = (j − 1)x1, xj, (2)

and we have xj < jx1. Condition (b) implies that the last j terms of

the sequence must be

xn−j = 2n− xj, xn−j+1 = 2n− (j − 1)x1, . . . ,

xn−2 = 2n− 2x1, xn−1 = 2n− x1.

But then x1 + xn−j < x1 + xn−1 = 2n, hence by condition (c) there

exists k such that x1 + xn−j = xk. On the one hand, we have

xk = x1 + xn−j = x1 + 2n− xj = 2n− (xj − x1)

> 2n− (jx1 − x1) = 2n− (j − 1)x1 = xn−j+1.



One the other hand, we have

xk = x1 + xn−j < x1 + xn−j+1 = xn−j+2.

This means that xk is between two consecutive terms xn−j+1 and xn−j+2,

which is impossible by (a). (In the case j = 2, xk > xn−j+1 = xn−1,

which is also impossible.) We conclude that there is no such sequence

with x1 ≥ 3.

Remark. This problem comes from the study of Weierstrass gaps in

the theory of Riemann surfaces.

Alternate Solution from Richard Stong: Assume that x1, x2, . . . , xn−1

is a sequence satisfying the conditions of the problem. By condition

(a), the following terms

x1, 2x1, x1 + x2, x1 + x3, x1 + x4, . . . , x1 + xn−2

form an increasing sequence. By condition (c), this new sequence is

a subsequence of the original sequence. Because both sequences have

exactly n−1 terms, these two sequences are identical; that is, 2x1 = x2

and x1 + xj = xj+1 for 2 ≤ j ≤ n − 2. It follows that xj = jx1 for

1 ≤ j ≤ n− 1. By condition (b), we conclude that (x1, x2, . . . , xn−1) =

(2, 4, . . . , 2n− 2).

Remark. The core of the second solution is a result due to Freiman:

Let A be a set of positive integers. Then the set A+A = {a1+

a2 | a1, a2 ∈ A} has at least 2|A| − 1 elements and equality

holds if and only if A is a set of an arithmetic progression.

Freiman’s theorem and its generalization below are very helpful in

proofs of many contest problems, such as, USAMO 2009 problem 2,

IMO 2000 problem 1, and IMO 2009 problem 5.



Let A and B be finite nonempty subsets of integers. Then

the set A+B = {a+b | a ∈ A, b ∈ B} has at least |A|+|B|−1

elements. Equality holds if and only if either A and B are

arithmetic progressions with equal difference or |A| or |B| is

equal to 1.

This problem was suggested by Răzvan Gelca.

3. Solution by Titu Andreescu: Let T be the foot of the perpendicular

from Y to line AB. We note the P, Q, T are the feet of the perpen-

diculars from Y to the sides of triangle ABX. Because Y lies on the

circumcircle of triangle ABX, points P,Q, T are collinear, by Simson’s

theorem. Likewise, points S,R, T are collinear.

We need to show that ∠XOZ = 2∠PTS or

∠PTS =
∠XOZ

2
=

_

XZ

2
=

_

XY

2
+

_

Y Z

2
= ∠XAY + ∠ZBY = ∠PAY + ∠SBY.



Because ∠PTS = ∠PTY + ∠STY , it suffices to prove that

∠PTY = ∠PAY and ∠STY = ∠SBY ;

that is, to show that quadrilaterals APY T and BSY T are cyclic, which

is evident, because ∠APY = ∠ATY = 90◦ and ∠BTY = ∠BSY =

90◦.

Alternate Solution from Lenny Ng and Richard Stong: Since

Y Q, Y R are perpendicular to BX, AZ respectively, ∠RY Q is equal to

the acute angle between lines BX and AZ, which is 1
2
(
︷ ︷
AX +

︷ ︷
BZ) =

1
2
(180◦ −

︷ ︷
XZ) since X,Z lie on the circle with diameter AB. Also,

∠AXB = ∠AZB = 90◦ and so PXQY and SZRY are rectangles,

whence ∠PQY = 90◦ − ∠Y XB = 90◦ −
︷ ︷
Y B /2 and ∠Y RS = 90◦ −

∠AZY = 90◦ −
︷︷
AY /2. Finally, the angle between PQ and RS is

∠PQY + ∠Y RS − ∠RY Q = (90◦ −
︷ ︷
Y B /2) + (90◦ −

︷︷
AY /2)− (90◦ −

︷ ︷
XZ /2)

=
︷ ︷
XZ /2

= (∠XOZ)/2,

as desired.

This problem was proposed by Titu Andreescu.

4. Solution from Zuming Feng:

Let A = (a, a2), B = (b, b2), and C = (c, c2), with a < b < c. We have−→
AB = [b − a, b2 − a2] and

−→
AC = [c − a, c2 − a2]. Hence the area of

triangle ABC is equal to

[ABC] = (2nm)2 =
|(b− a)(c2 − a2)− (c− a)(b2 − a2)|

2

=
(b− a)(c− a)(c− b)

2
.



Setting b − a = x and c − b = y (where both x and y are positive

integers), the above equation becomes

(2nm)2 =
xy(x + y)

2
. (3)

If n = 0, then (m,x, y) = (1, 1, 1) is clearly a solution to (3). If n ≥ 1,

it is easy to check that,

(m,x, y) =
(
(24n−2 − 1, 22n+1, (22n−1 − 1)2)

)

satisfies (3).

Alternate Solution from Jacek Fabrykowski:

The beginning is the same up to (2nm)2 = xy(x+y)
2

. If n = 0, we take

m = x = y = 1. If n = 1, we take m = 3, x = 1, y = 8. Assume

that n ≥ 2. Let a, b, c be a primitive Pythagorean triple with b even.

Let b = 2rd where d is odd and r ≥ 2. Let x = 22k, y = 22kb and

z = 22kc where k ≥ 0. We let m = adc and r = 2 if n = 3k + 2, r = 3

if n = 3k + 3 and r = 4 if n = 3k + 4.

Assuming that x = a · 2s, y = b · 22, other triples are possible:

(a) If n = 3k, then let m = 1 and x = y = 22k.

(b) If n = 3k + 1, then take m = 3, x = 22k, y = 22k+3.

(c) If n = 3k + 2, then take m = 63, x = 49 · 22k, and y = 22k+5.

This problem was suggested by Zuming Feng.

5. Solution from Gregory Galperin:

Let us create the following 1006 permutations X1, ..., X1006, the first

1006 positions of which are all possible cyclic rotations of the sequence



1, 2, 3, 4, ..., 1005, 1006, and the remaining 1004 positions are filled ar-

bitrarily with the remaining numbers 1006, 1007, ..., 2009, 2010:

X1 = 1, 2, 3, 4, ... , 1005, 1006, ∗, ∗, ... , ∗ ;

X2 = 2, 3, 4, ... , 1005, 1006, 1, ∗, ∗, ... , ∗ ;

X3 = 3, 4, ... , 1005, 1006, 1, 2, ∗, ∗, ... , ∗ ;

· · · · · ·
X1006 = 1006, 1, 2, 3, 4, ... , 1005, ∗, ∗, ... , ∗ .

We claim that at least one of these 1006 sequences has the same integer

at the same position as the initial (unknown) permutation X.

Suppose not. Then the set of the first (leftmost) integers in the permu-

tation X contains no integers from 1 to 1006. Hence it consists of the

1004 integers in the range from 1007 to 2010 only. By the pigeon-hole

principle, some two of the integers from the permutation X must be

equal, which is a contradiction: there are not two identical integers in

the permutation X.

Consequently, the permutation X has at last one common element with

some sequence Xi, i = 1, . . . 1006 and we are done.

This problem was proposed by Gregory Galperin.

6. Solution from Zuming Feng: The answer is no, it is not possible

for segments AB, BC, BI, ID, CI, IE to all have integer lengths.

Assume on the contrary that these segments do have integer side lengths.

We set α = ∠ABD = ∠DBC and β = ∠ACE = ∠ECB. Note that

I is the incenter of triangle ABC, and so ∠BAI = ∠CAI = 45◦.

Applying the Law of Sines to triangle ABI yields

AB

BI
=

sin(45◦ + α)

sin 45◦
= sin α + cos α,



by the addition formula (for the sine function). In particular, we con-

clude that s = sin α + cos α is rational. It is clear that α + β = 45◦.

By the subtraction formulas, we have

s = sin(45◦ − β) + cos(45◦ − β) =
√

2 cos β,

from which it follows that cos β is not rational. On the other hand,

from right triangle ACE, we have cos β = AC/EC, which is rational by

assumption. Because cos β cannot not be both rational and irrational,

our assumption was wrong and not all the segments AB, BC, BI, ID,

CI, IE can have integer lengths.

Alternate Solution from Jacek Fabrykowski: Using notations as

introduced in the problem, let BD = m, AD = x, DC = y, AB = c,

BC = a and AC = b. The angle bisector theorem implies

x

b− x
=

c

a

and the Pythagorean Theorem yields m2 = x2 + c2. Both equations

imply that

2ac =
(bc)2

m2 − c2
− a2 − c2

and since a2 = b2+c2 is rational, a is rational too (observe that to reach

this conclusion, we only need to assume that b, c, and m are integers).

Therefore, x = bc
a+c

is also rational, and so is y. Let now (similarly to the

notations above from the solution by Zuming Feng) ∠ABD = α and

∠ACE = β where α + β = π/4. It is obvious that cos α and cos βare

both rational and the above shows that also sin α = x/m is rational.

On the other hand, cos β = cos(π/4−α) = (
√

2/2)(sin α+sin β), which

is a contradiction. The solution shows that a stronger statement holds

true: There is no right triangle with both legs and bisectors of acute

angles all having integer lengths.



Alternate Solution from Zuming Feng: Prove an even stronger

result: there is no such right triangle with AB, AC, IB, IC having ra-

tional side lengths. Assume on the contrary, that AB, AC, IB, IC have

rational side lengths. Then BC2 = AB2+AC2 is rational. On the other

hand, in triangle BIC, ∠BIC = 135◦. Applying the law of cosines to

triangle BIC yields

BC2 = BI2 + CI2 −
√

2BI · CI

which is irrational. Because BC2 cannot be both rational and irra-

tional, we conclude that our assumption was wrong and that not all of

the segments AB, AC, IB, IC can have rational lengths.

This problem was proposed by Zuming Feng.
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§0 Problems
1. Let P (n) be the number of permutations (a1, . . . , an) of the numbers (1, 2, . . . , n)

for which kak is a perfect square for all 1 ≤ k ≤ n. Find with proof the smallest n
such that P (n) is a multiple of 2010.

2. Let n > 1 be an integer. Find, with proof, all sequences x1, x2, . . . , xn−1 of positive
integers with the following three properties:
(a) x1 < x2 < · · · < xn−1;
(b) xi + xn−i = 2n for all i = 1, 2, . . . , n− 1;
(c) given any two indices i and j (not necessarily distinct) for which xi + xj < 2n,

there is an index k such that xi + xj = xk.

3. Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB.
Denote by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX,
AZ, BZ, respectively. Prove that the acute angle formed by lines PQ and RS is
half the size of ∠XOZ, where O is the midpoint of segment AB.

4. A triangle is called a parabolic triangle if its vertices lie on a parabola y = x2. Prove
that for every nonnegative integer n, there is an odd number m and a parabolic
triangle with vertices at three distinct points with integer coordinates with area
(2nm)2.

5. Two permutations a1, a2, . . . , a2010 and b1, b2, . . . , b2010 of the numbers 1, 2, . . . , 2010
are said to intersect if ak = bk for some value of k in the range 1 ≤ k ≤ 2010.
Show that there exist 1006 permutations of the numbers 1, 2, . . . , 2010 such that
any other such permutation is guaranteed to intersect at least one of these 1006
permutations.

6. Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and
CE meet at I. Determine whether or not it is possible for segments AB, AC, BI,
ID, CI, IE to all have integer lengths.
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§1 Solutions to Day 1
§1.1 JMO 2010/1, proposed by Andy Niedermier
Available online at https://aops.com/community/p1860909.

Problem statement

Let P (n) be the number of permutations (a1, . . . , an) of the numbers (1, 2, . . . , n)
for which kak is a perfect square for all 1 ≤ k ≤ n. Find with proof the smallest n
such that P (n) is a multiple of 2010.

The answer is n = 4489.
We begin by giving a complete description of P (n):

Claim — We have
P (n) =

∏
c squarefree

⌊√
n

c

⌋
!

Proof. Every positive integer can be uniquely expressed in the form c ·m2 where c is a
squarefree integer and m is a perfect square. So we may, for each squarefree positive
integer c, define the set

Sc =
{
c · 12, c · 22, c · 32, . . .

}
∩ {1, 2, . . . , n}

and each integer from 1 through n will be in exactly one Sc. Note also that

|Sc| =
⌊√

n

c

⌋
.

Then, the permutations in the problem are exactly those which send elements of Sc to
elements of Sc. In other words,

P (n) =
∏

c squarefree
|Sc|! =

∏
c squarefree

⌊√
n

c

⌋
!

We want the smallest n such that 2010 divides P (n).

• Note that P (672) contains 67! as a term, which is divisible by 2010, so 672 is a
candidate.

• On the other hand, if n < 672, then no term in the product for P (n) is divisible by
the prime 67.

So n = 672 = 4489 is indeed the minimum.
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§1.2 JMO 2010/2, proposed by Răzvan Gelca
Available online at https://aops.com/community/p1860914.

Problem statement

Let n > 1 be an integer. Find, with proof, all sequences x1, x2, . . . , xn−1 of positive
integers with the following three properties:

(a) x1 < x2 < · · · < xn−1;

(b) xi + xn−i = 2n for all i = 1, 2, . . . , n− 1;

(c) given any two indices i and j (not necessarily distinct) for which xi + xj < 2n,
there is an index k such that xi + xj = xk.

The answer is xk = 2k only, which obviously work, so we prove they are the only ones.
Let x1 < x2 < . . . < xn be any sequence satisfying the conditions. Consider:

x1 + x1 < x1 + x2 < x1 + x3 < · · · < x1 + xn−2.

All these are results of condition (c), since x1 + xn−2 < x1 + xn−1 = 2n. So each of these
must be a member of the sequence.

However, there are n − 2 of these terms, and there are exactly n − 2 terms greater
than x1 in our sequence. Therefore, we get the one-to-one correspondence below:

x2 = x1 + x1

x3 = x1 + x2
...

xn−1 = x1 + xn−2

It follows that x2 = 2x1, so that x3 = 3x1 and so on. Therefore, xm = mx1. We now
solve for x1 in condition (b) to find that x1 = 2 is the only solution, and the desired
conclusion follows.
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§1.3 JMO 2010/3, proposed by Titu Andreescu
Available online at https://aops.com/community/p1860802.

Problem statement

Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote
by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ,
respectively. Prove that the acute angle formed by lines PQ and RS is half the size
of ∠XOZ, where O is the midpoint of segment AB.

Let T be the foot from Y to AB. Then the Simson line implies that lines PQ and RS
meet at T .

A B

X

Y
Z

P

Q
R

S

T

Now it’s straightforward to see APY RT is cyclic (in the circle with diameter AY ),
and therefore

∠RTY = ∠RAY = ∠ZAY.

Similarly,
∠Y TQ = ∠Y BQ = ∠Y BX.

Summing these gives ∠RTQ is equal to half the measure of arc X̂Z as needed.
(Of course, one can also just angle chase; the Simson line is not so necessary.)
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§2 Solutions to Day 2
§2.1 JMO 2010/4, proposed by Zuming Feng
Available online at https://aops.com/community/p1860772.

Problem statement

A triangle is called a parabolic triangle if its vertices lie on a parabola y = x2. Prove
that for every nonnegative integer n, there is an odd number m and a parabolic
triangle with vertices at three distinct points with integer coordinates with area
(2nm)2.

For n = 0, take instead (a, b) = (1, 0).
For n > 0, consider a triangle with vertices at (a, a2), (−a, a2) and (b, b2). Then the

area of this triangle was equal to

1

2
(2a)

(
b2 − a2

)
= a(b2 − a2).

To make this equal 22nm2, simply pick a = 22n, and then pick b such that b2−m2 = 24n,
for example m = 24n−2 − 1 and b = 24n−2 + 1.
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§2.2 JMO 2010/5, proposed by Gregory Galperin
Available online at https://aops.com/community/p1860912.

Problem statement

Two permutations a1, a2, . . . , a2010 and b1, b2, . . . , b2010 of the numbers 1, 2, . . . , 2010
are said to intersect if ak = bk for some value of k in the range 1 ≤ k ≤ 2010. Show
that there exist 1006 permutations of the numbers 1, 2, . . . , 2010 such that any other
such permutation is guaranteed to intersect at least one of these 1006 permutations.

A valid choice is the following 1006 permutations:

1 2 3 · · · 1004 1005 1006 1007 1008 · · · 2009 2010
2 3 4 · · · 1005 1006 1 1007 1008 · · · 2009 2010
3 4 5 · · · 1006 1 2 1007 1008 · · · 2009 2010
...

...
... . . . ...

...
...

...
...

...
...

...
1004 1005 1006 · · · 1001 1002 1003 1007 1008 · · · 2009 2010
1005 1006 1 · · · 1002 1003 1004 1007 1008 · · · 2009 2010
1006 1 2 · · · 1003 1004 1005 1007 1008 · · · 2009 2010

This works. Indeed, any permutation should have one of {1, 2, . . . , 1006} somewhere in
the first 1006 positions, so one will get an intersection.

Remark. In fact, the last 1004 entries do not matter with this construction, and we chose
to leave them as 1007, 1008, . . . , 2010 only for concreteness.

Remark. Using Hall’s marriage lemma one may prove that the result becomes false with
1006 replaced by 1005.
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§2.3 JMO 2010/6, proposed by Zuming Feng
Available online at https://aops.com/community/p1860753.

Problem statement

Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and
CE meet at I. Determine whether or not it is possible for segments AB, AC, BI,
ID, CI, IE to all have integer lengths.

The answer is no. We prove that it is not even possible that AB, AC, CI, IB are all
integers.

B

A C

I

D

E

First, we claim that ∠BIC = 135◦. To see why, note that

∠IBC + ∠ICB =
∠B
2

+
∠C
2

=
90◦

2
= 45◦.

So, ∠BIC = 180◦ − (∠IBC + ∠ICB) = 135◦, as desired.
We now proceed by contradiction. The Pythagorean theorem implies

BC2 = AB2 +AC2

and so BC2 is an integer. However, the law of cosines gives

BC2 = BI2 + CI2 − 2BI · CI cos∠BIC

= BI2 + CI2 +BI · CI ·
√
2.

which is irrational, and this produces the desired contradiction.
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2nd United States of America Junior Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 27, 2011

JMO 1. Find, with proof, all positive integers n for which 2n + 12n + 2011n is a perfect square.

JMO 2. Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3 .

JMO 3. For a point P = (a, a2) in the coordinate plane, let ℓ(P ) denote the line passing through

P with slope 2a. Consider the set of triangles with vertices of the form P1 = (a1, a
2
1),

P2 = (a2, a
2
2), P3 = (a3, a

2
3), such that the intersections of the lines ℓ(P1), ℓ(P2), ℓ(P3) form

an equilateral triangle ∆. Find the locus of the center of ∆ as P1P2P3 ranges over all such

triangles.

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America



2nd United States of America Junior Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 28, 2011

JMO 4. A word is defined as any finite string of letters. A word is a palindrome if it reads the

same backwards as forwards. Let a sequence of wordsW0,W1,W2, . . . be defined as follows:

W0 = a, W1 = b, and for n ≥ 2, Wn is the word formed by writing Wn−2 followed by Wn−1.

Prove that for any n ≥ 1, the word formed by writing W1,W2, . . . ,Wn in succession is a

palindrome.

JMO 5. Points A, B, C, D, E lie on circle ω and point P lies outside the circle. The given points

are such that (i) lines PB and PD are tangent to ω, (ii) P , A, C are collinear, and (iii)

DE ∥ AC. Prove that BE bisects AC .

JMO 6. Consider the assertion that for each positive integer n ≥ 2, the remainder upon dividing 22
n

by 2n−1 is a power of 4. Either prove the assertion or find (with proof) a counterexample.

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America



2nd United States of America Junior Mathematical Olympiad

1. The answer is n = 1. Clearly, n = 1 is a solution because 2 + 12 + 2011 = 452. Next we

show that there is no other solutions.

Assume that n ≥ 2. If n is odd, then 2n +12n +2011n cannot be a perfect square because

it is congruent to 3 modulo 4. If n is even, we can complete our solution in two ways.

• 2n + 12n + 2011n cannot be a perfect square because it is congruent to 2 modulo 3.

• 2n +12n +2011n cannot be a perfect square because it is in between two consecutive

perfect squares. Indeed, say n = 2k, then

(2011k)2 < 22k+122k+20112k = 4k+144k+20112k < 1+2·2011k+20112k = (2011k+1)2.

2. The given condition is equivalent to a2 + b2 + c2 + ab+ bc+ ca ≤ 2. We will prove that

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 6 .

Indeed, we have

2ab+ 2

(a+ b)2
≥ 2ab+ a2 + b2 + c2 + ab+ bc+ ca

(a+ b)2
= 1 +

(c+ a)(c+ b)

(a+ b)2
.

Adding the last inequality with its cyclic analogous forms yields

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 3 +

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2

Hence it remains to prove that

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2
≥ 3.

But this follows directly from the AM–GM inequality. Equality holds if and only if a+b =

b+ c = c+ a, which together with the given condition, shows that it occurs if and only if

a = b = c = 1√
3
.

OR

1



Set 2x = a + b, 2y = b + c, and 2z = c + a; that is, a = z + x − y, b = x + y − z, and

c = y + z − x. Hence

ab+ 1

(a+ b)2
=

(z + x− y)(x+ y − z) + 1

4x2
=

x2 − (y − z)2 + 1

4x2
=

x2 + 2yz + 1− y2 − z2

4x2
.

On the other hand, the given condition is equivalent to 2a2+2b2+2c2+2ab+2bc+2ca ≤ 4

or (a+ b)2+(b+ c)2+(c+ a)2 ≤ 4; that is, x2+ y2+ z2 ≤ 1 or 1− y2− z2 ≥ x2. It follows

that
ab+ 1

(a+ b)2
=

x2 + 2yz + 1− y2 − z2

4x2
≥ x2 + 2yz + x2

4x2
=

1

2
+

yz

2x2
.

Likewise, we have

bc+ 1

(b+ c)2
=

1

2
+

zx

2y2
and

ca+ 1

(c+ a)2
=

1

2
+

xy

2z2
.

Adding the last three inequalities gives

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3

2
+

yz

2x2
+

zx

2y2
+

xy

2z2
≥ 3,

by the AM–GM inequality. Equality holds if and only if x = y = z or a = b = c = 1√
3
.

3. For 1 ≤ i < j ≤ 3, solving the system y = 2xix − x2
i = 2xjx − x2

j yields the intersection(xi+xj

2
, xixj

)
of lines ℓi and ℓj. Hence the center of the equilateral triangle is

O = (Ox, Oy) =

(
x1 + x2 + x3

3
,
x1x2 + x2x3 + x3x1

3

)
.

Let 0◦ ≤ αi < 180◦ be the standard angle formed by lines ℓi and the positive x-axis.

Without loss of generality, we may assume that α1 < α2 < α3. By the given condition, we

have α2 − α1 = α3 − α2 = 60◦. By the subtraction formulas, we have

tan 60◦ =
tanα2 − tanα1

1 + tanα1 tanα2

=
tanα3 − tanα2

1 + tanα2 tanα3

and tan 120◦ =
tanα3 − tanα1

1 + tanα3 tanα1

or √
3 =

2x2 − 2x1

1 + 4x1x2

=
2x3 − 2x2

1 + 4x2x3

and −
√
3 =

2x3 − 2x1

1 + 4x3x1

.

Therefore,

1 + 4x1x2 =
2(x2 − x1)√

3
, 1 + 4x2x3 =

2(x3 − x2)√
3

, 1 + 4x3x1 =
2(x1 − x3)√

3
. (1)

2



Adding these equations gives 3+ 4(x1x2 + x2x3 + x3x1) = 0, implying that Oy = −1
4
; that

is, O always lie on the directrix ℓ of the parabola y = x2.

Next we show that G can be any point on ℓ. Solving the first and the equations in (1) for

x2 and x3 in terms of x1 gives

x2 =
2x1 +

√
3

2− 4
√
3x1

and x3 =
2x1 −

√
3

2 + 4
√
3x1

,

implying that

x1 + x2 + x3 = x1 +
(2x1 +

√
3)(2 + 4

√
3x1) + (2x1 −

√
3)(2− 4

√
3x1)

4− 48x2
1

= x1 +
8x1

1− 12x2
1

=
12x3

1 − 9x1

12x2
1 − 1

.

Because lines ℓ1, ℓ2, ℓ3 are evenly spaced with 60◦ between each other, slopes 2x1, 2x2, 2x3

are symmetric with each other; that is,

x1 + x2 + x3 =
12x3

i − 9xi

12x2
i − 1

for i = 1, 2, 3.

Therefore,

Ox =
x1 + x2 + x3

3
=

4x3 − 3x

12x2 − 1
,

where −∞ < x < ∞, because x = xi for some i = 1, 2, 3, and the combined ranges of

slopes 2xi are the interval (−∞,∞). Because 4x3−3x = Ox(12x
2−1) is a cubic equation,

it has a real root in x for every real number Ox; that is, the range of Ox is the interval

(−∞,∞). We conclude that the locus of O is line y = −1
4
.

4. According to the statement of the problem we have

W0 = a, W1 = b, W2 = ab, W3 = bab, W4 = abbab,

and so forth. Let Vn = W1W2 · · ·Wn, where we place two or more words next to one

another to denote the single word obtained by writing all their letters in succession. We

find that

V1 = b, V2 = bab, V3 = babbab, V4 = babbababbab.

We wish to show that Vn is a palindrome for all positive integers n. The above list shows

this to be true for 1 ≤ n ≤ 4; these cases will serve as the base cases for a proof by strong

induction.
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We use a bar over a word to indicate writing its letters in the reverse order. Thus W4 =

babba and V3 = V3 since V3 is a palindrome. Now assume that the words V1 through Vn

are all palindromes; we will show that Vn+1 is also a palindrome. By the definition of Vn+1

and Wn+1 we have

Vn+1 = VnWn+1 = VnWn−1Wn,

using the fact that Vn = Vn since Vn is a palindrome. But we know that Vn = Vn−2Wn−1Wn,

so we may write

VnWn−1Wn = Wn Wn−1 Vn−2Wn−1Wn.

The latter word is clearly a palindrome since Vn−2 reads the same forward as backwards.

Hence Vn+1 is a palindrome, thus completing the proof.

5. Let O be the center of circle ω and let M be the midpoint of AC. It is clear that DE

bisects AC if and only if E, M , B are collinear. Consequently, it suffices to show that

∠MED = ∠BED. (2)

The proof is divided into four parts.

1. TriangleMED is isosceles with ∠MED = ∠MDE. (Note that ACDE is an isosceles

trapezoid and M is midpoint of the base AC. The fact that triangle MED is isosceles

then follows by the Pythagorean Theorem if nothing more elegant comes to mind.)

This fact together with Alternate Interior Angles gives

∠AME = ∠MED = ∠MDE = ∠PMD.

2. Claim. The circle ω′ with diameter OP contains points B, D, and M .

Proof. For each of the cases X = B, D, M , it is straightforward to verify that OX is

perpendicular to PX. For X = B it is true that OBP is a right angle because PB

is tangent to the circle at B. The same is true for X = D. For X = M , simply use

the fact that if M is the midpoint of any given chord, then OM is perpendicular to

the chord.

3. Referring to the circle ω′, the Inscribed Angle Theorem gives ∠PBD = ∠PMD.

4



4. Because BP is tangent to ω at B,

∠BED =
1

2

⌢

BD= ∠PBD.

Results from step 1 yield

∠BED = ∠PBD = ∠PMD = ∠MED,

establishing 2 and completing the proof.

A

B

C

D

E

O

P

M

6. The assertion is false, and the smallest n for which it fails is n = 25. Given n ≥ 2, let r

be the remainder when 2n is divided by n. Then 2n = kn+ r where k is a positive integer

and 0 ≤ r < n. It follows that

22
n

= 2kn+r ≡ 2r mod 2n − 1,

and 2r < 2n − 1 so 2r is the remainder when 22
n
is divided by 2n − 1. If r is even then

2r is power of 4. Hence to disprove the assertion, it is enough to find an n for which the

corresponding r is odd.

If n is even then so is r = 2n − kn.

5



If n is an odd prime then 2n ≡ 2 (mod n) by Fermat’s Little Theorem; hence r ≡ 2n ≡ 2

mod n and r = 2.

There remains the case in which n is odd and composite. In the first three instances n = 9,

15, 21 there is no contradiction to the assertion:

n = 9 :26 ≡ 1 mod 9 ⇒ 29 ≡ 26 · 23 ≡ 8 mod 9

n = 15 :24 ≡ 1 mod 15 ⇒ 215 ≡ (24)3 · 23 ≡ 8 mod 15

n = 21 :26 ≡ 1 mod 21 ⇒ 221 ≡ (26)3 · 23 ≡ 8 mod 21

However,

210 = 1024 ≡ −1 ⇒ 220 ≡ 1 ⇒ 225 ≡ 25 ≡ 7 mod 25,

so 7 is the remainder when 225 is divided by 25 and 27 is the remainder when 22
25
is divided

by 225 − 1.

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America
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This is a compilation of solutions for the 2011 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.
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§0 Problems
1. Find all positive integers n such that 2n + 12n + 2011n is a perfect square.

2. Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove
that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

3. For a point P = (a, a2) in the coordinate plane, let `(P ) denote the line passing
through P with slope 2a. Consider the set of triangles with vertices of the form
P1 = (a1, a

2
1), P2 = (a2, a

2
2), P3 = (a3, a

2
3), such that the intersection of the lines

`(P1), `(P2), `(P3) form an equilateral triangle ∆. Find the locus of the center of ∆
as P1P2P3 ranges over all such triangles.

4. A word is defined as any finite string of letters. A word is a palindrome if it reads
the same backwards and forwards. Let a sequence of words W0,W1,W2, . . . be
defined as follows: W0 = a,W1 = b, and for n ≥ 2, Wn is the word formed by
writing Wn−2 followed by Wn−1. Prove that for any n ≥ 1, the word formed by
writing W1,W2,W3, . . . ,Wn in succession is a palindrome.

5. Points A,B,C,D,E lie on a circle ω and point P lies outside the circle. The given
points are such that (i) lines PB and PD are tangent to ω, (ii) P,A,C are collinear,
and (iii) DE ‖ AC. Prove that BE bisects AC.

6. Consider the assertion that for each positive integer n ≥ 2, the remainder upon
dividing 22

n by 2n − 1 is a power of 4. Either prove the assertion or find (with
proof) a counterexample.

2
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§1 Solutions to Day 1
§1.1 JMO 2011/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p2254778.

Problem statement

Find all positive integers n such that 2n + 12n + 2011n is a perfect square.

The answer n = 1 works, because 21 + 121 + 20111 = 452. We prove it’s the only one.

• If n ≥ 2 is even, then modulo 3 we have 2n + 12n + 2011n ≡ 1 + 0+ 1 ≡ 2 (mod 3)
so it is not a square.

• If n ≥ 3 is odd, then modulo 4 we have 2n + 12n + 2011n ≡ 0 + 0 + 3 ≡ 3 (mod 4)
so it is not a square.

This completes the proof.

3

http://web.evanchen.cc
https://aops.com/community/p2254778


JMO 2011 Solution Notes web.evanchen.cc, updated 2 June 2023

§1.2 JMO 2011/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p2254758.

Problem statement

Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove
that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

The condition becomes 2 ≥ a2 + b2 + c2 + ab+ bc+ ca. Therefore,∑
cyc

2ab+ 2

(a+ b)2
≥

∑
cyc

2ab+ (a2 + b2 + c2 + ab+ bc+ ca)

(a+ b)2

=
∑
cyc

(a+ b)2 + (c+ a)(c+ b)

(a+ b)2

= 3 +
∑
cyc

(c+ a)(c+ b)

(a+ b)2

≥ 3 + 3 3

√√√√∏
cyc

(c+ a)(c+ b)

(a+ b)2
= 3 + 3 = 6

with the last line by AM-GM. This completes the proof.

4

http://web.evanchen.cc
https://aops.com/community/p2254758


JMO 2011 Solution Notes web.evanchen.cc, updated 2 June 2023

§1.3 JMO 2011/3, proposed by Zuming Feng
Available online at https://aops.com/community/p2254823.

Problem statement

For a point P = (a, a2) in the coordinate plane, let `(P ) denote the line passing
through P with slope 2a. Consider the set of triangles with vertices of the form
P1 = (a1, a

2
1), P2 = (a2, a

2
2), P3 = (a3, a

2
3), such that the intersection of the lines

`(P1), `(P2), `(P3) form an equilateral triangle ∆. Find the locus of the center of ∆
as P1P2P3 ranges over all such triangles.

The answer is the line y = −1/4. I did not find this problem inspiring, so I will not
write out most of the boring calculations since most solutions are just going to be “use
Cartesian coordinates and grind all the way through”.

The “nice” form of the main claim is as follows (which is certainly overkill for the
present task, but is too good to resist including):

Claim (Naoki Sato) — In general, the orthocenter of ∆ lies on the directrix y = −1/4
of the parabola (even if the triangle ∆ is not equilateral).

Proof. By writing out the equation y = 2aix− a2i for `(Pi), we find the vertices of the
triangle are located at(

a1 + a2
2

, a1a2

)
;

(
a2 + a3

2
, a2a3

)
;

(
a3 + a1

2
, a3a1

)
.

The coordinates of the orthocenter can be checked explicitly to be

H =

(
a1 + a2 + a3 + 4a1a2a3

2
,−1

4

)
.

An advanced synthetic proof of this fact is given at https://aops.com/community/
p2255814.

This claim already shows that every point lies on y = −1/4. We now turn to showing
that, even when restricted to equilateral triangles, we can achieve every point on y = −1/4.
In what follows a = a1, b = a2, c = a3 for legibility.

Claim — Lines `(a), `(b), `(c) form an equilateral triangle if and only if

a+ b+ c = −12abc

ab+ bc+ ca = −3

4
.

Moreover, the x-coordinate of the equilateral triangle is 1
3(a+ b+ c).

Proof. The triangle is equilateral if and only if the centroid and orthocenter coincide, i.e.(
a+ b+ c

3
,
ab+ bc+ ca

3

)
= G = H =

(
a+ b+ c+ 4abc

2
,−1

4

)
.

Setting the x and y coordinates equal, we derive the claimed equations.

5
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Let λ be any real number. We are tasked to show that

P (X) = X3 − 3λ ·X2 − 3

4
X +

λ

4

has three real roots (with multiplicity); then taking those roots as (a, b, c) yields a valid
equilateral-triangle triple whose x-coordinate is exactly λ, be the previous claim.

To prove that, pick the values

P (−
√
3/2) = −2λ

P (0) = 1
4λ

P (
√
3/2) = −2λ.

The intermediate value theorem (at least for λ 6= 0) implies that P should have at least
two real roots now, and since P has degree 3, it has all real roots. That’s all.

6
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§2 Solutions to Day 2
§2.1 JMO 2011/4, proposed by Gabriel Carroll
Available online at https://aops.com/community/p2254808.

Problem statement

A word is defined as any finite string of letters. A word is a palindrome if it reads the
same backwards and forwards. Let a sequence of words W0,W1,W2, . . . be defined
as follows: W0 = a,W1 = b, and for n ≥ 2, Wn is the word formed by writing
Wn−2 followed by Wn−1. Prove that for any n ≥ 1, the word formed by writing
W1,W2,W3, . . . ,Wn in succession is a palindrome.

To aid in following the solution, here are the first several words:

W0 = a

W1 = b

W2 = ab

W3 = bab

W4 = abbab

W5 = bababbab

W6 = abbabbababbab

W7 = bababbababbabbababbab

We prove that W1W2 · · ·Wn is a palindrome by induction on n. The base cases n =
1, 2, 3, 4 can be verified by hand.

For the inductive step, we let X denote the word X written backwards. Then

W1W2 · · ·Wn−3Wn−2Wn−1Wn
IH
= (Wn−1Wn−2Wn−3 · · ·W2W1)Wn

= (Wn−1Wn−2Wn−3 . . .W2W1)Wn−2Wn−1

= Wn−1Wn−2(Wn−3 . . .W2W1)Wn−2Wn−1

with the first equality being by the induction hypothesis. By induction hypothesis again
the inner parenthesized term is also a palindrome, and so this completes the proof.
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§2.2 JMO 2011/5, proposed by Zuming Feng
Available online at https://aops.com/community/p2254813.

Problem statement

Points A,B,C,D,E lie on a circle ω and point P lies outside the circle. The given
points are such that (i) lines PB and PD are tangent to ω, (ii) P,A,C are collinear,
and (iii) DE ‖ AC. Prove that BE bisects AC.

We present two solutions.

¶ First solution using harmonic bundles Let M = BE ∩AC and let ∞ be the point
at infinity along DE ‖ AC.

B

D E

P AMC

Note that ABCD is harmonic, so

−1 = (AC;BD)
E
= (AC;M∞)

implying M is the midpoint of AC.

¶ Second solution using complex numbers (Cynthia Du) Suppose we let b, d, e be
free on unit circle, so p = 2bd

b+d . Then d/c = a/e, and a+ c = p+ acp. Consequently,

ac = de

1

2
(a+ c) =

bd

b+ d
+ de · 1

b+ d
=

d(b+ e)

b+ d
.

a+ c

2ac
=

(b+ e)

e(b+ d)
.

From here it’s easy to see
a+ c

2
+

a+ c

2ac
· be = b+ e

which is what we wanted to prove.
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§2.3 JMO 2011/6, proposed by Sam Vandervelde
Available online at https://aops.com/community/p2254810.

Problem statement

Consider the assertion that for each positive integer n ≥ 2, the remainder upon
dividing 22

n by 2n− 1 is a power of 4. Either prove the assertion or find (with proof)
a counterexample.

We claim n = 25 is a counterexample. Since 225 ≡ 20 (mod 225 − 1), we have

22
25 ≡ 22

25 mod 25 ≡ 27 mod 225 − 1

and the right-hand side is actually the remainder, since 0 < 27 < 225. But 27 is not a
power of 4.

Remark. Really, the problem is just equivalent for asking 2n to have odd remainder when
divided by n.

9
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3rd United States of America Junior Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 24, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper,
carbon paper). Failure to meet any of these requirements will result in a 1-point automatic
deduction.

JMO 1. Given a triangle ABC, let P and Q be points on segments AB and AC, respectively, such
that AP = AQ. Let S and R be distinct points on segment BC such that S lies between
B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P, Q,R, S are concyclic (in
other words, these four points lie on a circle).

JMO 2. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, ..., an with

max(a1, a2, ..., an) ≤ n ·min(a1, a2, ..., an),

there exist three that are the side lengths of an acute triangle.

JMO 3. Let a, b, c be positive real numbers. Prove that

a3 + 3b3

5a + b
+

b3 + 3c3

5b + c
+

c3 + 3a3

5c + a
≥ 2

3
(a2 + b2 + c2) .

Copyright © Mathematical Association of America
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3rd United States of America Junior Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 25, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper,
carbon paper). Failure to meet any of these requirements will result in a 1-point automatic
deduction.

JMO 4. Let α be an irrational number with 0 < α < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n ≥ 3, define a sequence of points P1, P2,
. . . , Pn as follows. First select any point P1 on the circle, and for 2 ≤ k ≤ n define Pk as
the point on the circle for which the length of arc Pk−1Pk is α, when travelling counter-
clockwise around the circle from Pk−1 to Pk. Suppose that Pa and Pb are the nearest
adjacent points on either side of Pn. Prove that a + b ≤ n.

JMO 5. For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers k with
1 ≤ k < 2012 such that the remainder when ak divided by 2012 is greater than that of
bk divided by 2012. Let S be the minimum value of f(a, b), where a and b range over all
pairs of distinct positive integers less than 2012. Determine S.

JMO 6. Let P be a point in the plane of 4ABC, and γ a line passing through P . Let A′, B′, C ′

be the points where the reflections of lines PA, PB, PC with respect to γ intersect lines
BC, AC, AB, respectively. Prove that A′, B′, C ′ are collinear.

Copyright © Mathematical Association of America
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3rd United States of America Junior Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 24-25, 2012

JMO 1. Solution 1 We use the following lemma.

Lemma. Given a triangle ABC, X, Y, Z are points on BC, CA, AB respectively. Then
three perpendicular lines of BC, CA, AB which go through X, Y, Z respectively are con-
current if and only if AY 2 + BZ2 + CX2 = AZ2 + BX2 + CY 2.

Proof of Lemma. If the lines are concurrent, let P be the point on the three lines.
From BX2 − CX2 = (PB2 − PX2)− (PC2 − PX2) = PB2 − PC2 and so on, we obtain
the desired result. Conversely, if AY 2 + BZ2 + CX2 = AZ2 + BX2 + CY 2 holds, let Q
be the intersection of perpendicular lines of BC, CA which go through X, Y respectively.
Then as we have seen BX2 − CX2 = QB2 −QC2 and CY 2 − AY 2 = QC2 −QA2 holds.
Summing up these equations, we have AZ2 − BZ2 = QA2 −QB2. This implies that QZ
and AB are perpendicular, as desired. End of the Proof

Let M be the midpoint of SR. We show that AP 2 + BM2 + CQ2 = AQ2 + BP 2 + CM2.
Since AP = AQ, CQ2 = CR · CS, BP 2 = BS · BR, and BM2 − CM2 = (BM +
CM)(BM−CM) = BC(BS−RC), we have (AP 2+BM2+CQ2)−(AQ2+BP 2+CM2) =
BC(BS−RC)−BS ·BR+CR ·CS = BS ·CR−CR ·BC = 0. Thus there exists a point
O such that OP ⊥ BC, OQ ⊥ AC, OM ⊥ BC. Then O is the center of a circimcircle of
PRS, since the circle is tangent to AB at P . Similarly, O is the center of a circumcircle
of QRS, which implies that P, Q, R, S are on a circle.

Solution 2 By the given hypothesis, we have a circle Γ1 which passes through S and R,
and touches AB at P . Similarly, we have a circle Γ2 which passes through S and R, and
touches AC at Q. Suppose that the circles Γ1 and Γ2 are different from each other. Then
the power of A onto Γ1 is AP 2, and the power of A onto Γ2 is AQ2. This implies that A
is on the radical axis of Γ1 and Γ2, namely the line BC, which is a contradiction. Hence,
we have Γ1 = Γ2, so that P, Q, R, S are concyclic, as desired.

Solution 3 We use the same notations as in the Solution 2. Suppose again that Γ1 6= Γ2.
Let l be the perpendicular bisector of SR, and consider a circle γ passing through S and
R whose center is moving on l. Suppose that initially the center of γ is on the half plane
divided by BC in which A does not lie. Moving the center toward A, γ would touch AB
and AC, not simultaneously by the hypothesis. Without loss of generality, suppose that
γ touches AB at P first, and then touches AC at Q. Note that γ of these situations are
Γ1 and Γ2 respectively.

We increases the radius of Γ1, keeping the circle tangent to AB. Then it will touch
AC eventually. Let Γ′

1 be the circle, which is tangent to AB and AC at P and Q re-
spectively and meets BC at two points S ′ and R′. Note that on BC, the points are
ordered as B, S ′, S, R,R′, C. We have ∠BPS = ∠PRS and ∠BPS ′ = ∠PR′S ′, which

1



imply ∠SPS ′ = ∠RPR′. Similarly, we have ∠SQS ′ = ∠RQR′. Without loss of gen-
erality, suppose that on the circle Γ′

1, the points are ordered as S ′, P, Q, R′. Let lines
PS, PR, QS,QR meet Γ′

1 again at T1, U1, T2, U2 respectively. Then the points on Γ′
1 are

ordered as S ′, T2, T1, U2, U1, R
′. From ∠SPS ′ = ∠RPR′ we have

_

S ′T1=
_

U1R
′ and from

∠SQS ′ = ∠RQR′, we have
_

S ′T2=
_

U2R
′. However, we have

_

S ′T2<
_

S ′T1=
_

U1R
′<

_

U2R
′, which

leads us to a contradiction. Hence, we have Γ1 = Γ2, as desired.

Solution 4 Let Γ3 be the circle tangent to AB and AC at P and Q respectively. Inverse
the plane around P . We denote by X ′ the image of any point or any set X via the inversion.
A′, P, B′ are collinear in this order, and the image of AC is a circle (AC)′ passing through
A′ and P . Then Γ′

3 is a line which is tangent to (AC)′ and parallel to A′P . Note that the
tangency point is Q′. Γ′

1 is a line parallel to A′P . Finally, B′, S ′, R′ are on a circle passing
through P , and S ′, R′ are on Γ′

1.

Suppose Γ1 6= Γ3. Then clearly we have Γ′
1 6= Γ′

3. Note that Q′ is on the perpendicular
bisector l of A′P . Since PB′R′S ′ is cyclic and PB′ and R′S ′ are parallel, it is an isosceles
trapezoid. Now we consider Γ′

2. This circle should be tangent to Γ′
1 at Q′, so the center

of Γ′
2 must lie on l. However, Since Γ′

2 passes through R′ and S ′, the center must lie on
the perpendicular bisector of R′S ′ which is the same as the one of PB′. Since A′ and B′

lie on the different ray centered on P , this is impossible. Therefore, we have Γ1 = Γ3, on
which P, Q, R, S lie.

Solution 5 In the case that AB = AC, suppose α = ∠BPS > ∠CQR = β. Let R′ be a
point on BC such that BS = R′C. We then have that two triangles BPS and CQR′ are
congruent. Hence, ∠CQR′ = α > β = ∠CQR, so that R lies between R′ and C. However,
then we have β = ∠QSC = ∠PR′S > ∠PRS = α, contradiction. Hence we have α = β,
so the trapezoid PQRS is isosceles, as desired.

Now suppose AB 6= AC, and PQ and BC meet at X. Without loss of generality, suppose
B > C so that B lies between X and C. Let AP = AQ = t,XB = x, BS = y, RC = z.
To deduce x, we apply Menelaus’ theorem to the triangle ABC and a line XPQ to obtain
AQ
QC

CX
XB

BP
PA

= 1. This yields x = c−t
b−c

a.

From the hypothesis, we have (c − t)2 = y(a − z) and (b − t)2 = z(a − y). From these

results, we have (c − t)2 − (b − t)2 = (y − z)a, so that y − z = (c−b)(b+c−2t)
a

. Hence, we
obtain

XS ·XR = (x + y)(x + a− z) = x2 + (a + y − z)x + (c− t)2

= x2 + (a +
(c− b)(b + c− 2t)

a
)x + (c− t)2

=
(c− t)2

(b− c)2
a2 +

c− t

b− c
a2 + (t− c)(b + c− 2t) + (c− t)2

=
(b− t)(c− t)

(b− c)2
a2 + (t− c)(b− t) =

(b− t)(c− t)

(b− c)2
(a2 − (b− c)2)

=
(b− t)(c− t)

(b− c)2
(a− b + c)(a + b− c).

2



On the other hand, since ∠APQ = π−A
2

, we have ∠PXB = B−C
2

. Applying the Sine
theorem to the triangle XPB, we have x

sin π−A
2

= XP
sin B

⇔ XP = x sin B
cos A

2

. From Menelaus’

theorem again, we have QX
XP

PB
BA

AC
CQ

= 1, or equivalently XQ = XP c
c−t

b−t
b

. Hence, we have

XP ·XQ = x2 sin2 B

cos2 A
2

c(b− t)

b(c− t)

=
(c− t)2

(b− c)2
a2 ( b

2R
)2

(a+b+c)(−a+b+c)
4bc

c(b− t)

b(c− t)

=
(b− t)(c− t)

(b− c)2

a2b2c2

R2(a + b + c)(−a + b + c)

=
(b− t)(c− t)

(b− c)2

16R2S2

R2(a + b + c)(−a + b + c)

=
(b− t)(c− t)

(b− c)2
(a− b + c)(a + b− c),

where R is the circumradius of the triangle ABC and S is the area of the triangle ABC.
Since we have now that XP ·XQ = XS ·XR, the four points are concyclic, as desired.

Comment. It is a degenerated version of the following statement: if ABCDEF is a con-
vex hexagon and ABCD, CDEF , and EFAB are cyclic quadrilaterals, then ABCDEF
is a cyclic hexagon. This can be easily verified by the similar idea to the First and Second
solution.

This problem and solution were suggested by Sungyoon Kim and Inseok Seo.

JMO 2. First we prove that any n ≥ 13 is a solution of the problem. Suppose that a1, a2, ..., an

satisfy max(a1, a2, ..., an) ≤ n · min(a1, a2, ..., an), and that we cannot find three that are
the side-lengths of an acute triangle. We may assume that a1 ≤ a2 ≤ ... ≤ an. Then
a2

i+2 ≥ a2
i + a2

i+1 for all i ≤ n− 2. Let (Fn) be the Fibonacci sequence, with F1 = F2 = 1
and Fn+1 = Fn +Fn−1. It is easy to check that Fn < n2 for n ≤ 11, F12 = 122 and Fn > n2

for n > 12 (the last inequality follows by an immediate induction, while the first one can
be checked by hand). The inequality a2

i+2 ≥ a2
i + a2

i+1 and the fact that a1 ≤ a2 ≤ ... ≤ an

imply that a2
i ≥ Fi ·a2

1 for all i ≤ n. Hence, if n ≥ 13, we obtain a2
n > n2 ·a2

1, contradicting
the hypothesis. This shows that any n ≥ 13 is a solution of the problem.

By taking ai =
√

Fi for 1 ≤ i ≤ n, we have max(a1, a2, ..., an) ≤ n ·min(a1, a2, ..., an), for
any n < 13, but it is easy to see that no three ai’s can be the side-lengths of an acute
triangle. Hence the answer to the problem is: all n ≥ 13.

This problem and solution were suggested by Titu Andreescu.

JMO 3. Solution 1: Recall the following form of Cauchy-Schwarz inequality,

x2
1

y1

+
x2

2

y2

+ . . . +
x2

n

yn

≥ (x1 + x2 + . . . + xn)2

y1 + y2 + . . . + yn

.
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It also follows from the Cauchy-Schwarz inequality that x2
1 +x2

2 +x2
3 ≥ x1x2 +x2x3 +x3x1.

From these two inequalities, deduce that

a3

5a + b
+

b3

5b + c
+

c3

5c + a
=

a4

5a2 + ab
+

b4

5b2 + bc
+

c4

5c2 + ca

≥ (a2 + b2 + c2)2

5(a2 + b2 + c2) + (ab + bc + ca)

≥ 1

6
(a2 + b2 + c2).

The equality holds if and only if a = b = c.

This problem and solution were suggested by Titu Andreescu.

Solution 2: Note that

0 ≤ (41a + 83b) (a− b)2

= 41a3 + a2b− 125ab2 + 83b3,

which is equivalent to

(5a + b)
(
−a2 + 25b2

)
≤ 36

(
a3 + 3b3

)
.

Hence,
a3 + 3b3

5a + b
≥ − 1

36
a2 +

25

36
b2.

Adding this with two other analogous inequalities completes the proof.

Discovery: The solution can be discovered naturally. We start with guessing

a3 + 3b3

5a + b
≥ ta2 +

(
2

3
− t

)
b2,

and rewrite it into

(1− 5t)a3 − ta2b− 5

(
2

3
− t

)
ab2 +

(
7

3
+ t

)
b3 ≥ 0.

Wishing (a− b)2 to be a factor, we use synthetic division to write the left-hand side as

(a− b)2 [(1− 5t)a + (2− 11t)b]−
(

1

3
+ 12t

)
b3,

and get t = −1/36 by setting the remainder equal to 0.

This solution was suggested by Titu Andreescu and independently by Li Zhou, Polk State
College, Winter Haven, FL.

Solution 3:

4



It is convenient to use the shorthand notation
∑

cyc ∗ to denote the sum of the three
expressions obtained from ∗ by cyclically permuting the variables a, b, c. For instance,∑

cyc

a4b = a4b + b4c + c4a.

In this notation, by clearing denominators, we may rewrite the desired inequality as

0 ≤
∑
cyc

(190a4b + 35a3b2 + 38ab4 − 35a2b3 − 168a3bc− 60a2b2c). (1)

It is tempting to attempt to prove this using Muirhead’s inequality, but this fails because
we are working with cyclic sums rather than symmetric sums. For instance, it is not true
that ∑

cyc

a4b ≥
∑
cyc

a3b2

(e.g., take (a, b, c) = (10, 7, 1)) even though Muirhead’s inequality does imply the corre-
sponding inequality for symmetric sums.

One must instead keep in mind not the statement of Muirhead’s inequality but its un-
derlying intuition: one should use “less mixed” monomials to dominate “more mixed”
monomials. We will see two key techniques for realizing this intuition in the following
argument. (Note that the breakdown we will give is in no way unique; there is some
flexibility in the choice of how to separate (1) into tractable pieces.)

We first use what one might call a “sum of squares” argument: writing down cyclic sums
of manifestly nonnegative expressions in order to match a few of the terms in (1). For
instance, the following inequalities are all valid:

0 ≤
∑
cyc

84a2b(a− c)2 =
∑
cyc

(84a4b− 168a3bc + 84a2b2c), (2)

0 ≤
∑
cyc

35

2
ab2(a− b)2 =

∑
cyc

(
35

2
a3b2 − 35a2b3 +

35

2
ab4

)
, (3)

0 ≤
∑
cyc

35

2
ab2(a− c)2 =

∑
cyc

(
35

2
a3b2 − 35a2b2c +

35

2
ab2c2

)
, (4)

and these completely account for the summands 35a3b2,−35a2b3,−168a3bc in (1). We
would like to add (2), (3), (4), and one more true inequality to get (1); that final inequality
then would have to be

0 ≤
∑
cyc

(
177

2
a4b + 38ab4 − 253

2
a2b2c

)
. (5)

This inequality does not immediately present itself as a sum of squares, so we resort to
a second technique: the weighted arithmetic-geometric mean inequality. This inequality
implies that for any nonnegative real numbers u, v, w adding up to 1,∑

cyc

a4b =
∑
cyc

(ua4b + vb4c + wc4a) ≥
∑
cyc

a4u+wbu+4vcv+4w.

5



We may then deduce that ∑
cyc

a4b ≥
∑
cyc

a2b2c (6)

by solving the linear equations

4u + w = 2, u + 4v = 2, v + 4w = 1

and discovering that the unique real solution

(u, v, w) =

(
6

13
,

5

13
,

2

13

)
consists of nonnegative real numbers. (It is not necessary to check separately that the three
numbers add up to 1, because adding the three given equations together gives 5(u+v+w) =
5.) By switching a and b, we also obtain the valid inequality∑

cyc

ab4 ≥
∑
cyc

a2b2c. (7)

Adding 177/2 times (6) by 177/2 plus 38 times (7) then gives (5), so this inequality is
also valid. As noted earlier, we may then add (5) to (2), (3), (4) to obtain the desired
inequality (1).

This solution was adapted and refined by Kiran Kedlaya from several students’ solutions.

JMO 4. Observe that since α is irrational no two of the points will coincide. It will be useful
to define the auxiliary point P0 such that the length of arc P0P1 is α, when travelling
counter-clockwise around the circle from P0 to P1. We begin by noting that for any n ≥ 3,
if a + b = n then P0 lies on the arc from Pa to Pb containing Pn. For if we travel back
(clockwise) around the circle through a distance of bα from Pn then we reach Pa. The same
translation must map Pb to P0, and since Pn is situated between Pa and Pb, we deduce
that P0 must be also.

The claim is clearly true for n = 3. Now suppose to the contrary that for some value of n
we have a+ b > n and consider the minimal such counterexample. If in fact a+ b > n+1,
then we may translate the three points Pa, Pb, and Pn clockwise around the circle through
a distance α to find points Pa−1 and Pb−1 adjacent to Pn−1 on either side. But then we
would have (a − 1) + (b − 1) > (n − 1) for this trio of points, which contradicts our
assumption that n was the minimal counterexample.

Therefore we must have a+ b = n+1. Again we translate points Pa, Pb, and Pn clockwise
around the circle through a distance α to obtain points Pa−1 and Pb−1 adjacent to Pn−1

on either side with (a− 1)+ (b− 1) = (n− 1). By our earlier observation this implies that
P0 lies on the arc from Pa−1 to Pb−1 containing Pn−1. But now translating forward again,
we conclude that P1 lies on the arc from Pa to Pb containing Pn, contradicting the fact
that Pa and Pb were the nearest adjacent points to Pn on either side. This completes the
proof.

This problem and solution were suggested by Sam Vandervelde.
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JMO 5. For simplicity, we will define g(n) to be n (mod 2012). Note that g(ak)+g(a(2012−k)) is
either 0 or 2012; it is 0 exactly when 2012 divides ak. This means that for 1 ≤ k ≤ 1005,
the number of elements i in {k, 2012− k} such that ai (mod 2012) > bi (mod 2012) is

0 if g(ak) = 0 or g(ak) = g(bk);

2 if g(bk) = 0 and g(ak) 6= 0;

1 otherwise.

Let T = {1, 2, . . . , 1005}. Note that the condition g(ak) = g(bk) is equivalent to g((a −
b)k) = 0. We will try to choose a, b so as to maximize the number of numbers k in T such
that the first of the three cases occurs. From the prime factorization 2012 = 2 · 2 · 503,
the proper divisors of 2012 are 1, 2, 4, 503, and 1006. We shall choose a and a− b to be
multiples of some of these numbers. It is not hard to verify that we can choose a to be a
multiple of 1006 and a− b to be a multiple of 4. We will take a = 1006 and b = 1002.

With this choice of a and b, the second of the three cases (i.e. g(bk) = 0 and g(ak) 6= 0)
never occurs, hence minimizing the number of elements i in T − {1006} such that ai
(mod 2012) > bi (mod 2012). Moreover, g(1006a) = 0, meaning that g(1006a) > g(1006b)
does not hold. This means that our choice of a and b minimizes f(a, b).

Note that g(1006k) = 0 occurs for 502 values in T , and g(1006k) = g(1002k) occurs for 1
value in T . No value in T satisfies both condition. Hence S = 1005− 502− 1 = 502.

Note: Similarly, we can solve the problem in which 2012 is replaced by any positive integer
n ≥ 3. The answer is

n

2

(
1− 1

p

)
if n = pk for some prime p;

n

2

(
1− 1

p1

) (
1− 1

p2

)
otherwise, where p1 and p2 are the two smallest prime divisors of n.

It is worth noting that the answer depends on no more than two prime divisors of n. Hence
it might be interesting to ask the question for a value of n with at least three distinct prime
divisors, or for all n.

This problem and solution were suggested by Warut Suksompong.

JMO 6. Solution 1: The proof is split into two cases.
Case 1: P is on the circumcircle of ABC. Then P is the Miquel point of A′, B′, C ′

with respect to ABC. Indeed, because ∠A′B′C ′ = ∠CBA = ∠CPA = ∠A′PC ′, points
P , A′, B′, C ′ are concyclic, and the same can be said for P , A, B′, C ′ and P , A′, B′, C.
Hence ∠CA′B′ = ∠CPB′ = ∠BPC ′ = ∠BA′C ′, so A′B′C ′ are collinear.
Case 2: P is not on the circumcircle of ABC. Let Q be isogonal conjugate of P with
respect to ABC (which is not degenerate).
Claim. Let Q′ be the isogonal conjugate of P with respect to AB′C ′. Then Q = Q′.
Proof of the claim. Note that

∠BQC = ∠BAC + ∠CPB (because P and Q are isogonal conjugates in ABC)

7



= ∠C ′AB′ + ∠B′PC
′

= ∠C ′Q′B′ (because P and Q are isogonal conjugates in AB′C ′).

Let X, Y , Z denote the reflections of P in sides BC, CA, AB, respectively, and let X ′

denote P ’s reflection in side B′C ′ of triangle AB′C ′. Then ∠ZXY = ∠BQC (because QC
is orthogonal to XY and QB is orthogonal to XZ), whereas ∠ZX ′Y ′ = ∠C ′Q′B′ because
Q′B′ is orthogonal to X ′Y and Q′C ′ is orthogonal to X ′Z and Q′C ′ is orthogonal to X ′Z,
so since ∠C ′Q′B′ = ∠BQC, we get ∠ZXY = ∠ZX ′Y . It follows that X, Y , Z, X ′ are
concyclic. The center of the XY Z-circle is Q while the center of the X ′Y ′Z-circle is Q′.
Thus Q = Q′.

Note. We have made use of the well-known fact that the circumcenter of the triangle
determined by the reflections of a point across the sidelines of another given triangle is
precisely the isogonal conjugate of the point with respect to that triangle. For a proof see
R. A. Johnson, Advanced Euclidean Geometry, 1929 ed., reprinted by Dover, 2007.

Similar arguments show that Q is also the isogonal point of P with respect to triangles
A′BC ′ and A′B′C. Therefore,

∠BC ′A′ = ∠AC ′A′ = ∠AC ′P + ∠PC ′Q + ∠QC ′A′

= ∠QC ′B′ + ∠PC ′Q + ∠BC ′P

= ∠BC ′B′ = ∠AC ′B′.

This means that A′, B′, C ′ are collinear. �

This problem and solution were suggested by Titu Andreescu and Cosmin Pohoata.

Solution 2: It’s easy to see (say, by law of sines) that

AC ′

BC ′ =
AP sin ∠APC ′

BP sin ∠BPC ′ ,
BA′

CA′ =
BP sin ∠BPA′

CP sin ∠CPA′ ,
CB′

AB′ =
CP sin ∠CPB′

AP sin ∠APB′ .

The construction of A′, B′, C ′ by reflections implies that

sin ∠APC ′ = sin ∠CPA′, sin ∠BPC ′ = sin ∠CPB′, sin ∠BPC ′ = sin ∠CPB′.

Hence,
AC ′

BC ′ ·
BA′

CA′ ·
CB′

AB′ = 1,

and the proof is complete by Menelaus’ theorem.

This second solution was suggested by Li Zhou, Polk State College, Winter Haven FL.

Copyright © Mathematical Association of America
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use this theory anyways, rather than try to work around or conceal it. For
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§0 Problems
1. Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,

such that AP = AQ. Let S and R be distinct points on segment BC such that S
lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P , Q,
R, S are concyclic.

2. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . ,
an with

max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

3. For a, b, c > 0 prove that

a3 + 3b3

5a+ b
+

b3 + 3c3

5b+ c
+

c3 + 3a3

5c+ a
≥ 2

3
(a2 + b2 + c2).

4. Let α be an irrational number with 0 < α < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n ≥ 3, define a sequence of points
P1, P2, . . . , Pn as follows. First select any point P1 on the circle, and for 2 ≤ k ≤ n
define Pk as the point on the circle for which the length of arc Pk−1Pk is α, when
travelling counterclockwise around the circle from Pk−1 to Pk. Suppose that Pa

and Pb are the nearest adjacent points on either side of Pn. Prove that a+ b ≤ n.

5. For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers
k with 1 ≤ k < 2012 such that the remainder when ak divided by 2012 is greater
than that of bk divided by 2012. Let S be the minimum value of f(a, b), where a
and b range over all pairs of distinct positive integers less than 2012. Determine S.

6. Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′

be the points where the reflections of lines PA,PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

2
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§1 Solutions to Day 1
§1.1 JMO 2012/1, proposed by Sungyoon Kim, Inseok Seo
Available online at https://aops.com/community/p2669111.

Problem statement

Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,
such that AP = AQ. Let S and R be distinct points on segment BC such that S
lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P , Q, R,
S are concyclic.

Assume for contradiction that (PRS) and (QRS) are distinct. Then RS is the radical
axis of these two circles. However, AP is tangent to (PRS) and AQ is tangent to (QRS),
so point A has equal power to both circles, which is impossible since A does not lie on
line BC.

3
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§1.2 JMO 2012/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p2669112.

Problem statement

Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . , an
with

max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and Fn+1 =

Fn + Fn−1. We will find that Fibonacci numbers show up naturally when we work
through the main proof, so we will isolate the following calculation now to make the
subsequent solution easier to read.

Claim — For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12, and in fact
F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by induction with
base cases m = 13 and m = 14 being checked already. For the inductive step, if m ≥ 15
then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m+ 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the main problem. The hypothesis max(a1, a2, . . . , an) ≤ n ·
min(a1, a2, . . . , an) will be denoted by (†).

Proof that all n ≥ 13 have the property. We first show now that every n ≥ 13
has the desired property. Suppose for contradiction that no three numbers are the sides
of an acute triangle. Assume without loss of generality (by sorting the numbers) that
a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are not the sides of an acute triangle for
each i ≥ 2, we have that a2i+1 ≥ a2i + a2i−1; writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21

and so on. The Fibonacci numbers appear naturally and by induction, we conclude that
a2i ≥ Fia

2
1. In particular, a2n ≥ Fna

2
1.
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However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†) reads
an ≤ n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The above
calculation also suggests a way to pick the counterexample: we choose ai =

√
Fi for every

i. Then min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =
√
Fn, so (†) is true as long as

n ≤ 12. And indeed no three numbers form the sides of an acute triangle: if i < j < k,
then a2k = Fk = Fk−1 + Fk−2 ≥ Fj + Fi = a2j + a2i .

5
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§1.3 JMO 2012/3, proposed by Titu Andreescu
Available online at https://aops.com/community/p2669114.

Problem statement

For a, b, c > 0 prove that

a3 + 3b3

5a+ b
+

b3 + 3c3

5b+ c
+

c3 + 3a3

5c+ a
≥ 2

3
(a2 + b2 + c2).

Apply Titu lemma to get∑
cyc

a3

5a+ b
=

∑
cyc

a4

5a2 + ab
≥ (a2 + b2 + c2)2∑

cyc(5a
2 + ab)

≥ a2 + b2 + c2

6

where the last step follows from the identity
∑

cyc(5a
2 + ab) ≤ 6(a2 + b2 + c2).

Similarly, ∑
cyc

b3

5a+ b
=

∑
cyc

b4

5ab+ b2
≥ (a2 + b2 + c2)2∑

cyc(5ab+ b2)
≥ a2 + b2 + c2

6

using the fact that
∑

cyc 5ab+ b2 ≤ 6(a2 + b2 + c2).
Therefore, adding the first display to three times the second display implies the result.

6

http://web.evanchen.cc
https://aops.com/community/p2669114


JMO 2012 Solution Notes web.evanchen.cc, updated 2 June 2023

§2 Solutions to Day 2
§2.1 JMO 2012/4, proposed by Sam Vandervelde
Available online at https://aops.com/community/p2669956.

Problem statement

Let α be an irrational number with 0 < α < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n ≥ 3, define a sequence of points
P1, P2, . . . , Pn as follows. First select any point P1 on the circle, and for 2 ≤ k ≤ n
define Pk as the point on the circle for which the length of arc Pk−1Pk is α, when
travelling counterclockwise around the circle from Pk−1 to Pk. Suppose that Pa and
Pb are the nearest adjacent points on either side of Pn. Prove that a+ b ≤ n.

No points coincide since α is irrational.
Assume for contradiction that n < a+ b < 2n. Then

PnPa+b−n ‖ PaPb.

This is an obvious contradiction since then Pa+b−n is contained in the arc ’PaPb of the
circle through Pn.

7
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§2.2 JMO 2012/5, proposed by Warut Suksompong
Available online at https://aops.com/community/p2669967.

Problem statement

For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers
k with 1 ≤ k < 2012 such that the remainder when ak divided by 2012 is greater
than that of bk divided by 2012. Let S be the minimum value of f(a, b), where a
and b range over all pairs of distinct positive integers less than 2012. Determine S.

The answer is S = 502 (not 503!).

Claim — If gcd(k, 2012) = 1, then necessarily either k or 2012 − k will counts
towards S.

Proof. First note that both ak, bk are nonzero modulo 2012. Note also that ak 6≡ bk
(mod 2012).

So if ra is the remainder of ak (mod 2012), then 2012−ra is the remainder of a(2012−k)
(mod 2012) Similarly we can consider rb and 2012− rb. As mentioned already, we have
ra 6= rb. So either ra > rb or 2012− ra > 2012− rb.

This implies S ≥ 1
2ϕ(2012) = 502.

But this can actually be achieved by taking a = 4 and b = 1010, since

• If k is even, then ak ≡ bk (mod 2012) so no even k counts towards S; and

• If k ≡ 0 (mod 503), then ak ≡ 0 (mod 2012) so no such k counts towards S.

This gives the final answer S ≥ 502.

Remark. A similar proof works with 2012 replaced by any n and will give an answer of
1
2ϕ(n). For composite n, one uses the Chinese remainder theorem to pick distinct a and b
not divisible by n such that lcm(a− b, a) = n.
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§2.3 JMO 2012/6, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p2669960.

Problem statement

Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′

be the points where the reflections of lines PA,PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

We present three solutions.

¶ First solution (complex numbers) Let p = 0 and set γ as the real line. Then A′ is
the intersection of bc and pa. So, we get

a′ =
a(bc− bc)

(b− c)a− (b− c)a
.

A

B C

P

A′

Note that
a′ =

a(bc− bc)

(b− c)a− (b− c)a
.

Thus it suffices to prove

0 = det


a(bc−bc)

(b−c)a−(b−c)a

a(bc−bc)

(b−c)a−(b−c)a
1

b(ca−ca)

(c−a)b−(c−a)b

b(ca−ca)

(c−a)b−(c−a)b
1

c(ab−ab)

(a−b)c−(a−b)c

c(ab−ab)

(a−b)c−(a−b)c
1

 .

This is equivalent to

0 = det

a(bc− bc) a(bc− bc) (b− c)a− (b− c)a

b(ca− ca) b(ca− ca) (c− a)b− (c− a)b

c(ab− ab) c(ab− ab) (a− b)c− (a− b)c

 .

This determinant has the property that the rows sum to zero, and we’re done.

Remark. Alternatively, if you don’t notice that you could just blindly expand:∑
cyc

((b− c)a− (b− c)a) · −det
[
b b
c c

]
(ca− ca)

(
ab− ab

)
= (bc− cb)(ca− ca)(ab− ab)

∑
cyc

(
ab− ac+ ca− ba

)
= 0.
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¶ Second solution (Desargues involution) We let C ′′ = A′B′∩AB. Consider complete
quadrilateral ABCA′B′C ′′C. We see that there is an involutive pairing τ at P swapping
(PA,PA′), (PB,PB′), (PC,PC ′′). From the first two, we see τ coincides with reflection
about `, hence conclude C ′′ = C.

¶ Third solution (barycentric), by Catherine Xu We will perform barycentric coor-
dinates on the triangle PCC ′, with P = (1, 0, 0), C ′ = (0, 1, 0), and C = (0, 0, 1). Set
a = CC ′, b = CP , c = C ′P as usual. Since A, B, C ′ are collinear, we will define
A = (p : k : q) and B = (p : ` : q).

Claim — Line γ is the angle bisector of ∠APA′, ∠BPB′, and ∠CPC ′.

Proof. Since A′P is the reflection of AP across γ, etc.

Thus B′ is the intersection of the isogonal of B with respect to ∠P with the line CA;
that is,

B′ =

(
p

k

b2

`
:
b2

`
:
c2

q

)
.

Analogously, A′ is the intersection of the isogonal of A with respect to ∠P with the line
CB; that is,

A′ =

(
p

`

b2

k
:
b2

k
:
c2

q

)
.

The ratio of the first to third coordinate in these two points is both b2pq : c2k`, so it
follows A′, B′, and C ′ are collinear.
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4th United States of America Junior Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 30, 2013

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

JMO 1. Are there integers a and b such that a5b+3 and ab5 +3 are both perfect cubes of integers?

JMO 2. Each cell of an m× n board is filled with some nonnegative integer. Two numbers in the
filling are said to be adjacent if their cells share a common side. (Note that two numbers in
cells that share only a corner are not adjacent.) The filling is called a garden if it satisfies
the following two conditions:

(i) The difference between any two adjacent numbers is either 0 or 1.

(ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to 0.

Determine the number of distinct gardens in terms of m and n.

JMO 3. In triangle ABC, points P, Q, R lie on sides BC, CA,AB, respectively. Let ωA, ωB, ωC

denote the circumcircles of triangles AQR, BRP,CPQ, respectively. Given the fact that
segment AP intersects ωA, ωB, ωC again at X, Y, Z respectively, prove that Y X/XZ =
BP/PC.

Copyright © Mathematical Association of America
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4th United States of America Junior Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

May 1, 2013

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

JMO 4. Let f(n) be the number of ways to write n as a sum of powers of 2, where we keep track of
the order of the summation. For example, f(4) = 6 because 4 can be written as 4, 2 + 2,
2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and 1 + 1 + 1 + 1. Find the smallest n greater than 2013
for which f(n) is odd.

JMO 5. Quadrilateral XABY is inscribed in the semicircle ω with diameter XY . Segments AY
and BX meet at P . Point Z is the foot of the perpendicular from P to line XY . Point
C lies on ω such that line XC is perpendicular to line AZ. Let Q be the intersection of
segments AY and XC. Prove that

BY

XP
+

CY

XQ
=

AY

AX
.

JMO 6. Find all real numbers x, y, z ≥ 1 satisfying

min(
√

x + xyz,
√

y + xyz,
√

z + xyz) =
√

x− 1 +
√

y − 1 +
√

z − 1.

Copyright © Mathematical Association of America
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4th United States of America Junior Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 30 - May 1, 2013

JMO 1. The answer is negative. Modulo 9, a cube is 0 or ±1. Assuming that one of a5b + 3 and
ab5 + 3 is 0 mod 9, it follows that at least one of the numbers a and b, say a, is divisible
by 3, hence a5b+ 3 is 3 mod 27, not a perfect cube. If a5b+ 3 and ab5 + 3 are both perfect
cubes of the form ±1 mod 9, then a5b and ab5 are both 7 or 5 mod 9, and so their product,
(ab)6, is −1, −2, or 4 mod 9. But (ab)6 is the square of a perfect cube not divisible by 3,
so is precisely 1 mod 9, a contradiction.

This problem and solution were suggested by Titu Andreescu.

JMO 2. Answer: 2mn − 1.

First note that if m = n = 1, then condition (ii) is vacuously satisfied, so the one cell must
contain 0. Henceforth, we assume that m > 1 or n > 1, so that every cell has at least one
adjacent cell.

We define the distance between two cells to be |x1− x2|+ |y1− y2|, where (x1, y1), (x2, y2)
are the centers of the respective cells. In particular, two cells are adjacent if and only if
the distance between them is 1.

By condition (ii), the smallest value among the cells of any given garden must be 0. In
particular, a garden has at least one zero.

We construct an explicit bijection between the set of nonempty subsets of the mn cells
in the array filled with 0 and the set of all possible gardens. Given a subset of the mn
cells filled with zeroes, fill every cell in the array with the value of the distance to the
nearest cell filled with a zero. This filling of the cells is well-defined and satisfies both
properties (i) and (ii). Given two different subsets of cells filled with zeroes, the filling of
all cells with minimum distances must necessarily be different, so the function is injective
(or one-to-one).

Let an arbitrary garden be given and suppose that a cell in that garden contains an integer
k ≥ 1. By condition (ii), it has an adjacent cell with a smaller integer. Since the difference
is either 0 or 1, the difference must be 1. Thus, a cell assigned k will have an adjacent
cell assigned k − 1. We draw a line segment between the two center points of these two
cells. Repeating this procedure, we can find a path from k to a 0-cell. We call such a path
a garden path. There may be more than one garden path from a given cell, but all such
paths will have length k.

Suppose that for some cell C assigned k there is a path of length n < k from C to a 0-cell
D. Let the numbers in the cells the path goes through be a0 = k, a1, . . . , an = 0. Now
ai − ai+1 ≤ 1, so

k =
n−1∑
i=0

(ai − ai+1) ≤ n < k,

1



a contradiction. Thus, the nearest 0-cell to C has distance ≥ k from C. By the previous
paragraph, there exists a path from C to a 0-cell with distance k. Therefore, the distance
to the nearest 0-cell is exactly k. The mapping is surjective (or onto).

Therefore, each garden is uniquely determined by the position of zeros. Consequently, we
just need to count the number of ways to put zeros in mn cells, subject to the condition
that there is at least one zero. This is clearly 2mn − 1.

This problem and solution were suggested by Sungyoon Kim.

JMO 3. First Solution: Assume that ωB and ωC intersect again at another point S (other than
P ). (The degenerate case of ωB and ωC being tangent at P can be dealt similarly.) Because
BPSR and CPSQ are cyclic, we have ∠RSP = 180◦−∠PBR and ∠PSQ = 180◦−∠QCP .
Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C

P

Q
R

X

Y

Z

S
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This problem and solution were suggested by Zuming Feng.

Second Solution: Assume that ωB and ωC intersect again at another point S (other
than P ). (The degenerate case of ωB and ωC being tangent at P can be dealt with
similarly.) Because BPSR and CPSQ are cyclic, we have ∠RSP = 180◦ − ∠PBR and
∠PSQ = 180◦ − ∠QCP . Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C

P

Q
R

X

Y

Z

S

We consider the configuration shown in the above diagram. (We can adjust the proof
below easily for other configurations. In particular, our proof is carried with directed
angles modulo 180◦.)

Line RY intersects ωA again at TY (other than R). Because BPY R is cyclic, ∠TY Y X =
∠TY Y P = ∠RBP = ∠ABP . Because ARXTY is cyclic, ∠XTY Y = ∠XAR = ∠PAB.
Hence triangles TY Y X and ABP are similar to each other. In particular,

∠Y XTY = ∠BPA and
Y X

BP
=

XTY

PA
. (1)

3



Likewise, if line QZ intersect ωA again at TZ (other than R), we can show that triangles
TZZX and ACP are similar to each other and that

∠TZXZ = ∠APC and
XTZ

PA
=

XZ

PC
. (2)

In the light of the second equations (on lengths proportions) in (1) and (2), it suffices to
show that TZ = TY . On the other hand, the first equations (on angles) in (1) and (2)
imply that X,TY , TZ lie on a line. But this line can only intersect ωA twice with X being
one of them. Hence we must have TY = TZ , completing our proof.

Comment: The result remains to be true if segment AP is replaced by line AP . The
current statement is given to simplify the configuration issue. Also, a very common mistake
in attempts following the second solution is assuming line RY and QZ meet at a point on
ωA.

This solution was suggested by Zuming Feng.

JMO 4. Solution 1. The answer is 2047. We shall prove that f(n) is odd iff n = 2k− 1 for k ≥ 1.
It is easy to see that f(1) = 1, f(2) = 2, and f(3) = 3. Assume that the statement holds
true for k ≤ m. We will show that the statement is true for k = m + 1.

Let m ≥ 2 be an integer such that 2m ≤ n ≤ 2m+1 − 1.

If n = 2m we write n = 2s+(n−2s) for 0 ≤ s ≤ m. We see that f(2m) = f(2m−1)+f(2m−
2) + . . .+ f(2m− 2m−1) + 1. By induction hypothesis each of f(2m− 2), . . . , f(2m− 2m−1)
is even, but f(2m − 1) is odd, so f(2m) is even.

If 2m < n ≤ 2m+1 − 1 we have f(n) = f(n− 1) + f(n− 2) + . . . + f(n− 2m).

By induction hypothesis each term on the right hand side is odd iff n−2s = 2r−1 for some
positive integer r. For each n of the form n = 2s + 2r − 1 these odd summands appear in
pairs: n−2s and n−2r. Therefore f(n) is odd iff s = r, that is iff n = 2s+1−1 = 2m+1−1.

Solution 2. The answer is 2047. We show that f(n) is odd if and only if n is of the form
2k − 1.

We use the method of generating functions. Define the formal power series b(x) =∑∞
j=0 x

2j . The desired statement can be interpreted as

1/(1− b(x)) ≡ b(x)/x (mod 2),

where the congruence means that the difference between the two sides has all coefficients
divisible by 2. It is equivalent to prove the same thing after clearing denominators, in
other words,

b(x)2 − b(x) ≡ x (mod 2).

But this holds because b(x)2 ≡ b(x2) (mod 2) (all the cross terms in the expansion of b(x)2

being even), so
b(x)2 − b(x) ≡ b(x2)− b(x) ≡ x (mod 2).

This problem and solution were suggested by Kiran Kedlaya and David Speyer.
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Solution 3. Consider the operation of reversing the order of the sums. Call a sum a
palindrome if it is invariant under this symmetry and let g(n) be the number of palindromic
decompositions of n. Since non-palindromic sums are paired under reversing order we have

f(n) ≡ g(n) (mod 2).

Now suppose n = 2m + 1 is odd. By parity a palindromic decomposition of n must have
an odd central term (and in particular cannot have even length). Hence the central term
must be 1. Thus any palindromic decomposition of n = 2m + 1 starts with an arbitrary
decomposition of m, followed by a 1 and the reverse of the starting decomposition. Thus

g(2m + 1) = f(m).

Hence f(2m + 1) ≡ f(m) (mod 2).

Now suppose n = 2m is even and positive. Then there are two kinds of palindromic
decompositions of n. The first kind have even length. The second kind have odd length
and a central element that is even, hence 2k for some k ≥ 1. These two kinds occur equally
often since we can add together the two equal terms of a palindrome of equal length into
two equal halves to reverse this operation. Thus f(2m) and g(2m) are even.

These two cases easily imply f(n) is odd if and only if n is 1 less than a power of 2. One
way to see this is to write n in binary. The first rule f(2m + 1) ≡ f(m) (mod 2) says the
parity of f(n) is unchanged if we delete a least significant digit of 1. The second rule says
f(n) is even if its least significant digit is zero. Iterating these we see f(n) is odd if and
only if its binary representation is all 1s, that is, n is 1 less than a power of 2.

This solution was suggested by Steven Blasberg and Richard Stong.

JMO 5. First Solution: Note that ∠XAY = ∠XBY = ∠XCY = ∠PZX = ∠PZY = 90◦. In
right triangles BXY,AXY,AXP , we have

BY = XY cos∠BYX, AX = XY cos∠AXY, XP =
AX

cos∠AXP
=

XY cos∠AXY

cos∠AXP
,

from which it follows that

BY

XP
=

cos∠BYX cos∠AXP

cos∠AXY
.

Likewise, we have
CY

XQ
=

cos∠CYX cos∠AXQ

cos∠AXY
.

Adding the last two equations yields

BY

XP
+

CY

XQ
=

cos∠BYX cos∠AXP + cos∠CYX cos∠AXQ

cos∠AXY
. (3)

Because both CY and AZ are perpendicular to XC, ∠CYX = ∠AZX. Because ∠XAP =
∠XZP = 90◦, quadrilateral AXZP is cyclic, from which it follows that ∠AZX = ∠APX.
Therefore, we have ∠CYX = ∠AZX = ∠APX = 90◦ − ∠AXP or ∠CYX + ∠AXP =
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90◦. Likewise, we can show that ∠BYX + ∠AXQ = 90◦. Consequently, we conclude
that cos∠BYX = sin∠AXQ and sin∠CYX = cos∠AXP . Thus, by the addition and
substraction formula, (4) becomes

BY

XP
+

CY

XQ
=

sin∠AXQ sin∠CYX + cos∠CYX cos∠AXQ

cos∠AXY
=

cos(∠CYX − ∠AXQ)

cos∠AXY
.

Because ACYX is cyclic, ∠AXQ = ∠AXC = ∠CY A, implying that ∠CYX −∠AXQ =
∠CYX − ∠CY A = ∠AYX. Therefore,

BY

XP
+

CY

XQ
=

cos(∠CYX − ∠AXQ)

cos∠AXY
=

cos∠AYX

cos∠AXY
=

sin∠AXY

cos∠AXY
= tan∠AXY =

AY

AX
,

as desired.

A
B

C
P

Q

X Y
Z

This problem and solution were suggested by Zuming Feng.

Second Solution: Note that ∠XAY = ∠XBY = ∠XCY = ∠PZX = ∠PZY = 90◦. In
right triangles BXY,AXY,AXP , we have

BY = XY cos(∠BYX), AX = XY cos(∠AXY ), XP =
AX

cos(∠AXP )
=

XY cos(∠AXY )

cos(∠AXP )
,

from which it follows that

BY

XP
=

cos(∠BYX) cos(∠AXP )

cos(∠AXY )
.

Likewise, we have
CY

XQ
=

cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
.

Adding the last two equations yields

BY

XP
+

CY

XQ
=

cos(∠BYX) cos(∠AXP ) + cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
. (4)

Because both CY and AZ are perpendicular to XC, ∠CYX = ∠AZX. Because ∠XAP =
∠XZP = 90◦, quadrilateral AXZP is cyclic, from which it follows that ∠AZX = ∠APX.
Therefore, we have ∠CYX = ∠AZX = ∠APX = 90◦−∠AXP or ∠CYX+∠AXP = 90◦.
Likewise, we can show that ∠BYX + ∠AXQ = 90◦. Consequently, we conclude that
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cos(∠BYX) = sin(∠AXQ) and sin(∠CYX) = cos(∠AXP ). Thus, by the addition and
substraction formula, (4) becomes

BY

XP
+
CY

XQ
=

sin(∠AXQ) sin(∠CYX) + cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
=

cos(∠CYX − ∠AXQ)

cos(∠AXY )
.

Because ACYX is cyclic, ∠AXQ = ∠AXC = ∠CY A, implying that ∠CYX −∠AXQ =
∠CYX − ∠CY A = ∠AYX. Therefore,

BY

XP
+

CY

XQ
=

cos(∠CYX − ∠AXQ)

cos∠AXY
=

cos∠AYX

cos∠AXY
=

sin∠AXY

cos∠AXY
= tan∠AXY =

AY

AX
,

as desired.

A
B

C
P

Q

X YZ

Rays Y B and Y C meet ray XA at B1 and C1 respectively. Because ∠PAB1 = ∠PBB1 =
90◦, APBB1 is cyclic, in particular, ∠XB1Y = ∠AB1B = ∠APX. Because ∠PAX =
∠PZX = 90◦, APZX is cyclic, in particular, ∠APX = ∠AZX. Note that both AC and
CY are perpendicular to XC, AZ ‖ CY and so ∠AZX = ∠CYX = ∠C1Y X. Therefore,
we have ∠XB1Y = ∠APX = ∠AZX = ∠C1Y X. It follows that triangles XY B1 and
XC1Y are similar to each other, with XB and XC being corresponding altitudes. Hence

BY

XP
=

CC1

XQ
and

BY

XP
+

CY

XQ
=

CC1

XQ
+

CY

XQ
=

C1Y

XQ
.

It remains to show that
C1Y

XQ
=

AY

AX
,

which is true because triangles AY C1 and AXQ are similar to each other (∠C1AY =
∠QAX = 90◦ and ∠AY C1 = ∠AY C = ∠AXC = ∠AXQ.)

This solution was suggested by Zuming Feng.

JMO 6. First Solution: Let a, b, c be nonnegative real numbers such that x = 1 + a2, y = 1 + b2

and z = 1+c2. We may assume that c ≤ a, b, so that the condition of the problem becomes

(1 + c2)(1 + (1 + a2)(1 + b2)) = (a + b + c)2.

The Cauchy-Schwarz inequality yields

(a + b + c)2 ≤ (1 + (a + b)2)(c2 + 1).
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Combined with the previous relation, this shows that

(1 + a2)(1 + b2) ≤ (a + b)2,

which can also be written (ab− 1)2 ≤ 0. Hence ab = 1 and the Cauchy-Schwarz inequality
must be an equality, that is, c(a+ b) = 1. Conversely, if ab = 1 and c(a+ b) = 1, then the
relation in the statement of the problem holds, since c = 1

a+b
< 1

b
= a and similarly c < b.

Thus the solutions of the problem are

x = 1 + a2, y = 1 +
1

a2
, z = 1 +

(
a

a2 + 1

)2

for some a > 0, as well as permutations of this. (Note that we can actually assume a ≥ 1
by switching x and y if necessary.)

This problem and solution were suggested by Titu Andreescu.

Second Solution: We maintain the notations in the first solution and again consider the
equation

(a + b + c)2 = 1 + c2 + (1 + a2)(1 + b2)(1 + c2).

Expanding both sides of the equation yields

a2 + b2 + c2 + 2ab + 2bc + 2ca = 1 + c2 + 1 + a2 + b2 + c2 + a2b2 + b2c2 + c2a2 + a2b2c2

or
a2b2c2 + a2b2 + b2c2 + c2a2 − 2ab− 2bc− 2ca + c2 + 2 = 2(ab + bc + ca).

Setting (u, v, w) = (ab, bc, ca), we can write the above equation as

uvw + u2 + v2 + w2 − 2u− 2v − 2w +
vw

u
+ 2 = 2(u + v + w).

which is the equality case of the sum of the following three special cases of the AM-GM
inequality:

uvw +
vw

u
≥ 2vw, v2 + w2 + 2vw + 1 = 2(v + w) ≥ 0, u2 + 1 ≥ 2u.

Hence we must have the equality cases these AM-GM inequalities; that is, ab = u = 1 and
a(b + c) = v + w = 1. We can then complete our solution as we did in the first solution.

This solution was suggested by Zuming Feng.

Copyright © Committee on the American Mathematics Competitions,
Mathematical Association of America
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This is a compilation of solutions for the 2013 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
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users on the Art of Problem Solving forums.
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solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
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§0 Problems
1. Are there integers a and b such that a5b+ 3 and ab5 + 3 are both perfect cubes of

integers?

2. Each cell of an m× n board is filled with some nonnegative integer. Two numbers
in the filling are said to be adjacent if their cells share a common side. The filling
is called a garden if it satisfies the following two conditions:

(i) The difference between any two adjacent numbers is either 0 or 1.
(ii) If a number is less than or equal to all of its adjacent numbers, then it is equal

to 0.
Determine the number of distinct gardens in terms of m and n.

3. In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA,
ωB , ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given
the fact that segment AP intersects ωA, ωB, ωC again at X, Y , Z respectively,
prove that Y X/XZ = BP/PC.

4. Let f(n) be the number of ways to write n as a sum of powers of 2, where we
keep track of the order of the summation. For example, f(4) = 6 because 4 can
be written as 4, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and 1 + 1 + 1 + 1. Find the
smallest n greater than 2013 for which f(n) is odd.

5. Quadrilateral XABY is inscribed in the semicircle ω with diameter XY . Segments
AY and BX meet at P . Point Z is the foot of the perpendicular from P to line
XY . Point C lies on ω such that line XC is perpendicular to line AZ. Let Q be
the intersection of segments AY and XC. Prove that

BY

XP
+

CY

XQ
=

AY

AX
.

6. Find all real numbers x, y, z ≥ 1 satisfying

min
(√

x+ xyz,
√
y + xyz,

√
z + xyz

)
=

√
x− 1 +

√
y − 1 +

√
z − 1.
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§1 Solutions to Day 1
§1.1 JMO 2013/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p3041819.

Problem statement

Are there integers a and b such that a5b+ 3 and ab5 + 3 are both perfect cubes of
integers?

No, there do not exist such a and b.
We prove this in two cases.

• Assume 3 | ab. WLOG we have 3 | a, but then a5b+ 3 ≡ 3 (mod 9), contradiction.

• Assume 3 - ab. Then a5b+ 3 is a cube not divisible by 3, so it is ±1 mod 9, and we
conclude

a5b ∈ {5, 7} (mod 9).

Analogously
ab5 ∈ {5, 7} (mod 9).

We claim however these two equations cannot hold simultaneously. Indeed (ab)6 ≡ 1
(mod 9) by Euler’s theorem, despite 5 · 5 ≡ 7, 5 · 7 ≡ 8, 7 · 7 ≡ 4 mod 9.
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§1.2 JMO 2013/2, proposed by Sungyoon Kim
Available online at https://aops.com/community/p3041818.

Problem statement

Each cell of an m× n board is filled with some nonnegative integer. Two numbers
in the filling are said to be adjacent if their cells share a common side. The filling is
called a garden if it satisfies the following two conditions:

(i) The difference between any two adjacent numbers is either 0 or 1.

(ii) If a number is less than or equal to all of its adjacent numbers, then it is equal
to 0.

Determine the number of distinct gardens in terms of m and n.

The numerical answer is 2mn − 1. But we claim much more, by giving an explicit
description of all gardens:

Let S be any nonempty subset of the mn cells. Suppose we fill each cell θ
with the minimum (taxicab) distance from θ to some cell in S (in particular,
we write 0 if θ ∈ S). Then

• This gives a garden, and
• All gardens are of this form.

Since there are 2mn − 1 such nonempty subsets S, this would finish the problem. An
example of a garden with |S| = 3 is shown below.

2 1 2 1 0 1
1 0 1 2 1 2
1 1 2 3 2 3
0 1 2 3 3 4


It is actually fairly easy to see that this procedure always gives a garden; so we focus

our attention on showing that every garden is of this form.
Given a garden, note first that it has at least one cell with a zero in it — by considering

the minimum number across the entire garden. Now let S be the (thus nonempty) set of
cells with a zero written in them. We contend that this works, i.e. the following sentence
holds:

Claim — If a cell θ is labeled d, then the minimum distance from that cell to a cell
in S is d.

Proof. The proof is by induction on d, with d = 0 being by definition. Now, consider
any cell θ labeled d ≥ 1. Every neighbor of θ has label at least d− 1, so any path will
necessarily take d− 1 steps after leaving θ. Conversely, there is some d− 1 adjacent to
θ by (ii). Stepping on this cell and using the minimal path (by induction hypothesis)
gives us a path to a cell in S with length exactly d. So the shortest path does indeed
have distance d, as desired.
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§1.3 JMO 2013/3, proposed by Zuming Feng
Available online at https://aops.com/community/p3041822.

Problem statement

In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA,
ωB, ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given
the fact that segment AP intersects ωA, ωB , ωC again at X, Y , Z respectively, prove
that Y X/XZ = BP/PC.

Let M be the concurrence point of ωA, ωB, ωC (by Miquel’s theorem).

A

B CP

Q

R

M
X

Y

Z

Then M is the center of a spiral similarity sending Y Z to BC. So it suffices to show
that this spiral similarity also sends X to P , but

]MXY = ]MXA = ]MRA = ]MRB = ]MPB

so this follows.
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§2 Solutions to Day 2
§2.1 JMO 2013/4, proposed by Kiran Kedlaya
Available online at https://aops.com/community/p3043748.

Problem statement

Let f(n) be the number of ways to write n as a sum of powers of 2, where we keep
track of the order of the summation. For example, f(4) = 6 because 4 can be written
as 4, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and 1 + 1 + 1 + 1. Find the smallest n
greater than 2013 for which f(n) is odd.

The answer is 2047.
For convenience, we agree that f(0) = 1. Then by considering cases on the first number

in the representation, we derive the recurrence

f(n) =

blog2 nc∑
k=0

f(n− 2k). (♥)

We wish to understand the parity of f . The first few values are

f(0) = 1

f(1) = 1

f(2) = 2

f(3) = 3

f(4) = 6

f(5) = 10

f(6) = 18

f(7) = 31.

Inspired by the data we make the key claim that

Claim — f(n) is odd if and only if n+ 1 is a power of 2.

Proof. We call a number repetitive if it is zero or its binary representation consists entirely
of 1’s. So we want to prove that f(n) is odd if and only if n is repetitive.

This only takes a few cases:

• If n = 2k, then (♥) has exactly two repetitive terms on the right-hand side, namely
0 and 2k − 1.

• If n = 2k +2`− 1, then (♥) has exactly two repetitive terms on the right-hand side,
namely 2`+1 − 1 and 2` − 1.

• If n = 2k − 1, then (♥) has exactly one repetitive terms on the right-hand side,
namely 2k−1 − 1.

• For other n, there are no repetitive terms at all on the right-hand side of (♥).

Thus the induction checks out.

So the final answer to the problem is 2047.
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§2.2 JMO 2013/5, proposed by Zuming Feng
Available online at https://aops.com/community/p3043750.

Problem statement

Quadrilateral XABY is inscribed in the semicircle ω with diameter XY . Segments
AY and BX meet at P . Point Z is the foot of the perpendicular from P to line
XY . Point C lies on ω such that line XC is perpendicular to line AZ. Let Q be
the intersection of segments AY and XC. Prove that

BY

XP
+

CY

XQ
=

AY

AX
.

Let β = ∠Y XP and α = ∠PY X and set XY = 1. We do not direct angles in the
following solution.

X Y

A

B

P

Z

C

Q

β
α

Observe that
∠AZX = ∠APX = α+ β

since APZX is cyclic. In particular, ∠CXY = 90◦ − (α+ β). It is immediate that

BY = sinβ, CY = cos (α+ β) , AY = cosα, AX = sinα.

The Law of Sines on 4XPY gives XP = XY sinα
sin(α+β) , and on 4XQY gives XQ =

XY sinα
sin(90+β) =

sinα
cosβ . So, the given is equivalent to

sinβ
sinα

sin(α+β)

+
cos(α+ β)

sinα
cosβ

=
cosα
sinα

which is equivalent to cosα = cosβ cos(α+β)+ sinβ sin(α+β). This is obvious, because
the right-hand side is just cos ((α+ β)− β).
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§2.3 JMO 2013/6, proposed by Titu Andreescu
Available online at https://aops.com/community/p3043752.

Problem statement

Find all real numbers x, y, z ≥ 1 satisfying

min
(√

x+ xyz,
√
y + xyz,

√
z + xyz

)
=

√
x− 1 +

√
y − 1 +

√
z − 1.

Set x = 1 + a, y = 1 + b, z = 1 + c which eliminates the x, y, z ≥ 1 condition. Then the
given equation rewrites as√

(1 + a) (1 + (1 + b)(1 + c)) =
√
a+

√
b+

√
c.

In fact, we are going to prove the left-hand side always exceeds the right-hand side, and
then determine the equality cases. We have:

(1 + a) (1 + (1 + b)(1 + c)) = (a+ 1) (1 + (b+ 1)(1 + c))

≤ (a+ 1)

(
1 +

(√
b+

√
c
)2)

≤
(√

a+
(√

b+
√
c
))

by two applications of Cauchy-Schwarz.
Equality holds if bc = 1 and 1/a =

√
b +

√
c. Letting c = t2 for t ≥ 1, we recover

b = t−2 ≤ t2 and a = 1
t+1/t ≤ t2.

Hence the solution set is

(x, y, z) =

(
1 +

(
t

t2 + 1

)2

, 1 +
1

t2
, 1 + t2

)

and permutations, for any t > 0.
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5th United States of America Junior Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 29, 2014

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

JMO 1. Let a, b, c be real numbers greater than or equal to 1. Prove that

min

(
10a2 − 5a + 1

b2 − 5b + 10
,
10b2 − 5b + 1

c2 − 5c + 10
,
10c2 − 5c + 1

a2 − 5a + 10

)
≤ abc.

JMO 2. Let ∆ABC be a non-equilateral, acute triangle with ∠A = 60◦, and let O and H denote
the circumcenter and orthocenter of ∆ABC, respectively.

(a) Prove that line OH intersects both segments AB and AC.

(b) Line OH intersects segments AB and AC at P and Q, respectively. Denote by s
and t the respective areas of triangle APQ and quadrilateral BPQC. Determine the
range of possible values for s/t.

JMO 3. Let Z be the set of integers. Find all functions f : Z→ Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z with x 6= 0.

Copyright c© Mathematical Association of America
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5th United States of America Junior Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 30, 2014

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

JMO 4. Let b ≥ 2 be an integer, and let sb(n) denote the sum of the digits of n when it is written
in base b. Show that there are infinitely many positive integers that cannot be represented
in the form n + sb(n), where n is a positive integer.

JMO 5. Let k be a positive integer. Two players A and B play a game on an infinite grid of regular
hexagons. Initially all the grid cells are empty. Then the players alternately take turns
with A moving first. In his move, A may choose two adjacent hexagons in the grid which
are empty and place a counter in both of them. In his move, B may choose any counter
on the board and remove it. If at any time there are k consecutive grid cells in a line all
of which contain a counter, A wins. Find the minimum value of k for which A cannot win
in a finite number of moves, or prove that no such minimum value exists.

JMO 6. Let ABC be a triangle with incenter I, incircle γ and circumcircle Γ. Let M , N , P be the
midpoints of sides BC, CA, AB and let E, F be the tangency points of γ with CA and
AB, respectively. Let U , V be the intersections of line EF with line MN and line MP ,
respectively, and let X be the midpoint of arc BAC of Γ.

(a) Prove that I lies on ray CV .

(b) Prove that line XI bisects UV .

Copyright c© Mathematical Association of America
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4th United States of America Junior Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 29 - April 30, 2014

JMO 1. We start by observing that the denominators of the fractions involved in the statement
of the problem are positive. Next, we argue by contradiction and assume that

10a2 − 5a + 1 > abc(b2 − 5b + 10)

and similar inequalities obtained by cyclic permutations. Multiplying these inequalities
yields ∏

[a3(a2 − 5a + 10)] <
∏

(10a2 − 5a + 1).

This is impossible, since

a3(a2 − 5a + 10)− (10a2 − 5a + 1) = (a− 1)5 ≥ 0

and similarly for b and c.

This problem and solution was suggested by Titu Andreescu.

JMO 2. (a): Without loss of generality, we assume that AB > AC. Set β = ∠ABC and
γ = ∠ACB. We have β < 60◦ < γ and β + γ = 120◦.

Note that ∠BAO = 90◦−∠ACB = 90◦− γ < 90◦− β = 90◦−∠ABC = ∠BAH, and
so AO lies inside ∠BAH. Similarly, ∠ABO = 90◦−γ < 30◦ = ∠ABH, and so BO lies
inside ∠ABH. Hence O lies inside 4ABH, and line OH intersects side AB. In the
same way, ∠CAH = 90◦−γ < 90◦−β = ∠CAO and ∠ACH = 30◦ < 90◦−β = ∠ACO;
hence H lies inside 4ACO, and line OH intersects side AC.

(b): The range of s/t is the open interval (4/5, 1).

A

B C

O

H

P

Q

2



Based on (a), we may consider the configuration shown above. Note that ∠BOC =
2∠BAC = 120◦ and ∠BHC = 180◦ − ∠HBC − ∠HCB = 180◦ − (90◦ − γ)− (90◦ −
β) = 120◦, from which it follows that BOHC is cyclic. In particular, ∠POB =
180◦ − ∠HOB = ∠HCB = 90◦ − β, and it follows that

∠APQ = ∠ABO + ∠POB = (90◦ − γ) + (90◦ − β) = 60◦.

Since ∠PAQ = 60◦ as well, we see that 4APQ is equilateral.

Next note that ∠POB = 90◦ − β = ∠ACO = ∠QCO and ∠PBO = 90◦ − γ =
∠HBC = ∠HOC = ∠QOC; since BO = OC, we have congruent triangles 4BPO ∼=
4OQC. Thus

AB + AC = AP + PB + CQ + QA = AP + QO + OP + QA = AP + PQ + QA

and so AP = PQ = QA = b+c
3

, where we write b = AC and c = AB. Therefore we
have

s

s + t
=

Area(4APQ)

Area(4ABC)
=

AP

AB

AQ

AC
=

(
b+c
3

)2

bc
=

2 + m + 1/m

9
,

where m = c/b.

By our assumptions that b < c and 4ABC is acute, it follows that the range of m
is 1 < m < 2. (One can see this, for instance, by having A move along the major
arc BC

_
from one extreme, where ABC is equilateral and c/b = 1, to the other, where

∠ACB = 90◦ and c/b = 2, and noting that c increases and b decreases during this
motion.) For m ∈ (1, 2), the function f(m) = m+1/m is continuous and increasing: if

1 < m < m′ < 2, then f(m′)− f(m) = (m′−m)(mm′−1)
mm′ > 0. Thus the range of f(m) for

m ∈ (1, 2) is (f(1), f(2)) = (2, 5
2
). It follows that the range of s

s+t
= 2+f(m)

9
is (4

9
, 1

2
),

and the range of s
t

is (4
5
, 1).

This problem and the first solution was suggested by Zuming Feng.

OR

(b): We use complex numbers. Let O = 0, B = 1, C = ω = e2πi/3, and A = a with
|a| = 1. Then H = 1 + ω + a = a − ω2. Bearing in mind that the equation for the
line through complex numbers w1 and w2 is z−w1

w2−w1
= z−w1

w2−w1
(i.e., the quotient z−w1

w2−w1
is

purely real), we see that P , which is the intersection of AB and OH, lies at the point
z satisfying

z − 1

a− 1
=

z − 1

a− 1
and

z

a− ω2
=

z

a− ω
.

Substituting a = 1/a, eliminating z, and solving for z yields z = a+1
1−ω

. Thus the vector
−→
AP is given by the complex number a+1

1−ω
− a = aω+1

1−ω
. Similarly Q lies at the point

aω+ω2

ω−1
and the vector

−→
AQ is a+ω2

ω−1
. It follows that AP = 1√

3
|ωa+1| = 1√

3
|a+ω2| = AQ.

3



Now
−→
AB = 1 − a is collinear with

−→
AP = aω+1

1−ω
, and the ratio of the lengths of these

vectors is AB
AP

= (1 − a)/
(

aω+1
1−ω

)
= (1−a)(1−ω)

aω+1
; similarly

−→
AC = ω − a is collinear with

−→
AQ = a+ω2

ω−1
, and AC

AQ
= (ω−a)(ω−1)

a+ω2 = (ω−a)(ω2−ω)
aω+1

. Thus

AB + AC

AP
=

AB

AP
+

AC

AQ
=

(1− a)(1− ω) + (ω − a)(ω2 − ω)

aω + 1
=

3aω + 3

aω + 1
= 3,

and so
AP

AB

AQ

AC
=

(AB + AC)2

9(AB)(AC)
.

The second solution was suggested by Razvan Gelca.

JMO 3. Let f be a solution of the problem. Let p be a prime. Since p divides f(p)2, p divides

f(p) and so p divides f(p)2

p
. Taking y = 0 and x = p, we deduce that p divides f(0).

As p is arbitrary, we must have f(0) = 0. Next, take y = 0 to obtain xf(−x) = f(x)2

x
.

Replacing x by −x, and combining the two relations yields f(x) = 0 or f(x) = x2 for
all x.

Suppose now that there exists x0 6= 0 such that f(x0) = 0. Taking y = x0, we

obtain xf(−x) + x2
0f(2x) = f(x)2

x
, yielding x2

0f(2x) = 0 for all x and so f vanishes on
even numbers. Assume that there exists an odd number y0 such that f(y0) 6= 0, so
f(y0) = y2

0. Taking y = y0, we obtain

xf(2y2
0 − x) + y2

0f(2x− y2
0) =

f(x)2

x
+ f(y3

0).

Choosing x even, we deduce that y2
0f(2x − y2

0) = f(y3
0). This forces f(y3

0) = 0, as
otherwise we would have f(2x− y2

0) = (2x− y2
0)

2 for all even x and so y2
0(2x− y2

0)
2 =

f(y3
0) for all such x, obviously impossible. Thus f(2x− y2

0) = 0 for all even numbers x,
that is f vanishes on numbers of the form 4k + 3. But since x2f(−x) = f(x)2, f also
vanishes on all x such that −x ≡ −1 (mod 4), that is on 4Z+ 1. Thus f also vanishes
on all odd numbers, contradicting the choice of y0. Hence, if f is not the zero map,
then f does not vanish outside 0 and so f(x) = x2 for all x.

In conclusion, f(x) = 0 for all x ∈ Z and f(x) = x2 for all x ∈ Z are the only possible
solutions. The first function clearly satisfies the given relation, while the second also
satisfies the Sophie Germaine identity

x(2y2 − x)2 + y2(2x− y2)2 = x3 + y6

for all x, y ∈ Z.

OR

f(0) = 0: If f(0) 6= 0, set x = 2f(0) to obtain

2(f(0))2 =
(f(2f(0)))2

2f(0)
+ f(0)

4



that is

2(f(0))2(2f(0)− 1) = f(2f(0))2.

But 2(2f(0)− 1) cannot be a perfect square since it is of the form 4k +2. So f(0) = 0.

This problem and the solutions were suggested by Titu Andreescu and Gabriel Dospinescu.

JMO 4. Let f(n) = n + sb(n). For a positive integer m, let k = blogb(m/2)c, so that m ≥ 2bk.
Note that if bm− bk ≤ n < bm, then the base b expansion of n begins with m− k digits
equal to b− 1, and therefore

f(n) > bm − bk + (m− k)(b− 1) ≥ bm − bk + (2bk − k)(b− 1) ≥ bm. (1)

Now consider the set {f(1), f(2), . . . , f(bm)}. Any number that is≤ bm and in the range
of f is in this set. However, we see from (1) that f(n) > bm whenever bm−bk ≤ n < bm.
Therefore, there are at least bk numbers from 1 to bm that are not in the range of f .
Since k goes to infinity as m goes to infinity, the desired result follows.

This problem and solution was suggested by Palmer Mebane.

OR

We first show that there exist infinitely many pairs (n1,m1), (n2,m2), . . . such that
ni + sb(ni) = mi + sb(mi) for all i.

• Case 1 b = 2. Let i be a positive integer, and set j = 2i + 3; note j > i. Then
for ni = 2j − 1, we have s2(ni) = j. If we then consider mi = 2j + j − 3, we have
by the definition of j that mx = 2j + 2i, so s2(mi) = 2. It is easy to see that
ni + s2(ni) = mi + s2(mi).

• Case 2 b > 2. Let i be a positive integer, and set j = bi+b−2
b−1

+ 1; note j > i.

Then for ni = bj − b + 2, we have sb(ni) = (b− 1)(j − 1) + 2. If we then consider
mi = bj − b + (b− 1)(j − 1) + 2, plugging in our definition for j in the third term
gives

mi = bj − b + (b− 1)

(
bi + b− 2

b− 1

)
+ 2 = bj + bi,

so sb(mi) = 2. We can easily compute that ni + sb(ni) = mi + sb(mi).

In both cases, since j grows exponentially with i, it is easy to check that ni < mi <
ni+1 < mi+1, so all of the constructed pairs contain pairwise distinct positive integers.

Now we will show at least k positive integers cannot be represented in the form n+sb(n)
for any k. Take (n1,m1), . . . (nk, mk) and let A be a number greater than any of the 2k
numbers in these pairs. For a positive integer x with x ≤ A, if we have x = n + sb(n)
then we must have n ≤ x ≤ A. So in finding ways to represent the numbers 1, 2, . . . A
in the form n + sb(n), all of them require n ≤ A. However, among numbers at most
A there are at least k pairs ni,mi with ni + sb(ni) = mi + sb(mi). Therefore the set

5



{n + sb(n) | n = 1, 2, . . . A} has at most A − k elements, and so at least k of the
numbers 1, 2, . . . A are not members of this set and thus have no representation in the
form n + sb(n). This proves our original claim. Since k is arbitrary there cannot be a
finite amount of positive integers with no representation, so there are infinitely many
as desired.

The second solution was suggested by Palmer Mebane.

JMO 5. The answer is k = 6. First we show that A cannot win for k ≥ 6. Color the grid in
three colors so that no two adjacent spaces have the same color, and arbitrarily pick
one color C. B will play by always removing a counter from a space colored C that A
just played. If there is no such counter, B plays arbitrarily. Because A cannot cover
two spaces colored C simultaneously, it is possible for B to play in this fashion. Now
note that any line of six consecutive squares contains two spaces colored C. For A to
win he must cover both, but B’s strategy ensures at most one space colored C will
have a counter at any time.

Now we show that A can obtain 5 counters in a row. Take a set of cells in the grid
forming the shape shown below. We will have A play counters only in this set of grid
cells until this is no longer possible. Since B only removes one counter for every two
A places, the number of counters in this set will increase each turn, so at some point
it will be impossible for A to play in this set anymore. At that point any two adjacent
grid spaces in the set have at least one counter between them.

Consider only the top row of cells in the set, and take the lengths of each consecutive
run of cells. If there are two adjacent runs that have a combined length of at least
4, then A gets 5 counters in a row by filling the space in between. Otherwise, a bit
of case analysis shows that there exists a run of 1 counter which is neither the first
nor last run. This single counter has an empty space on either side of it on the first
row. As a result, the four spaces of the second row touching these two empty spaces
all must have counters. Then A can play in the 5th cell on either side of these 4 to get
5 counters in a row. So in all cases A can win with k ≤ 5.

This problem and solution was suggested by Palmer Mebane.

JMO 6. Set ∠ABC = 2y and ∠BCA = 2z. First, we start with a known fact that I lies on ray
CV . Let V1 be the foot of the perpendicular from B to ray CI. Then in right triangle
BV1C, V1M = MB = MC and ∠MV1C = ∠MCV1 = z = ∠V1CA, implying that
MV1‖CA; in particular, V1 lies on line MP . Because ∠BV1I = ∠BFI = 90◦, BIFV1

is cyclic, from which it follows that ∠V1FB = ∠V1IB = y + z = ∠AEF = ∠AFE; in
particular, V1 lies on EF . Because V1 lies on both line MP and line EF , V = V1 and
V lies on line CI. Likewise we can prove that U lies on line BI.
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Rays BI and CI intersect again at Y and Z. Note that ∠UV C = ∠EV C = ∠AEV −
∠ECV = ∠AEF−∠ECV = y. Because BCY Z is cyclic, we have ∠Y ZC = ∠Y BC =
y. Therefore, UV ‖Y Z. It suffices to show that IX bisects segment Y Z, which is clearly
true because IY XZ is a parallelogram. (Indeed, ∠Y ZX = XAY

_
= ∠XBC−∠Y BC =

y + z − y = z = ∠ZY B, from which it follows that ZX‖IY . Likewise, we can show
that IZ‖XY .)

OR

First, note that U and V lie on the bisectors BI and CI, respectively. Indeed, let D
be the tangency point of γ with BC and let U ′ be the intersection of BI with EF .
Note that triangles BFU ′ and BDU ′ are congruent (by SAS), so ∠BU ′F = ∠BU ′D. In
addition, the pencil (U ′F, U ′B,U ′D, U ′C) is harmonic; thus, it follows that U ′B ⊥ U ′C,
so, in particular, U ′M = MB, which gives ∠MU ′B = ∠MBU ′ = 1

2
∠B = ∠ABU ′;

thus, MU ′‖AB; hence U ′ = U , which proves the claim that U lies on BI. Similarly, we
get that V is on CI. Also, remember the perpendicularities IB ⊥ CU and IC ⊥ V B,
which we will use soon.
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Next, note that the lines XB and XC are tangent to the circumcircle of triangle IBC;
indeed, observe that

∠XBI = ∠ABI − ∠ABX

=
1

2
∠B − (∠BCX − ∠C)

=
1

2
∠B − 1

2
(180◦ − ∠A) + ∠C

=
1

2
∠C

= ∠BCI.

Similarly, ∠XCI = ∠IBC. This means that X is the intersection of the tangents at
B and C to the circumcircle of IBC; hence, IX is the I−symmedian of triangle IBC.

But we proved before that U and V are on IB and IC, respectively and that IB ⊥ CU
and IC ⊥ V B. In other words, we showed that U and V are the feet of the altitudes
from C and B in triangle IBC - so, in particular, we have that BCUV is cyclic and
that UV is an antiparallel to BC in triangle IBC. This yields the conclusion, since we
know that the I−symmedian of IBC is the locus of the midpoints of the antiparallels
to BC in triangle IBC; hence we showed that IX bisects UV , as claimed. ¥
This problem and and the second solution were suggested by Titu Andreescu and
Cosmin Pohoata. The first solution was suggested by Zuming Feng.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America

8



JMO 2014 Solution Notes
Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2014 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 JMO 2014/1, proposed by Titu Andreescu . . . . . . . . . . . . . . . . . . 3
1.2 JMO 2014/2, proposed by Zuming Feng . . . . . . . . . . . . . . . . . . . 4
1.3 JMO 2014/3, proposed by Titu Andreescu . . . . . . . . . . . . . . . . . . 6

2 Solutions to Day 2 8
2.1 JMO 2014/4, proposed by Palmer Mebane . . . . . . . . . . . . . . . . . . 8
2.2 JMO 2014/5, proposed by Palmer Mebane . . . . . . . . . . . . . . . . . . 9
2.3 JMO 2014/6, proposed by Titu Andreescu, Cosmin Pohoata . . . . . . . . 11

1



JMO 2014 Solution Notes web.evanchen.cc, updated 2 June 2023

§0 Problems
1. Let a, b, c be real numbers greater than or equal to 1. Prove that

min
(
10a2 − 5a+ 1

b2 − 5b+ 10
,
10b2 − 5b+ 1

c2 − 5c+ 10
,
10c2 − 5c+ 1

a2 − 5a+ 10

)
≤ abc.

2. Let 4ABC be a non-equilateral, acute triangle with ∠A = 60◦, and let O and H
denote the circumcenter and orthocenter of 4ABC, respectively.
(a) Prove that line OH intersects both segments AB and AC at two points P

and Q, respectively.
(b) Denote by s and t the respective areas of triangle APQ and quadrilateral

BPQC. Determine the range of possible values for s/t.

3. Find all f : Z → Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

4. Let b ≥ 2 be a fixed integer, and let sb(n) denote the sum of the base-b digits of n.
Show that there are infinitely many positive integers that cannot be represented in
the from n+ sb(n) where n is a positive integer.

5. Let k be a positive integer. Two players A and B play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately
take turns with A moving first. In her move, A may choose two adjacent hexagons
in the grid which are empty and place a counter in both of them. In his move, B
may choose any counter on the board and remove it. If at any time there are k
consecutive grid cells in a line all of which contain a counter, A wins. Find the
minimum value of k for which A cannot win in a finite number of moves, or prove
that no such minimum value exists.

6. Let ABC be a triangle with incenter I, incircle γ and circumcircle Γ. Let M , N , P
be the midpoints of BC, CA, AB and let E, F be the tangency points of γ with
CA and AB, respectively. Let U , V be the intersections of line EF with line MN
and line MP , respectively, and let X be the midpoint of arc BAC of Γ.
(a) Prove that I lies on ray CV .
(b) Prove that line XI bisects UV .

2
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§1 Solutions to Day 1
§1.1 JMO 2014/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p3477681.

Problem statement

Let a, b, c be real numbers greater than or equal to 1. Prove that

min
(
10a2 − 5a+ 1

b2 − 5b+ 10
,
10b2 − 5b+ 1

c2 − 5c+ 10
,
10c2 − 5c+ 1

a2 − 5a+ 10

)
≤ abc.

Notice that
10a2 − 5a+ 1

a2 − 5a+ 10
≤ a3

since it rearranges to (a− 1)5 ≥ 0. Cyclically multiply to get

∏
cyc

(
10a2 − 5a+ 1

b2 − 5b+ 10

)
≤ (abc)3

and the minimum is at most the geometric mean.
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§1.2 JMO 2014/2, proposed by Zuming Feng
Available online at https://aops.com/community/p3477702.

Problem statement

Let 4ABC be a non-equilateral, acute triangle with ∠A = 60◦, and let O and H
denote the circumcenter and orthocenter of 4ABC, respectively.

(a) Prove that line OH intersects both segments AB and AC at two points P and
Q, respectively.

(b) Denote by s and t the respective areas of triangle APQ and quadrilateral
BPQC. Determine the range of possible values for s/t.

We begin with some synthetic work. Let I denote the incenter, and recall (“fact 5”) that
the arc midpoint M is the center of (BIC), which we denote by γ.

Now we have that
∠BOC = ∠BIC = ∠BHC = 120◦.

Since all three centers lie inside ABC (as it was acute), and hence on the opposite side
of BC as M , it follows that O, I, H lie on minor arc BC of γ.

We note this implies (a) already, as line OH meets line BC outside of segment BC.

A

B C

M

I
O

H

P

Q

Claim — Triangle APQ is equilateral with side length b+c
3 .

Proof. Let R be the circumradius. We have R = OM = OA = MH, and even AH =
2R cosA = R, so AOMH is a rhombus. Thus OH ⊥ AM and in this way we derive that
4APQ is isosceles, hence equilateral.

Finally, since ∠PBH = 30◦, and ∠BPH = 120◦, it follows that 4BPH is isosceles
and BP = PH . Similarly, CQ = QH. So b+c = AP+BP+AQ+QC = AP+AQ+PQ
as needed.

4
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Finally, we turn to the boring task of extracting the numerical answer. We have

s

s+ t
=

[APQ]

[ABC]
=

√
3
4

(
b+c
3

)2
√
3
4 bc

=
b2 + 2bc+ c2

9bc
=

1

9

(
2 +

b

c
+

c

b

)
.

So the problem is reduced to analyzing the behavior of b/c. For this, we imagine fixing
Γ the circumcircle of ABC, as well as the points B and C. Then as we vary A along
the “topmost” arc of measure 120◦, we find b/c is monotonic with values 1/2 and 2 at
endpoints, and by continuity all values b/c ∈ (1/2, 2) can be achieved.

So
1

2
<

b

c
< 2 =⇒ 4/9 <

s

s+ t
< 1/2 =⇒ 4/5 <

s

t
< 1

as needed.
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§1.3 JMO 2014/3, proposed by Titu Andreescu
Available online at https://aops.com/community/p3477690.

Problem statement

Find all f : Z → Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

The answer is f(x) ≡ 0 and f(x) ≡ x2. Check that these work.
Now let’s prove these are the only solutions. Put y = 0 to obtain

xf (2f(0)− x) =
f(x)2

x
+ f(0).

Now we claim f(0) = 0 . If not, select a prime p - f(0) and put x = p 6= 0. In the above,

we find that p | f(p)2, so p | f(p) and hence p | f(p)2

p . From here we derive p | f(0),
contradiction. Hence

f(0) = 0.

The above then implies that

x2f(−x) = f(x)2

holds for all nonzero x, but also for x = 0. Let us now check that f is an even function.
In the above, we may also derive f(−x)2 = x2f(x). If f(x) 6= f(−x) (and hence x 6= 0),
then subtracting the above and factoring implies that f(x) + f(−x) = −x2; we can then
obtain by substituting the relation[

f(x) +
1

2
x2

]2
= −3

4
x4 < 0

which is impossible. This means f(x)2 = x2f(x), thus

f(x) ∈ {0, x2} ∀x.

Now suppose there exists a nonzero integer t with f(t) = 0. We will prove that
f(x) ≡ 0. Put y = t in the given to obtain that

t2f(2x) = 0

for any integer x 6= 0, and hence conclude that f(2Z) ≡ 0. Then selecting x = 2k 6= 0 in
the given implies that

y2f(4k − f(y)) = f(yf(y)).

Assume for contradiction that f(m) = m2 now for some odd m 6= 0. Evidently

m2f(4k −m2) = f(m3).

6
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If f(m3) 6= 0 this forces f(4k −m2) 6= 0, and hence m2(4k −m2)2 = m6 for arbitrary
k 6= 0, which is clearly absurd. That means

f(4k −m2) = f(m2 − 4k) = f(m3) = 0

for each k 6= 0. Since m is odd, m2 ≡ 1 (mod 4), and so f(n) = 0 for all n other than
±m2 (since we cannot select k = 0).

Now f(m) = m2 means that m = ±1. Hence either f(x) ≡ 0 or

f(x) =

{
1 x = ±1

0 otherwise.

To show that the latter fails, we simply take x = 5 and y = 1 in the given.
Hence, the only solutions are f(x) ≡ 0 and f(x) ≡ x2.
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§2 Solutions to Day 2
§2.1 JMO 2014/4, proposed by Palmer Mebane
Available online at https://aops.com/community/p3478579.

Problem statement

Let b ≥ 2 be a fixed integer, and let sb(n) denote the sum of the base-b digits of n.
Show that there are infinitely many positive integers that cannot be represented in
the from n+ sb(n) where n is a positive integer.

For brevity let f(n) = n+ sb(n). Select any integer M . Observe that f(x) ≥ b2M for any
x ≥ b2M , but also f(b2M − k) ≥ b2M for k = 1, 2, . . . ,M , since the base-b expansion of
b2M − k will start out with at least M digits b− 1.

Thus f omits at least M values in [1, b2M ] for any M .
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§2.2 JMO 2014/5, proposed by Palmer Mebane
Available online at https://aops.com/community/p3478584.

Problem statement

Let k be a positive integer. Two players A and B play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately
take turns with A moving first. In her move, A may choose two adjacent hexagons
in the grid which are empty and place a counter in both of them. In his move, B
may choose any counter on the board and remove it. If at any time there are k
consecutive grid cells in a line all of which contain a counter, A wins. Find the
minimum value of k for which A cannot win in a finite number of moves, or prove
that no such minimum value exists.

The answer is k = 6.

Proof that A cannot win if k = 6. We give a strategy for B to prevent A’s victory.
Shade in every third cell, as shown in the figure below. Then A can never cover two
shaded cells simultaneously on her turn. Now suppose B always removes a counter on a
shaded cell (and otherwise does whatever he wants). Then he can prevent A from ever
getting six consecutive counters, because any six consecutive cells contain two shaded
cells.

Example of a strategy for A when k = 5. We describe a winning strategy for A
explicitly. Note that after B’s first turn there is one counter, so then A may create an
equilateral triangle, and hence after B’s second turn there are two consecutive counters.
Then, on her third turn, A places a pair of counters two spaces away on the same line.
Label the two inner cells x and y as shown below.

x y

Now it is B’s turn to move; in order to avoid losing immediately, he must remove either
x or y. Then on any subsequent turn, A can replace x or y (whichever was removed) and
add one more adjacent counter. This continues until either x or y has all its neighbors
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filled (we ask A to do so in such a way that she avoids filling in the two central cells
between x and y as long as possible).

So, let’s say without loss of generality (by symmetry) that x is completely surrounded
by tokens. Again, B must choose to remove x (or A wins on her next turn). After x is
removed by B, consider the following figure.

x y

We let A play in the two marked green cells. Then, regardless of what move B plays,
one of the two choices of moves marked in red lets A win. Thus, we have described a
winning strategy when k = 5 for A.

10
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§2.3 JMO 2014/6, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p3478583.

Problem statement

Let ABC be a triangle with incenter I, incircle γ and circumcircle Γ. Let M , N , P
be the midpoints of BC, CA, AB and let E, F be the tangency points of γ with
CA and AB, respectively. Let U , V be the intersections of line EF with line MN
and line MP , respectively, and let X be the midpoint of arc BAC of Γ.

(a) Prove that I lies on ray CV .

(b) Prove that line XI bisects UV .

The fact that I = BU ∩CV is the so-called Iran incenter lemma, and is proved as Lemma
1.45 from my textbook.

As for (b), we note:

Claim — Line IX is a symmedian of 4IBC.

Proof. Recall that (BIC) has circumcenter coinciding with the antipode of X (by “Fact
5”). So this follows from the fact that XB and XC are tangent.

Since BV UC is cyclic with diagonals intersecting at I, and IX is symmedian of 4IBC,
it is median of 4IUV , as needed.

Remark (Alternate solution to (b) by Gunmay Handa). It’s well known that X is the
midpoint of IbIc (by considering the nine-point circle of the excentral triangle). However,
UV ‖ IbIc and I = IbU ∩ IcV , implying the result.
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6th United States of America
Junior Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 28, 2015

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet this requirement will result in a 1-point automatic deduction.

JMO 1. Given a sequence of real numbers, a move consists of choosing two terms and replacing
each by their arithmetic mean. Show that there exists a sequence of 2015 distinct real
numbers such that after one initial move is applied to the sequence – no matter what move
– there is always a way to continue with a finite sequence of moves so as to obtain in the
end a constant sequence.

JMO 2. Solve in integers the equation

x2 + xy + y2 =

(
x + y

3
+ 1

)3

.

JMO 3. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

Copyright c© Mathematical Association of America
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6th United States of America
Junior Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 29, 2015

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet this requirement will result in a 1-point automatic deduction.

JMO 4. Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression. (Q is the set
of all rational numbers.)

JMO 5. Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment BD
such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a point Y on
segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

JMO 6. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Copyright c© Mathematical Association of America
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6th United States of America Junior Mathematical Olympiad Solutions

Day I, II 12:30 PM – 5 PM EDT

April 28 - April 29, 2015

JMO 1. Given a sequence of real numbers, a move consists of choosing two terms and replacing
each by their arithmetic mean. Show that there exists a sequence of 2015 distinct real
numbers such that after one initial move is applied to the sequence – no matter what move
– there is always a way to continue with a finite sequence of moves so as to obtain in the
end a constant sequence.

Solution: The sequence (x1, x2, . . . , x2015) = (1, 2, . . . , 2015) satisfies the required prop-
erty (as does any arithmetic sequence).

Assume that (xm, xn) = (m, n) is replaced by
(
m+n
2

, m+n
2

)
in the first move. We consider

two cases.

In the first case, we assume that none of m and n is equal to 1008. In the second move, we
replace (x2016−m, x2016−n) = (2016−m, 2016− n) by

(
2016− m+n

2
, 2016− m+n

2

)
. Let all

the subsequent moves be applied to the pairs (xj, x2016−j), j = 1, 2, . . . , 1008. This yields
the constant sequence (1008, 1008, . . . , 1008).

In the second case, we assume that one of m and n, say, n is equal to 1008. After the first
move we have xm = x1008 = 1008+m

2
. Choose k different from 1008, m, and 2016−m. We

illustrate our next four moves in the following table. (In each move, we operate on the the
numbers in bold.)

(xk, xm, x1008, x2016−m, x2016−k)

=

(
kkk,

1008 + m

2
,

1008 + m

2
, 2016−m, 2016− k2016− k2016− k

)
→

(
100810081008,

1008 + m

2
,

1008 + m

2
, 2016−m2016−m2016−m, 1008

)
→

(
3024−m

2

3024−m

2

3024−m

2
,

1008 + m

2

1008 + m

2

1008 + m

2
,

1008 + m

2
,

3024−m

2
, 1008

)
→

(
1008, 1008,

1008 + m

2

1008 + m

2

1008 + m

2
,

3024−m

2

3024−m

2

3024−m

2
, 1008

)
→ (1008, 1008, 1008, 1008, 1008)

Finally apply the move to all the pairs (xj, x2016−j) (with j 6= m, k, 2016 −m, 2016 − k)
to obtain the constant sequence (1008, 1008, . . . , 1008).

Query: If the initial sequence is (1, 2, 3, . . . , 2013, 2014, 2016), where “2015” is replaced
by “2016”, is it possible to obtain a constant sequence after a finite sequence of moves?

JMO 2. Solve in integers the equation

x2 + xy + y2 =

(
x + y

3
+ 1

)3

.
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Solution: Let x+ y = 3k, with k ∈ Z. Then x2 + x(3k− x) + (3k− x)2 = (k + 1)3, which
reduces to

x2 − (3k)x− (k3 − 6k2 + 3k + 1) = 0.

Its discriminant ∆ is

9k2 + 4(k3 − 6k2 + 3k + 1) = 4k3 − 15k2 + 12k + 4.

We notice the (double) root k = 2, so ∆ = (4k+1)(k−2)2. It follows that 4k+1 = (2t+1)2

for some nonnegative integer t, hence k = t2 + t and

x =
1

2
(3(t2 + t)± (2t + 1)(t2 + t− 2)).

We obtain (x, y) = (t3 + 3t2 − 1,−t3 + 3t + 1) and (x, y) = (−t3 + 3t + 1, t3 + 3t2 − 1),
t ∈ {0, 1, 2, ...}.

OR

One can also try to simplify the original equation as much as possible. First with k =
x+y
3

+ 1 we get
x2 − 3xk + 3x = k3 − 9k2 + 18k − 9.

But then we recognize terms from the expansion of (k−3)3 so we use s = k−3 and obtain

x2 − 3xs− 6x = s3 − 9s− 9.

So again it becomes natural to use x− 3 = u. The equation becomes

u2 − 3su− s3 = 0.

We view this as a quadratic in u, whose discriminant is s2(9 + 4s), and so 9 + 4s must be
a perfect square, and because it is odd, it must be of the form (2t + 1)2. It follows that
s = t2 + t− 2, and so k = t2 + t + 1. We obtain the same family of solutions.

JMO 3. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

Solution: Let O denote the center of ω, and let W denote the midpoint of segment AO.
Denote by Ω the circle centered at W with radius WP . We will show that WM = WP ,
which will imply that M always lies on Ω and so solve the problem.

We present two solutions. The first solution is more computational (in particular, with
extensive applications of the formula for a median of a triangle); the second is more
synthetic.
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Set r to be the radius of circle ω. Applying the median formula in triangles APO, SWT,ASO,ATO
gives

4WP 2 = 2AP 2 + 2OP 2 − AO2 = 2AP 2 + r2,

4WM2 = 2WS2 + 2WT 2 − ST 2,

2WS2 = AS2 + OS2 − AO2/2 = AS2 + r2/2,

2WT 2 = AT 2 + OT 2 − AO2/2 = AT 2 + r2/2.

Adding the last three equations yields 4WM2 = AS2 +AT 2−ST 2 +r2. It suffices to show
that

4WP 2 = 4WM2 or AS2 + AT 2 − ST 2 = 2AP 2. (1)

Because XT ⊥ AS,

AT 2 − ST 2 = (AX2 + XT 2)− (SX2 + XT 2)

= AX2 − SX2

= (AX + XS)(AX −XS)

= AS(AX −XS).

It follows that AS2 + AT 2 − ST 2 = AS2 + AS · (AX −XS) = AS2 + AS(2AX − AS) =
2AS ·AX, and (1) reduces to AP 2 = AS ·AX, which is true because triangle APX is similar
to triangle ASP (as ∠PAX = ∠SAP and ∠APX = arc(AQ)/2 = arc(AP )/2 = ∠ASP ).

OR
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In the following solution, we use directed distances and directed angles in order to avoid
issues with configuration (segments ST and PQ may intersect, or may not as depicted in
the figure.)

Let R be the foot of the perpendicular from A to line ST . Note that OM ⊥ ST , and so
ARMO is a right trapezoid. Let U be the midpoint of segment RM . Then WU is the
midline of the trapezoid. In particular, WU ⊥ RM . Hence line WU is the perpendicular
bisector of segment RM . It is also clear that AW is the perpendicular bisector of segment
PQ. Therefore, W is the intersection of the perpendicular bisectors of segments RM and
PQ. It suffices to show that quadrilateral PQMR is cyclic, since then W must be its
circumcenter, and so WP = WM .

(To be precise, this argument fails when ST and PQ are parallel, because then R = M
and the perpendicular bisector of RM is not defined. However, it is easy to see that this
can happen for only one position of X. Because the argument works for all other X,
continuity then implies that M lies on Ω for this exceptional case as well.)

Let lines PQ and ST meet in V . By the converse of the power-of-a-point theorem, it
suffices to show that V P · V Q = V R · VM . On the other hand, because PQTS is cyclic,
by the power-of-a-point theorem, we have V P · V Q = V S · V T . Therefore, we only need
to show that

V S · V T = V R · VM. (2)

Note that M is the midpoint of segment ST . Then (2) is equivalent to

2V S · V T = V R · (2VM) = V R · (V S + V T )

or
V S · V T − V S · V R = V T · V R− V T · V S

5



or equivalently

V S ·RT = V T · SR or
V S

SR
=

V T

RT
. (3)

We claim that XS bisects ∠V XR. Indeed, because AB is the symmetry line of the kite
APBQ, AB ⊥ PQ, and so ∠V XS = ∠QXA = 90◦ −∠XAO = 90◦ −∠SAO. Because O
is the circumcenter of triangle AST ,

∠V XS = 90◦ − ∠SAO = ∠ATS.

On the other hand, because ∠AXT and ∠ART are both right angles, quadrilateral AXRT
is cyclic, implying that ∠SXR = ∠ATR = ∠ATS. Our claim follows from the last two
equations.

Combining our claim and the fact that XS ⊥ XT , we know that XS and XT are the
interior and exterior bisectors of ∠V XR, from which (3) follows, by the angle-bisector
theorem. We saw that (3) was equivalent to (2) and that this was enough to show that
PQMR is cyclic, which completes the solution, so we are done.

JMO 4. Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression. (Q is the set
of all rational numbers.)

Solution: Choose any n ∈ Z, t ∈ Q. Applying the condition for nt, (n+1)t, (n+2)t, (n+3)t
yields

f((n + 3)t)− f((n + 2)t) = f((n + 1)t)− f(nt)

and similarly
f((n + 4)t)− f((n + 3)t) = f((n + 2)t)− f((n + 1)t).

Adding the two yields

f((n + 4)t)− f((n + 2)t) = f((n + 2)t)− f(nt),

in particular f(2kt + 2t) − f(2kt) is the same for all k ∈ Z, which means f is linear on
2t · Z. Since Q is a nested union of such sets, f is linear and all linear functions work.

JMO 5. Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment BD
such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a point Y on
segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

Solution. By the symmetry, it suffices to show the “only if” part by assuming that there
exists a point X on segment BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD.

Because ABCD is cyclic, we have ∠XAD = ∠BAC = ∠BDC = ∠XDC and ∠XDA =
∠BDA = ∠BCA = ∠XCD. Hence triangles AXD and DXC (and ABC) are similar to
each other. In particular,

AX

DX
=

DX

XC
or DX2 = AX · CX

6



Because ∠BAC = ∠XAD, we have ∠BAX = ∠CAD. Because ABCD is cyclic, we have
∠CAD = ∠CBD = ∠CBX. Consequently, ∠BAX = ∠CBX. Note that

∠AXB = ∠XAD + ∠ADX = ∠BAC + ∠ACB = ∠BDC + ∠DCX = ∠CXB.

From the above facts, we conclude that triangles ABX and BCX (and ACD) are similar
to each other and so we have BX2 = AX · CX. Thus, BX2 = AX · CX = DX2; that is,
X is the midpoint of the segment BD. Therefore

AB

BC
=

DX

XC
=

BX

XC
=

AD

DC
or

BC

CD
=

BA

AD
.

Construct point Y on segment AC such that ∠CBD = ∠Y BA. From ∠CBD = ∠Y BA
and ∠BAY = ∠BAC = ∠BDC, we conclude that triangles BAY and BDC are similar
to each other, from which it follow that

BY

Y A
=

BC

CD
=

BA

AD
or

BY

BA
=

AY

AD
.

Note also that ∠Y BA = ∠CBD = ∠CAD = ∠Y AD. We conclude that triangles BY A
and AYD are similar to each other, implying that ∠CDB = ∠Y AB = ∠Y DA. This is
the desired point Y .

OR

By symmetry, it suffices to show that there exists X on the segment BD such that
∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if AB · CD = AD ·BC.

There is a unique point X1 on segment BD such that ∠X1AD = ∠BAC. There is a
unique point X2 on segment BD such that ∠BCA = ∠X2CD. Because ABCD is cyclic,
∠BCA = ∠BDA = ∠X1DA. Hence triangles ABC and AX1D are similar to each other,
implying that

AC

BC
=

AD

X1D
.

Likewise, we can show that ABC and DX2C are similar to each other and
AB

AC
=

DX2

DC
.

Multiplying the last two equations together gives

AB

BC
=

AB

AC
· AC
BC

=
DX2

DC
· AD
X1D

,

from which it follows that
AB · CD

AD ·BC
=

DX2

DX1

.

Note that point X exists if and only if X1 = X2, or DX2 = DX1; that is, AB · CD =
AD ·BC.
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JMO 6. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Solution: We think of the pilings as assigning a positive integer to each square on the
grid. Now, we restrict ourselves to the types of moves in which we take a lower left and
upper right stone and move them to the upper left and lower right of our chosen rectangle.
Call this a Type 1 stone move. We claim that we can perform a sequence of Type 1 stone
moves on any piling to obtain an equivalent piling for which we cannot perform any Type
1 move, i.e. in which no square that has stones is above and to the right of any other
square that has stones. We call such a piling a “down-right” piling.

To prove that any piling is equivalent to a down-right piling, first consider the squares in
the leftmost column and topmost row of the grid. Let a be the entry (number of stones) in
the upper left corner, and let b and c be the sum of the remaining entries in the leftmost
column and topmost row respectively. If b < c, we can perform a sequence of Type 1 stone
moves to remove all the stones from the leftmost column except for the top entry, and if
c < b we can similarly clear all squares in the top row except for the top left square. In
the former case, we can now ignore the leftmost column and repeat the process on the
second-to-leftmost column and the top row; similarly, in the latter case, we can ignore the
top row and proceed as before. Since the corner square a cannot be part of any Type 1
move at each step in the process, it follows that we end up with a down-right piling.

We next show that down-right pilings in any size grid (not necessarily n×n) are uniquely
determined by their row-sums and column-sums, given that the row sums and column sums
are nonnegative integers which sum to m both along the rows and the columns. Let the
topmost row sum be R1 and the leftmost column sum be C1. Then the upper left square
must contain min(R1, C1) stones, since otherwise there would be stones both in the first
row and first column that are not in the upper left square. Whichever is smaller indicates
that either the row or the column respectively is empty save for the upper left square; then
we can remove this row or column and are reduced to a smaller grid in which we know
all the row and column sums. Since one-row and one-column pilings are clearly uniquely
determined by their column and row sums, it follows by induction that down-right pilings
are determined uniquely by their row-sums and column sums.

Finally, notice that row sums and column sums are both invariant under stone moves.
Therefore every piling is equivalent to a unique down-right piling. It therefore suffices to
count the number of down-right pilings, which is also equivalent to counting the number
of possibilities for the row-sums and column-sums. As stated above, the row sums and
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column sums can be the sums of any two n-tuples of nonnegative integers that each sum
to m. The number of such tuples is

(
n+m−1

m

)
, and so the total number of non-equivalent

pilings is the number of pairs of these tuples, i.e.
((

n+m−1
m

))2
.

Copyright c© Mathematical Association of America
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§0 Problems
1. Given a sequence of real numbers, a move consists of choosing two terms and

replacing each with their arithmetic mean. Show that there exists a sequence
of 2015 distinct real numbers such that after one initial move is applied to the
sequence — no matter what move — there is always a way to continue with a finite
sequence of moves so as to obtain in the end a constant sequence.

2. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

3. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP =
AQ < BP . Let X be a variable point on segment PQ. Line AX meets ω again at
S (other than A). Point T lies on arc AQB of ω such that XT is perpendicular to
AX. Let M denote the midpoint of chord ST .
As X varies on segment PQ, show that M moves along a circle.

4. Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression.

5. Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment
BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a
point Y on segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

6. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n×n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider
any four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l),
(j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move
consists of either removing one stone from each of (i, k) and (j, l) and moving them
to (i, l) and (j, k) respectively, or removing one stone from each of (i, l) and (j, k)
and moving them to (i, k) and (j, l) respectively.
Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways
can Steve pile the stones on the grid?
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§1 Solutions to Day 1
§1.1 JMO 2015/1, proposed by Razvan Gelca
Available online at https://aops.com/community/p4769963.

Problem statement

Given a sequence of real numbers, a move consists of choosing two terms and
replacing each with their arithmetic mean. Show that there exists a sequence of
2015 distinct real numbers such that after one initial move is applied to the sequence
— no matter what move — there is always a way to continue with a finite sequence
of moves so as to obtain in the end a constant sequence.

One valid example of a sequence is 0, 1, . . . , 2014. We will show how to achieve the
all-1007 sequence based on the first move.

Say two numbers are opposites if their average is 1007. We consider 1007 as its own
opposite.

We consider two cases:

• First, suppose the first initial move did not involve the number 1007. Suppose the
two numbers changed were a and b, replaced by c = 1

2(a+ b) twice.
– If a and b are opposites, we simply operate on all the other pairs of opposites.
– Otherwise let a′ and b′ be the opposites of a and b, so all four of a, b, a′, b′

are distinct. Then operate on a′ and b′ to get c′ = 2014− c. We work with
only these four numbers ande replace them as follows:

1
2(a+ b) 1

2(a+ b) a′ b′
1
2(a+ b) 1

2(a+ b) 1
2(a

′ + b′) 1
2(a

′ + b′)
1007 1

2(a+ b) 1007 1
2(a

′ + b′)
1007 1007 1007 1007

Finally, we operate on the remaining 1005 pairs of opposites.

• Now suppose the first initial move involved the number 1007 and some a. Let k be
any number other than a or its opposite, and let a′, k′ be the opposites of a and k.
We work with only these five numbers: and replace them in the following way:

1
2(a+ 1007) 1

2(a+ 1007) a′ k k′
1
2(a+ 1007) 1

2(a+ 1007) a′ 1007 1007
1
2(a+ 1007) 1

2(a+ 1007) 1
2(a

′ + 1007) 1
2(a

′ + 1007) 1007
1007 1

2(a+ 1007) 1007 1
2(a

′ + 1007) 1007
1007 1007 1007 1007 1007

Finally, we operate on the remaining 1005 pairs of opposites.

Remark. In fact, the same proof basically works for any sequence with average m such
that m is in the sequence, and every term has an opposite.

However for “most” sequences one expects the result to not be possible. As a simple
example, the goal is impossible for (0, 1, . . . , 2013, 2015) since the average of the terms is

3
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1007 + 1
2015 , but in the process the only denominators ever generated are powers of 2. This

narrows the search somewhat.
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§1.2 JMO 2015/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p4769940.

Problem statement

Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

We do the trick of setting a = x+ y and b = x− y. This rewrites the equation as

1

4

(
(a+ b)2 + (a+ b)(a− b) + (a− b)2

)
=

(a
3
+ 1

)3

where a, b ∈ Z have the same parity. This becomes

3a2 + b2 = 4
(a
3
+ 1

)3

which is enough to imply 3 | a, so let a = 3c. Miraculously, this becomes

b2 = (c− 2)2(4c+ 1).

So a solution must have 4c+ 1 = m2, with m odd. This gives

x =
1

8

(
3(m2 − 1)± (m3 − 9m)

)
and y =

1

8

(
3(m2 − 1)∓ (m3 − 9m)

)
.

For mod 8 reasons, this always generates a valid integer solution, so this is the complete
curve of solutions. Actually, putting m = 2n+ 1 gives the much nicer curve

x = n3 + 3n2 − 1 and y = −n3 + 3n+ 1

and permutations.
For n = 0, 1, 2, 3 this gives the first few solutions are (−1, 1), (3, 3), (19,−1), (53,−17),

(and permutations).
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§1.3 JMO 2015/3, proposed by Zuming Feng, Jacek Fabrykowski
Available online at https://aops.com/community/p4769957.

Problem statement

Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ <
BP . Let X be a variable point on segment PQ. Line AX meets ω again at S (other
than A). Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let
M denote the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).

¶ Complex solution (Evan Chen) Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus
4Rex+ 2 = s+ t+

1

s
+

1

t
+

s

t
+

t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4Rex+ 2)

does not depend on X, done.

¶ Homothety solution (Alex Whatley) Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.
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A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(
1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

¶ Power of a point solution (Zuming Feng, official solution) We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.
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A

B

S T

O

X

M

Y

K

P

Q

V

The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.
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§2 Solutions to Day 2
§2.1 JMO 2015/4, proposed by Iurie Boreico
Available online at https://aops.com/community/p4774049.

Problem statement

Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression.

Answer: any linear function f . These work.
Here is one approach: for any a and d > 0

f(a) + f(a+ 3d) = f(a+ d) + f(a+ 2d)

f(a− d) + f(a+ 2d) = f(a) + f(a+ d)

which imply

f(a− d) + f(a+ 3d) = 2f(a+ d).

Thus we conclude that for arbitrary x and y we have

f(x) + f(y) = 2f

(
x+ y

2

)
thus f satisfies Jensen functional equation over Q, so linear.

The solution can be made to avoid appealing to Jensen’s functional equation; here is a
presentation of such a solution based on the official ones. Let d > 0 be a positive integer,
and let n be an integer. Consider the two equations

f

(
2n− 1

2d

)
+ f

(
2n+ 2

2d

)
= f

(
2n

2d

)
+ f

(
2n+ 1

2d

)
f

(
2n− 2

2d

)
+ f

(
2n+ 1

2d

)
= f

(
2n− 1

2d

)
+ f

(
2n

2d

)
Summing them and simplifying implies that

f

(
n− 1

d

)
+ f

(
n+ 1

d

)
= 2f

(n
d

)
or equivalently f

(
n
d

)
−f

(
n−1
d

)
= f

(
n+1
d

)
−f

(
n
d

)
. This implies that on the set of rational

numbers with denominator dividing d, the function f is linear.
In particular, we should have f

(
n
d

)
= f(0) + n

df(1) since n
d , 0, 1 have denominators

dividing d. This is the same as saying f(q) = f(0) + q(f(1)− f(0)) for any q ∈ Q, which
is what we wanted to prove.
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§2.2 JMO 2015/5, proposed by Sungyoon Kim
Available online at https://aops.com/community/p4774099.

Problem statement

Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment
BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a
point Y on segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

Both conditions are equivalent to ABCD being harmonic.
Here is a complex solution. Extend U and V and shown. Thus u = bd/a and v = bd/c.

A

B D

C

U

V

X

Note AV ∩ CU lies on the perpendicular bisector of BD unconditionally. Then X
exists as described if and only if the midpoint of BD lies on AV . In complex numbers
this is a+ v = m+ avm, or

a+
bd

c
=

b+ d

2
+

abd

c
· b+ d

2bd
⇐⇒ 2(ac+ bd) = (b+ d)(a+ c)

which is symmetric.
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§2.3 JMO 2015/6, proposed by Maria Monks Gillespie
Available online at https://aops.com/community/p4774079.

Problem statement

Steve is piling m ≥ 1 indistinguishable stones on the squares of an n× n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any
four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k),
(j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of
either removing one stone from each of (i, k) and (j, l) and moving them to (i, l) and
(j, k) respectively, or removing one stone from each of (i, l) and (j, k) and moving
them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways can
Steve pile the stones on the grid?

The answer is
(
m+n−1
n−1

)2. The main observation is that the ordered sequence of column
counts (i.e. the number of stones in the first, second, etc. column) is invariant under
stone moves, as does the analogous sequence of row counts.

¶ Definitions Call these numbers (c1, c2, . . . , cm) and (r1, r2, . . . , rm) respectively, with∑
ci =

∑
ri = n. We say that the sequence (c1, . . . , cm, r1, . . . , rm) is the signature of

the configuration. These are the 2m blue and red numbers shown in the example below
(in this example we have m = 8 and n = 3).

c1 = 5 c2 = 2 c3 = 1

r1 = 3

r2 = 3

r3 = 2

Signature: (5, 2, 1; 3, 3, 2)

By stars-and-bars, the number of possible values (c1, . . . , cm) is
(
m+n−1
n−1

)
. The same is

true for (r1, . . . , rm). So if we’re just counting signatures, the total number of possible
signatures is

(
m+n−1
n−1

)2.
¶ Outline and setup We are far from done. To show that the number of non-equivalent
ways is also this number, we need to show that signatures correspond to pilings. In other
words, we need to prove:

1. Check that signatures are invariant around moves (trivial; we did this already);

2. Check conversely that two configurations are equivalent if they have the same
signatures (the hard part of the problem); and
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3. Show that each signature is realized by at least one configuration (not immediate,
but pretty easy).

Most procedures to the second step are algorithmic in nature, but Ankan Bhattacharya
gives the following far cleaner approach. Rather than having a grid of stones, we simply
consider the multiset of ordered pairs (x, y) corresponding to the stones. Then:

• a stone move corresponds to switching two y-coordinates in two different pairs.

• we redefine the signature to be the multiset (X,Y ) of x and y coordinates which
appear. Explicitly, X is the multiset that contains ci copies of the number i for
each i.

For example, consider the earlier example which had

• Two stones each at (1, 1), (1, 2).

• One stone each at (3, 1), (2, 1), (2, 3), (3, 2).

Its signature can then be reinterpreted as

(5, 2, 1; 3, 3, 2)←→

{
X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}.

In that sense, the entire grid is quite misleading!

¶ Proof that two configurations with the same signature are equivalent The second
part is completed just because transpositions generate any permutation. To be explicit,
given two sets of stones, we can permute the labels so that the first set is (x1, y1), . . . ,
(xm, ym) and the second set of stones is (x1, y

′
1), . . . , (xm, y′m). Then we just induce the

correct permutation on (yi) to get (y′i).

¶ Proof that any signature has at least one configuration Sort the elements of X and
Y arbitrarily (say, in non-decreasing order). Put a stone whose x-coordinate is the ith
element of X, and whose y-coordinate is the ith element of Y , for each i = 1, 2, . . . ,m.
Then this gives a stone placement of m stones with signature (X,Y ).

For example, if

X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}

then placing stones at (1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (2, 2), (2, 3), (3, 3) gives a valid
piling with this signature.
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Solutions to USA(J)MO 2016

Evan Chen

57th IMO 2016, Hong Kong

§1 Solution to JMO1

Let M be the midpoint of arc BC not containing A. We claim M is the desired fixed
point.

A

MB

B

MC

C

P M

IB

IC

Since ∠MPA = 90◦ and ray PA bisects ∠IBPIC , it suffices to show that MIB = MIC .
Let MB, MC be the second intersections of PIB and PIC with circumcircle. Now
MBIB = MBB = MCC = MCIC , and moreover MMB = MMC , and ∠IBMBM =
1
2 P̂B = ∠ICMCM , so triangles 4IBMBM ∼= 4ICMCM , done.

§2 Solution to JMO2

One answer is n = 20 + 219 = 524308.
First, observe that

5n ≡ 520 (mod 520)

5n ≡ 520 (mod 220)

the former being immediate and the latter since ϕ(220) = 219. Hence 5n ≡ 520 (mod 1020).
Moreover, we have

520 =
1

220
· 1020 <

1

10002
· 1020 = 10−6 · 1020.

Thus the last 20 digits of 5n will begin with six zeros. This completes the proof.

1
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§3 Solution to JMO3 / USAMO1

The answer is that |S| ≥ 8.
First, we provide a inductive construction for S = {1, . . . , 8}. Actually, for n ≥ 4 we

will provide a construction for S = {1, . . . , n} which has 2n−1 + 1 elements in a line.
(This is sufficient, since we then get 129 for n = 8.) The idea is to start with the following
construction for |S| = 4:

34 1 23 4 12 3 14 2 13 .

Then inductively, we do the following procedure to move from n to n+ 1: take the chain
for n elements, delete an element, and make two copies of the chain (which now has even
length). Glue the two copies together, joined by ∅ in between. Then place the element
n+ 1 in alternating positions starting with the first (in particular, this hits n+ 1).

Explicitly, when n = 8 this construction gives

345678 1 235678 4 125678 3 145678 2 5678
34 15678 23 45678 12 35678 14 678
345 1678 235 4678 125 3678 145 2678 5

34678 15 23678 45 12678 35 78

3456 178 2356 478 1256 378 1456 278 56
3478 156 2378 456 1278 356 1478 6
34578 16 23578 46 12578 36 14578 26 578
346 1578 236 4578 126 8

34567 18 23567 48 12567 38 14567 28 567
348 1567 238 4567 128 3567 148 67
3458 167 2358 467 1258 367 1458 267 58
3467 158 2367 458 1267 358 7

34568 17 23568 47 12568 37 14568 27 568
347 1568 237 4568 127 3568 147 68
3457 168 2357 468 1257 368 1457 268 57
3468 157 2368 457 1268

Now let’s check |S| ≥ 8 is sufficient. Consider a chain on a set of size |S| = 7. (We need
|S| ≥ 7 else 2|S| < 100.) Observe that there are sets of size ≥ 4 can only be neighbored
by sets of size ≤ 2, of which there are

(
7
1

)
+
(
7
2

)
= 28. So there are ≤ 30 sets of size ≥ 4.

Also, there are
(
7
3

)
= 35 sets of size 3. So the total number of sets in a chain can be at

most 30 + 28 + 35 = 93 < 100.

§4 Solution to USAMO2

We show the exponent of any given prime p is nonnegative in the expression. Recall that
the exponent of p in n! is equal to

∑
i≥1
⌊
n/pi

⌋
. In light of this, it suffices to show that

for any prime power P , we have⌊
k2

P

⌋
≥

k−1∑
j=0

(⌊
j + k

P

⌋
−
⌊
j

P

⌋)
.

Since both sides are integers, we it is equivalent to show:⌊
k2

P

⌋
> −1 +

k−1∑
j=0

(⌊
j + k

P

⌋
−
⌊
j

P

⌋)
.
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Suppose we denote by {x} the fractional part of x. Since bxc = x− {x}, it suffices to
prove that {

k2

P

}
+

k−1∑
j=0

{
j

P

}
< 1 +

k−1∑
j=0

{
j + k

P

}
However, the sum of remainders when (0, 1, . . . , k − 1) is taken modulo P is easily seen
to be less than the sum of remainders when (k, k + 1, . . . , 2k − 1) is taken modulo P . So

k−1∑
j=0

{
j

P

}
≤

k−1∑
j=0

{
j + k

P

}

follows, and we are done upon noting
{
k2/P

}
< 1.

§5 Solution to USAMO3

Let IA denote the A-excenter and I the incenter. Then let D denote the foot of the
altitude from A. Suppose the A-excircle is tangent to BC, AB, AC at A1, B1, C1 and let
A2, B2, C2 denote the reflections of IA across these points. Let S denote the circumcenter
of 4IIBIC .

A

B C

I O

E

F

IA

IB

IC

P

D A1

B1

C1

A2

B2

C2

S

YZ

We begin with the following observation: points D, I, A2 are collinear, as are points E,
IC , C2 are collinear and points F , IB, B2 are collinear. This follows from the “midpoints
of altitudes” lemma.

Observe that B2C2 ‖ B1C1 ‖ IBIC . Proceeding similarly on the other sides, we discover
4IIBIC and 4A2B2C2 are homothetic. Hence P is the center of this homothety (in
particular, D, I, P , A2 are collinear). Moreover, P lies on the line joining IA to S, which

3
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is the Euler line of 4IIBIC , so it passes through the nine-point center of 4IIBIC , which
is O. Consequently, P , O, IA are collinear as well.

To finish, we need only prove that OS ⊥ Y Z. In fact, we claim that Y Z is the radical
axis of the circumcircles of 4ABC and 4IIBIC . Actually, Y is the radical center of
these two circumcircles and the circle with diameter IIB (which passes through A and
C). Analogously Z is the radical center of the circumcircles and the circle with diameter
IIC , and the proof is complete.

§6 Solution to JMO4

The answer is

N = 2017 + 2018 + · · ·+ 4032 = 1008 · 6049 = 6097392.

To see that N must be at least this large, simply consider the situation when 1, 2, . . . ,
2016 are removed. Then among the remaining elements, any sum of 2016 elements is
certainly at least 2017 + 2018 + · · ·+ 6049.

Now we show this value of N works. Consider the 3024 pairs of numbers (1, 6048),
(2, 6047), . . . , (3024, 3025). After the elements of {1, 2, . . . , N} are deleted, at least
3024 − 2016 = 1008 of these pairs have both elements remaining. Since each pair has
sum 6049, we can take these pairs to be the desired numbers.

§7 Solution to JMO5

A

HB C

P

Q

D

K

First, since AP ·AB = AH2 = AQ ·AC, it follows that PQCB is cyclic. Consequently,
we have AO ⊥ PQ. Let K be the foot of A onto PQ, and let D be the point diametrically
opposite A. Thus A, K, O, D are collinear.

Since quadrilateral KQCD is cyclic (∠QKD = ∠QCD = 90◦), we have

AK ·AD = AQ ·QC = AH2 =⇒ AK =
AH2

AD
=
AH2

2AO
= AO

so K = O.
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§8 Solution to JMO6 / USAMO4

First, taking x = y = 0 in the given yields f(0) = 0, and then taking x = 0 gives
f(y)f(−y) = f(y)2. So also f(−y)2 = f(y)f(−y), from which we conclude f is even.
Then taking x = −y gives

∀x ∈ R : f(x) = x2 or f(4x) = 0 (?)

for all x.
Next, we claim that

∀x ∈ R : f(x) = x2 or f(x) = 0 (♥)

To see this assume f(t) 6= 0 (hence t 6= 0). By (?) we get f(t/4) = t2/16. Now take
(x, y) = (3t/4, t/4) to get

t2

4
f(2t) = f(t2) =⇒ f(2t) 6= 0.

If we apply (?) again we actually also get f(t/2) 6= 0. Together these imply

f(t) 6= 0 ⇐⇒ f(2t) 6= 0 (♠).

Repeat (♠) to get f(4t) 6= 0, hence f(t) = t2, proving (♥).
We are now ready to show the claimed solutions are the only ones. Assume there’s an

a 6= 0 for which f(a) = 0; we show that f ≡ 0. There are two approaches from here, by
using inequalities or polynomials.

First approach

Pick b ∈ R, we show directly f(b) = 0.

First, note that f ≥ 0 always holds by (♥). By using (♠) we can generate c > 100b

such that f(c) = 0 (by taking c = 2na for n large). Now, select x, y > 0 such that
x− 3y = b and x+ y = c id est

(x, y) =

(
3c+ b

4
,
c− b

4

)
.

Substitution into the original equation gives

0 = (f(x) + xy) f(b) + (f(y) + xy) f(3x− y).

But everything on the right-hand side is nonnegative. Thus it follows that f(b) =
f(3x− y) = 0 as desired.

Second approach

First, observe that for all x ∈ R

f(4x− a) 6= 0 =⇒ (f(x) + x(3x− a)) f(3a− 8x) = f(4x− a)2 6= 0

by taking y = 3x− a in the original equation. Finally, consider the equations

0 = (4x− a)4 − (x(3x− a)) (3a− 8x)2

0 = (4x− a)4 −
(
x2 + x(3x− a)

)
(3a− 8x)2

Each right-hand side is a nonzero polynomial in x. Thus there are finitely many roots
in x, hence there are only finitely many values of x with f(4x− a) 6= 0. But (♠) then
implies there cannot be any values of x at all, i.e. we conclude that f ≡ 0.

5
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§9 Solution to USAMO5

First solution

In fact, we show that we only need AM = AQ = NP and MN = QP .
We use complex numbers with ABC the unit circle, assuming WLOG that A, B, C

are labeled counterclockwise. Let x, y, z be the complex numbers corresponding to the
arc midpoints of BC, CA, AB, respectively; thus x + y + z is the incenter of 4ABC.
Finally, let s > 0 be the side length of AM = AQ = NP .

Then, since MA = s and MA ⊥ OX, it follows that

m− a = i · sx.

Similarly, n− p = i · sy and a− q = i · sz, so summing these up gives

i · s(x+ y + z) = (p− q) + (m− n) = (m− n)− (q − p).

Since MN = PQ, the argument of (m− n)− (q − p) is along the external angle bisector
of the angle formed, which is perpendicular to `. On the other hand, x+ y+ z is oriented
in the same direction as OI, as desired.

Second solution

Let δ and ε denote ∠MNB and ∠CPQ. Also, assume AMNPQ has side length 1.
In what follows, assume AB < AC. First, we note that

BN = (c− 1) cosB + cos δ

CP = (b− 1) cosC + cos ε

=⇒ a = 1 +BN + CP

=⇒ cos δ + cos ε = cosB + cosC − 1.

Also, by Law of Sines, we have c−1
sin δ = 1

sinB and similarly on triangle CPQ, and from this
we deduce

sin ε− sin δ = sinB − sinC.

Using sum-to-product formulas on our relations implies that

tan

(
ε− δ

2

)
=

sinB − sinC

cosB − cosC + 1
.

Now note that ` makes an angle of 1
2(π + ε − δ) with line BC. Moreover, if line OI

intersects line BC with angle ϕ then

tanϕ =
r −R cosA

1
2(b− c)

.

So in order to prove the result, we only need to check that

r −R cosA
1
2(b− c)

=
cosB − cosC + 1

sinB − sinC
.

Using the fact that b = 2R sinB, c = 2R sinC, this just reduces to the fact that
r/R+ 1 = cosA+ cosB + cosC, which is the so-called Carnot theorem.
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§10 Solution to USAMO6

The game is winnable if and only if n 6= k.
First suppose 2 ≤ k < n. Query the cards in positions {1, . . . , k}, then {2, . . . , k + 1},

and so on, up to {2n− k + 1, 2n}. By taking the diff of any two adjacent queries, we
can deduce for certain the values on cards 1, 2, . . . , 2n− k. If k ≤ n, this is more than n
cards, so we can find a matching pair.

For k = n we remark the following: at each turn after the first, assuming one has
not won, there are n cards representing each of the n values exactly once, such that the
player has no information about the order of those n cards. We claim that consequently
the player cannot guarantee victory. Indeed, let S denote this set of n cards, and S the
other n cards. The player will never win by picking only cards in S or S. Also, if the
player selects some cards in S and some cards in S, then it is possible that the choice
of cards in S is exactly the complement of those selected from S; the strategy cannot
prevent this since the player has no information on S. This implies the result.
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§0 Problems
1. The isosceles triangle 4ABC, with AB = AC, is inscribed in the circle ω. Let

P be a variable point on the arc BC that does not contain A, and let IB and IC
denote the incenters of triangles 4ABP and 4ACP , respectively. Prove that as
P varies, the circumcircle of triangle 4PIBIC passes through a fixed point.

2. Prove that there exists a positive integer n < 106 such that 5n has six consecutive
zeros in its decimal representation.

3. Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a set
S. Any two sets Xi and Xi+1 are disjoint and their union is not the whole set S,
that is, Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S, for all i ∈ {1, . . . , 99}. Find the smallest
possible number of elements in S.

4. Find, with proof, the least integer N such that if any 2016 elements are removed
from the set {1, 2, . . . , N}, one can still find 2016 distinct numbers among the
remaining elements with sum N .

5. Let 4ABC be an acute triangle, with O as its circumcenter. Point H is the foot
of the perpendicular from A to line BC, and points P and Q are the feet of the
perpendiculars from H to the lines AB and AC, respectively.
Given that

AH2 = 2AO2,

prove that the points O, P , and Q are collinear.

6. Find all functions f : R → R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.
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§1 Solutions to Day 1
§1.1 JMO 2016/1, proposed by Ivan Borsenco, Zuming Feng
Available online at https://aops.com/community/p6213607.

Problem statement

The isosceles triangle 4ABC, with AB = AC, is inscribed in the circle ω. Let P be
a variable point on the arc BC that does not contain A, and let IB and IC denote
the incenters of triangles 4ABP and 4ACP , respectively. Prove that as P varies,
the circumcircle of triangle 4PIBIC passes through a fixed point.

Let M be the midpoint of arc BC not containing A. We claim M is the desired fixed
point.

A

MB

B

MC

C

P
M

IB

IC

Since ∠MPA = 90◦ and ray PA bisects ∠IBPIC , it suffices to show that MIB = MIC .
Let MB, MC be the second intersections of PIB and PIC with circumcircle. Now
MBIB = MBB = MCC = MCIC , and moreover MMB = MMC , and ∠IBMBM =
1
2
‘PM = ∠ICMCM , so triangles 4IBMBM ∼= 4ICMCM .

Remark 1.1. Complex in the obvious way DOES NOT WORK, because the usual claim
(“the fixed point is arc midpoint”) is FALSE if the hypothesis that P lies in the interior of
the arc is dropped. See figure below.
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A

B C

P

M

IB IC

Fun story, I pointed this out to Zuming during grading; I was the only one that realized the
subtlety.
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§1.2 JMO 2016/2, proposed by Evan Chen
Available online at https://aops.com/community/p6213569.

Problem statement

Prove that there exists a positive integer n < 106 such that 5n has six consecutive
zeros in its decimal representation.

We will prove that n = 20 + 219 = 524308 fits the bill.
First, we claim that

5n ≡ 520 (mod 520) and 5n ≡ 520 (mod 220).

Indeed, the first equality holds since both sides are 0 (mod 520), and the second by
ϕ(220) = 219 and Euler’s theorem. Hence

5n ≡ 520 (mod 1020).

In other words, the last 20 digits of 5n will match the decimal representation of 520,
with leading zeros. However, we have

520 =
1

220
· 1020 < 1

10002
· 1020 = 10−6 · 1020

and hence those first six of those 20 digits will all be zero. This completes the proof! (To
be concrete, it turns out that 520 = 95367431640625 and so the last 20 digits of 5n will
be 00000095367431640625.)

Remark. Many of the first posts in the JMO 2016 discussion thread (see https://aops.
com/community/c5h1230514) claimed that the problem was “super easy”. In fact, the
problem was solved by only about 10% of contestants.

¶ Authorship comments This problem was inspired by the observation 58 ≡ 54

(mod 104), i.e. that 58 ended with 0625.
I noticed this one day back in November, when I was lying on my bed after a long

afternoon and was mindlessly computing powers of 5 in my head because I was too tired
to do much else. When I reached 58 I noticed for the first time that the ending 0625 was
actually induced by 54. (Given how much MathCounts I did, I really should have known
this earlier!)

Thinking about this for a few more seconds, I realized one could obtain arbitrarily
long strings of 0’s by using a similar trick modulo larger powers of 10. This surprised me,
because I would have thought that if this was true, then I would have learned about it
back in my contest days. However, I could not find any references, and I thought the
result was quite nice, so I submitted it as a proposal for the JMO, where I thought it
might be appreciated.

The joke about six consecutive zeros is due to Zuming Feng.
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§1.3 JMO 2016/3, proposed by Iurie Boreico
Available online at https://aops.com/community/p6213589.

Problem statement

Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a set
S. Any two sets Xi and Xi+1 are disjoint and their union is not the whole set S,
that is, Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S, for all i ∈ {1, . . . , 99}. Find the smallest
possible number of elements in S.

Solution with Danielle Wang: the answer is that |S| ≥ 8.
Proof of sufficiency Since we must have 2|S| ≥ 100, we must have |S| ≥ 7.
To see that |S| = 8 is the minimum possible size, consider a chain on the set S =

{1, 2, . . . , 7} satisfying Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S. Because of these requirements
any subset of size 4 or more can only be neighbored by sets of size 2 or less, of which
there are

(
7
1

)
+
(
7
2

)
= 28 available. Thus, the chain can contain no more than 29 sets of

size 4 or more and no more than 28 sets of size 2 or less. Finally, since there are only(
7
3

)
= 35 sets of size 3 available, the total number of sets in such a chain can be at most

29 + 28 + 35 = 92 < 100.
Construction We will provide an inductive construction for a chain of subsets

X1, X2, . . . , X2n−1+1 of S = {1, . . . , n} satisfying Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S for
each n ≥ 4.

For S = {1, 2, 3, 4}, the following chain of length 23 + 1 = 9 will work:

34 1 23 4 12 3 14 2 13 .

Now, given a chain of subsets of {1, 2, . . . , n} the following procedure produces a chain
of subsets of {1, 2, . . . , n+ 1}:

1. take the original chain, delete any element, and make two copies of this chain,
which now has even length;

2. glue the two copies together, joined by ∅ in between; and then

3. insert the element n+ 1 into the sets in alternating positions of the chain starting
with the first.

For example, the first iteration of this construction gives:

345 1 235 4 125 3 145 2 5
34 15 23 45 12 35 14 25

It can be easily checked that if the original chain satisfies the requirements, then so does
the new chain, and if the original chain has length 2n−1+1, then the new chain has length
2n + 1, as desired. This construction yields a chain of length 129 when S = {1, 2, . . . , 8}.
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Remark. Here is the construction for n = 8 in its full glory.

345678 1 235678 4 125678 3 145678 2 5678
34 15678 23 45678 12 35678 14 678
345 1678 235 4678 125 3678 145 2678 5
34678 15 23678 45 12678 35 78
3456 178 2356 478 1256 378 1456 278 56
3478 156 2378 456 1278 356 1478 6
34578 16 23578 46 12578 36 14578 26 578
346 1578 236 4578 126 8

34567 18 23567 48 12567 38 14567 28 567
348 1567 238 4567 128 3567 148 67
3458 167 2358 467 1258 367 1458 267 58
3467 158 2367 458 1267 358 7
34568 17 23568 47 12568 37 14568 27 568
347 1568 237 4568 127 3568 147 68
3457 168 2357 468 1257 368 1457 268 57
3468 157 2368 457 1268

7
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§2 Solutions to Day 2
§2.1 JMO 2016/4, proposed by Gregory Galperin
Available online at https://aops.com/community/p6220314.

Problem statement

Find, with proof, the least integer N such that if any 2016 elements are removed from
the set {1, 2, . . . , N}, one can still find 2016 distinct numbers among the remaining
elements with sum N .

The answer is

N = 2017 + 2018 + · · ·+ 4032 = 1008 · 6049 = 6097392.

To see that N must be at least this large, consider the situation when 1, 2, . . . , 2016
are removed. Among the remaining elements, any sum of 2016 elements is certainly at
least 2017 + 2018 + · · ·+ 4032.

Now we show this value of N works. Consider the 3024 pairs of numbers (1, 6048),
(2, 6047), . . . , (3024, 3025). Regardless of which 2016 elements of {1, 2, . . . , N} are deleted,
at least 3024− 2016 = 1008 of these pairs have both elements remaining. Since each pair
has sum 6049, we can take these pairs to be the desired numbers.
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§2.2 JMO 2016/5, proposed by Zuming Feng, Jacek Fabrykowski
Available online at https://aops.com/community/p6220305.

Problem statement

Let 4ABC be an acute triangle, with O as its circumcenter. Point H is the foot
of the perpendicular from A to line BC, and points P and Q are the feet of the
perpendiculars from H to the lines AB and AC, respectively.

Given that
AH2 = 2AO2,

prove that the points O, P , and Q are collinear.

We present two approaches.

¶ First approach (synthetic) First, since AP ·AB = AH2 = AQ ·AC, it follows that
PQCB is cyclic. Consequently, we have AO ⊥ PQ.

A

HB C

P

Q

D

K

Let K be the foot of A onto PQ, and let D be the point diametrically opposite A.
Thus A, K, O, D are collinear.

Since quadrilateral KQCD is cyclic (∠QKD = ∠QCD = 90◦), we have

AK ·AD = AQ ·AC = AH2 =⇒ AK =
AH2

AD
=

AH2

2AO
= AO

so K = O.

¶ Second approach (coordinates), with Joshua Hsieh We impose coordinates with H
at the origin and A = (0, a), B = (−b, 0), C = (c, 0), for a, b, c > 0.

Claim — The circumcenter has coordinates ( c−b
2 , a2 − bc

2a).
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Proof. This is a known lemma but but we reproduce its proof for completeness. It uses
the following steps:

• By power of a point, the second intersection of line AH with the circumcircle is
(0,− bc

a ).

• Since the orthocenter is the reflection of this point across line BC, the orthocenter
is given exactly by (0, bca ).

• The centroid is is ~A+ ~B+ ~C
3 = ( c−b

3 , a3 ).

• Since ~H − ~O = 3( ~G− ~O) according to the Euler line, we have ~O = 3
2
~G− 1

2
~H. This

gives the desired formula.

Note that HQ = HA·HC
AC = ac√

a2+c2
. If we let T be the foot from Q to BC, then

4HQT
∼
+4AHC and so the x-coordinate of Q is given by HQ · AH

AC = a2c
a2+c2

. Repeating
the analogous calculation for Q and P gives

Q =

(
a2c

a2 + c2
,

ac2

a2 + c2

)
P =

(
− a2b

a2 + b2
,

ab2

a2 + b2

)
.

Then, O, P , Q are collinear if and only if the following shoelace determinant vanishes
(with denominators cleared out):

0 = det

 −a2b ab2 a2 + b2

a2c ac2 a2 + c2

a(c− b) a2 − bc 2a

 = adet

−ab ab2 a2 + b2

ac ac2 a2 + c2

c− b a2 − bc 2a


= adet

−a(b+ c) a(b2 − c2) b2 − c2

ac ac2 a2 + c2

c− b a2 − bc 2a

 = a(b+ c)det

 −a a(b− c) b− c
ac ac2 a2 + c2

c− b a2 − bc 2a


= a(b+ c) ·

[
− a(a2c2 − a4 + bc(a2 + c2)) + ac(b− c)

(
−a2 − bc

)
− (b− c)2 · a3

]
= a2(b+ c)(a4 − a2b2 − b2c2 − c2a2).

On the other hand,

AH2 = a2

2AO2 = 2

[(
c− b

2

)2

+

(
−a

2
− bc

2a

)2
]
=

a2 + b2 + c2 + b2c2

a2

2

=⇒ AH2 − 2AO2 =
1

2

(
a2 − b2 − c2 − b2c2

a2

)
.

So the conditions are equivalent.
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§2.3 JMO 2016/6, proposed by Titu Andreescu
Available online at https://aops.com/community/p6220308.

Problem statement

Find all functions f : R → R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.

We claim that the only two functions satisfying the requirements are f(x) ≡ 0 and
f(x) ≡ x2. These work.

First, taking x = y = 0 in the given yields f(0) = 0, and then taking x = 0 gives
f(y)f(−y) = f(y)2. So also f(−y)2 = f(y)f(−y), from which we conclude f is even.
Then taking x = −y gives

∀x ∈ R : f(x) = x2 or f(4x) = 0 (F)

for all x.

Remark. Note that an example of a function satisfying (F) is

f(x) =


x2 if |x| < 1

log(x42 + 2016cos(x)) if 1 ≤ |x| < 4

0 if |x| ≥ 4.

So, yes, we are currently in a world of trouble, still.

Now we claim

Claim — f(z) = 0 ⇐⇒ f(2z) = 0 (♠).

Proof. Let (x, y) = (3t, t) in the given to get(
f(t) + 3t2

)
f(8t) = f(4t)2.

Now if f(4t) 6= 0 (in particular, t 6= 0), then f(8t) 6= 0. Thus we have (♠) in the reverse
direction.

Then f(4t) 6= 0
(F)=⇒ f(t) = t2 6= 0

(♠)=⇒ f(2t) 6= 0 implies the forwards direction, the
last step being the reverse direction (♠).

By putting together (F) and (♠) we finally get

∀x ∈ R : f(x) = x2 or f(x) = 0 (♥)

We are now ready to approach the main problem. Assume there’s an a 6= 0 for which
f(a) = 0; we show that f ≡ 0.

Let b ∈ R be given. Since f is even, we can assume without loss of generality that
a, b > 0. Also, note that f(x) ≥ 0 for all x by (♥). By using (♠) we can generate c > b
such that f(c) = 0 by taking c = 2na for a large enough integer n. Now, select x, y > 0
such that x− 3y = b and x+ y = c. That is,

(x, y) =

(
3c+ b

4
,
c− b

4

)
.
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Substitution into the original equation gives

0 = (f(x) + xy) f(b) + (f(y) + xy) f(3x− y) ≥ (f(x) + xy) f(b).

But since f(b) ≥ 0, it follows f(b) = 0, as desired.
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8th United States of America Junior Mathematical Olympiad

Day 1. 12:30 PM – 5:00 PM EDT

April 19, 2017

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAJMO 1. Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers
a > 1 and b > 1 such that ab + ba is divisible by a + b.

USAJMO 2. Consider the equation

(3x3 + xy2)(x2y + 3y3) = (x− y)7.

(a) Prove that there are infinitely many pairs (x, y) of positive integers satisfying the equation.

(b) Describe all pairs (x, y) of positive integers satisfying the equation.

USAJMO 3. (∗) Let ABC be an equilateral triangle and let P be a point on its circumcircle. Let
lines PA and BC intersect at D; let lines PB and CA intersect at E; and let lines PC and AB
intersect at F . Prove that the area of triangle DEF is twice the area of triangle ABC.

c© 2017, Mathematical Association of America.



8th United States of America Junior Mathematical Olympiad

Day 2. 12:30 PM – 5:00 PM EDT

April 20, 2017

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAJMO 4. Are there any triples (a, b, c) of positive integers such that (a− 2)(b− 2)(c− 2) + 12
is a prime that properly divides the positive number a2 + b2 + c2 + abc− 2017?

USAJMO 5. (∗) Let O and H be the circumcenter and the orthocenter of an acute triangle ABC.
Points M and D lie on side BC such that BM = CM and ∠BAD = ∠CAD. Ray MO intersects
the circumcircle of triangle BHC in point N . Prove that ∠ADO = ∠HAN .

USAJMO 6. Let P1, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1 other than
(1, 0). Each point is colored either red or blue, with exactly n of them red and n of them blue.
Let R1, . . . , Rn be any ordering of the red points. Let B1 be the nearest blue point to R1 traveling
counterclockwise around the circle starting from R1. Then let B2 be the nearest of the remaining
blue points to R2 traveling counterclockwise around the circle from R2, and so on, until we have
labeled all of the blue points B1, . . . , Bn. Show that the number of counterclockwise arcs of the form
Ri → Bi that contain the point (1, 0) is independent of the way we chose the ordering R1, . . . , Rn

of the red points.

c© 2017, Mathematical Association of America.
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Solutions

USAJMO 1. (Proposed by Gregory Galperin)

Let n be an odd positive integer, and take a = 2n − 1, b = 2n + 1. Then ab + ba ≡ 1 + 3 ≡ 0
(mod 4), and ab + ba ≡ −1 + 1 ≡ 0 (mod n). Therefore a + b = 4n divides ab + ba.

Alternate solution: Let p > 5 be a prime and let p 6≡ 1 (mod 5). For each such prime p we
construct a pair of relatively prime numbers (a, b) that satisfy the conclusion of the problem. Thus,
we will get infinitely many distinct pairs (a, b) as required.

Let a = 3p + 2, b = 7p − 2. Then a + b = 10p. We have ϕ(10p) = 4(p − 1) = b − a, where ϕ is
Euler’s function.

Obviously, a and b are odd and not divisible by p. They are not divisible by 5 because p 6≡ 1 (mod 5).
Thus, a and b are relatively prime to 10p = a + b, and therefore relatively prime to each other.

Therefore, using Euler’s theorem,

ab = aa+ϕ(10p) = aa · aϕ(10p) ≡ aa (mod 10p) ,

and since 10p = a + b,
ab + ba ≡ aa + ba (mod a + b) .

However, since a is odd, aa + ba is divisible by a + b. Hence, ab + ba is divisible by a + b.

USAJMO 2. (Proposed by Titu Andreescu)

For x > 0 and y > 0, the left-hand side of the equation is positive, implying that x > y.

(a) Set
x

y
= k + 1, for some positive rational number k. Then the equation is equivalent to

(k + 1)(3k2 + 6k + 4)(k2 + 2k + 4) = (k7)y.

Take any positive integer n. Letting k = 1
n yields an infinite family of solutions

(x, y) = (n(n + 1)2(4n2 + 6n + 3)(4n2 + 2n + 1), n2(n + 1)(4n2 + 6n + 3)(4n2 + 2n + 1))

to the given equation.

(b) Write the equation as
x(3x2 + y2)y(x2 + 3y2) = (x− y)7,

which is equivalent to
(x3 + 3xy2)(3x2y + y3) = (x− y)7.

1



Let x3 +3xy2 = a and 3x2y+y3 = b. Then a+b = (x+y)3, a−b = (x−y)3 and the equation
becomes

(ab)3 = (a− b)7.

Let d = gcd(a, b). Then a = du and b = dv for some relatively prime positive integers u and
v. Hence

(uv)3 = d(u− v)7.

Because gcd(u, v) = 1, we have gcd(u− v, u) = 1, gcd(u− v, v) = 1, hence gcd(u− v, uv) = 1.
It follows that u − v = 1 and d = (uv)3. Hence u = k + 1 and v = k, where k is a positive
integer, and so a = (k + 1)4k3 and b = k4(k + 1)3. Then

(x− y)3 = a− b = [k(k + 1)]3

and
(x + y)3 = a + b = [k(k + 1)]3(2k + 1).

It follows that 2k + 1 = n3 for some odd integer n > 1 and that x + y = nk(k + 1) and
x− y = k(k + 1). Hence

(x, y) =

Ç
(n + 1)k(k + 1)

2
,

(n− 1)k(k + 1)

2

å
where k = n3−1

2 . Thus

(x, y) =

Ç
(n + 1)(n6 − 1)

8
,

(n− 1)(n6 − 1)

8

å
where n is an odd integer greater than 1, and it is easy to check that these are solutions to
the given equation. Hence these pairs describe all the solutions to the equation.

USAJMO 3. (Proposed by Titu Andreescu, Luis Gonzalez, and Cosmin Pohoata)

We offer several solutions. Throughout, we use bracket notation for areas: for example, [ABC]
means the area of triangle ABC.

We first present three down-to-earth approaches. One of them is a coordinate geometry approach.
The other two approaches utilize the fact of many pairs of similar triangles in this configuration:

• BPC, FPA, FBC, APE, and BCE;

• FBP and FCA;

• ECP and EBA.

In these solutions, we assume the points are configured so that P is on minor arc B̄C of the circle,
as shown in the figure.

2



A

B C

P

D

E

F

Solution 1. (By USA(J)MO packet reviewers.) We may assume that AB = 1. Then [ABC] =√
3/4. Set b = PB, c = PC, e = PE, and f = PF . Note that ∠FBD = ∠ECD = ∠BPC = 120◦.

Hence

[DEF ] = [BCEF ]− [FBD]− [ECD] =
1

2
sin 120◦(BE · CF −BF ·BD − CE · CD).

It suffices to show that [DEF ] =
√

3/2 or

2 = (BE · CF −BF ·BD − CE · CD) = (b + e)(c + f)−BF ·BD − CE · CD.

Because ∠FBC = ∠BPC and ∠FCB = ∠PCB, triangles FCB and BCP are similar to each
other, implying that

FC

BC
=

CB

CP
=

BF

PB
or

c + f

1
=

1

c
=

BF

b
.

Thus, c+ f = 1/c and BF = b/c. Analogously, b+ e = 1/b and CE = c/b. It remains to show that

2 = (b + e)(c + f)−BF ·BD − CE · CD =
1

bc
− b

c
·BD − c

b
· CD.

Note that ∠BPD = ∠CPD = 60◦, so we have BD/CD = BP/CP by the Angle-Bisector theorem.
Consequently, we have BD = b/(b + c) and CD = c/(b + c). Thus, we want to show that

2 =
1

bc
− b

c
·BD − c

b
· CD =

1

bc
− b2

c(b + c)
− c2

b(b + c)

3



=
1

bc
− b3 + c3

bc(b + c)
=

1− b2 − c2 + bc

bc
,

or b2 + c2 + bc = 1, which is true by applying the Law of Cosines in triangle BPC.

Solution 2. (By USA(J)MO packet reviewers.) Note that ∠DPF = ∠DPE = ∠EPF = 120◦.
We have

[DEF ] =
1

2
· sin 120◦ (PD · PE + PE · PF + PF · PD) .

To show that [DEF ] = 2[ABC], it suffices to show that

PD · PE + PE · PF + PF · PD = 2BC2.

Set b = PB and c = PC. We will express the lengths of BC, PD, PE, and PF in terms of b and c.
Note that ∠BPC = 120◦. Applying the Law of Cosines in triangle BPC gives BC2 = b2 + bc+ c2.
Applying Ptolemy’s theorem to cyclic quadrilateral ABCP yields AP ·BC = BP ·AC + CP ·AB
or AP = b + c. Because ∠ACB = ∠ABC = ∠APC = 60◦, triangles ACD and APC are similar,
and so

AC

AP
=

CD

PC
=

DA

CA
,

or b2 + bc + c2 = AC2 = AP ·AD = (b + c) ·AD. We conclude that

AD =
b2 + bc + c2

b + c
and PD = AP −AD = b + c− b2 + bc + c2

b + c
=

bc

b + c
.

Finally, because ∠FBP = 180◦ − ∠ABP = ∠ACP and ∠BPF = ∠APC = 60◦, triangles FBP
and ACP are similar. Hence

FB

AC
=

BP

CP
=

PF

PA
,

from which it follows that PF = AP · BP/CP = b(b + c)/c. In exactly the same way, we get
PE = c(b + c)/b. It follows that

PD · PE + PE · PF + PF · PD =
bc

b + c

Ç
c(b + c)

b
+

b(b + c)

c

å
+

c(b + c)

b
· b(b + c)

c

= 2(b2 + bc + c2),

as desired.

Solution 3. (By USA(J)MO packet reviewers.) Without loss of generality, we may assume that
A = (0, 2), B = (−

√
3,−1), and C = (

√
3,−1). Set P = (a, b) with a2 + b2 = 4.

Solving for line equations y = −1 and y =
(b− 2)

a
· x + 2 gives D =

Å
− 3a

b− 2
,−1

ã
.

Solving for line equations y =
√

3x + 2 and y =
(b + 1)

a−
√

3
· (x−

√
3)− 1 gives

F =

Ç
3a +

√
3b− 2

√
3

b + 4−
√

3a
,

√
3a + 5b + 2

b + 4−
√

3a

å
.
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Solving for line equations y = −
√

3x + 2 and y =
(b + 1)

a +
√

3
· (x +

√
3)− 1 gives

E =

Ç
3a−

√
3b + 2

√
3

b + 4 +
√

3a
,
−
√

3a + 5b + 2

b + 4 +
√

3a

å
.

Hence
−−→
DF =

ñ
3a +

√
3b− 2

√
3

b + 4−
√

3a
+

3a

b− 2
,

6(b + 1)

b + 4−
√

3a

ô
and

−−→
DE =

ñ
3a−

√
3b + 2

√
3

b + 4 +
√

3a
+

3a

b− 2
,

6(b + 1)

b + 4 +
√

3a

ô
.

Therefore,

2[DEF ] =
6(b + 1)

b + 4 +
√

3a
·
Ç

3a +
√

3b− 2
√

3

b + 4−
√

3a
+

3a

b− 2

å
− 6(b + 1)

b + 4−
√

3a
·
Ç

3a−
√

3b + 2
√

3

b + 4 +
√

3a
+

3a

b− 2

å
=

12
√

3(b + 1)(b− 2)

(b + 4)2 − 3a2
+

18a(b + 1)

b− 2
·
Ç

1

b + 4 +
√

3a
− 1

b + 4−
√

3a

å
=

12
√

3(b + 1)(b− 2)

(b + 4)2 − 3a2
− 36

√
3a2(b + 1)

(b− 2)((b + 4)2 − 3a2)

=
12
√

3(b + 1)(b− 2)

(b + 4)2 − 3(4− b2)
− 36

√
3(4− b2)(b + 1)

(b− 2)((b + 4)2 − 3(4− b2))

=
12
√

3(b + 1)(b− 2)

4b2 + 8b + 4
− 36

√
3(2− b)(2 + b)(b + 1)

(b− 2)(4b2 + 8b + 4)

=
3
√

3(b− 2)

b + 1
+

9
√

3(2 + b)

b + 1
=

3
√

3(b− 2 + 6 + 3b)

b + 1
= 12

√
3,

implying that [DEF ] = 6
√

3 = 2[ABC], as desired.

The next solution is by the problem authors. It uses more advanced tools that USAJMO partici-
pants are not expected to know, but offers some additional insight into the origins of the problem.

Solution 4. (By the posers.) Without loss of generality, let us assume that P lies on the arc AC,
which does not contain vertex B. Because P is on the circumcircle, its isogonal conjugate, say Q,
is a point at infinity. Furthermore, the intersections D′, E′, F ′ of lines QA, QB, QC with lines
BC, CA, AB, respectively, are the reflections of D, E, F across the midpoints of BC, CA, AB.
This essentially follows from the fact that 4ABC is equilateral: isogonal conjugates with respect
to it are also isotomic conjugates. We are thus led to the following lemma.

Lemma 1. Let ABC be a triangle with D, E, F points lying on the lines BC, CA, AB, respectively.
Let D′, E′, F ′ be the reflections of D, E, F with respect to the midpoints of BC, CA, AB,
respectively. Then, triangles DEF and D′E′F ′ have the same area.
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Proof. The statement holds regardless of the position of points D, E, F on lines BC, CA, AB, so,
for convenience, in the computations below we shall assume that these all lie close enough to the
midpoints of the sides so that all points D, E, F , D′, E′, F ′ lie on the sides of 4ABC. The proof
for the other scenarios is similar.

We begin by writing
[CD′E′] = [AD′E] = [AD′C]− [CD′E].

Analogously, [AE′F ′] = [BE′A] − [AE′F ] and [BF ′D′] = [CF ′B] − [BF ′D]. Adding these three
together, we get

[CD′E′] + [AE′F ′] + [BF ′D′]

= [AD′C] + [BE′A] + [CF ′B]− [CD′E]− [AE′F ]− [BF ′D].

Furthermore,
[CDE] = [BD′E] = [BEC]− [CD′E],

and similarly [AEF ] = [CFA]− [AE′F ] and [BFD] = [ADB]− [BF ′D]. Therefore,

[CDE] + [AEF ] + [BFD]

= [BEC] + [CFA] + [ADB]− [CD′E]− [AE′F ]− [BF ′D].

But D′C = DB, E′A = EC, F ′B = FA, so [AD′C] = [ADB], [BE′A] = [BEC], [CF ′B] = [CFA].
Using all of the above, we get

[CD′E′] + [AE′F ′] + [BF ′D′] = [CDE] + [AEF ] + [BFD],

and so [ABC]− [D′E′F ′] = [ABC]− [DEF ], i.e., [DEF ] = [D′E′F ′], establishing the lemma.

Assuming Lemma 1, we just have to check that [D′E′F ′] = 2[ABC]. Because P lies on the small
arc AC, points D and F lie on the extensions of segments BC and AB, respectively, and so D′ and
F ′ do too. Furthermore, B lies in the interior of triangle D′E′F ′, therefore

[D′E′F ′] = [D′BF ′] + [F ′BE′] + [E′BD′].

On the other hand, AD′‖CF ′ implies [D′CF ′] = [ACF ′], which, after subtracting [BCF ′] from
both sides, gives [D′BF ′] = [ABC]. Likewise, BE′‖CF ′ gives [F ′BE′] = [CBE′] and AD′‖BE′

gives [E′BD′] = [E′BA]. Hence, it follows that

[D′E′F ′] = [ABC] + [CBE′] + [E′BA] = 2[ABC],

as claimed.

Note: One can also establish the lemma using barycentric coordinates. Suppose points D, E, F
are dividing the sides BC, CA, AB in the ratios

BD : DC = x : 1− x, CE : EA = y : 1− y, AF : FB = z : 1− z.
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In terms of barycentric coordinates with respect to triangle ABC, we have

D = (1− x)B + xC, E = (1− y)C + yA, F = (1− z)A + zB.

Consequently, by definition, points D′, E′, F ′ satisfy

D′ = xB + (1− x)C, E′ = yC + (1− y)A, F ′ = zA + (1− z)B.

Now, without loss of generality, rescale so that [ABC] = 1. It can then be easily checked that

[DEF ] = [ABC]− ([AEF ] + [BFD] + [CDE])

= (1− ((1− y)z + (1− z)x + (1− x)y))

= (1− (x + y + z) + (xy + yz + zx))

= (1− (y(1− z) + z(1− x) + x(1− y)))

= [ABC]−
(
[AE′F ′] + [BF ′D′] + [CD′E′]

)
= [D′E′F ′].

This proves Lemma 1. The rest of the solution is as before.

USAJMO 4. (Proposed by Titu Andreescu)

Suppose (a, b, c) is such a triple. The prime (a− 2)(b− 2)(c− 2) + 12 also divides

a2 + b2 + c2 + abc− 2017− (a− 2)(b− 2)(c− 2)− 12

= (a + b + c)2 − 4(a + b + c) + 4− 2025

= (a + b + c− 2)2 − 452

= (a + b + c− 47)(a + b + c + 43).

We may assume without loss of generality that a ≤ b ≤ c. If a = b = 1, c + 10 must be a prime
that properly divides c2 + c− 2015, implying c + 10 divides 1925 = 52 · 7 · 11. So c + 10 = 11, and
we obtain the triple (1, 1, 1). However, this does not make a2 + b2 + c2 + abc− 2017 positive.

If a = 1 and b = 2, then (a − 2)(b − 2)(c − 2) + 12 = 12 is not prime. If a = 1 and b = 3, 14 − c
must be a prime. The allowable choices for c are 3, 7, 9, 11 and 12, but none of these work. If a = 1
and b = 4, the prime is even, so must be 2 and hence c = 7, but this doesn’t work either. If a = 1
and b ≥ 5 then c ≥ 5 also, so (a − 2)(b − 2)(c − 2) + 12 ≤ 12 − 9 = 3, and the only possibility is
b = c = 5, but this also doesn’t work. This rules out the cases with a = 1. Also a = 2 is impossible,
again because 12 is not prime.

Now let x = a − 2, y = b − 2, z = c − 2. We now know that 1 ≤ x ≤ y ≤ z and (x + 2) + (y +
2) + (z + 2) > 47. So x + y + z ≥ 41, and therefore z ≥ 14. The prime xyz + 12 cannot divide
(x+ 2) + (y + 2) + (z + 2)− 47 since xyz− 4 > x+ y + z− 41. Indeed, this latter inequality reduces
to x(yz − 1) > y + z − 37, which will follow if we can prove that yz − 1 > y + z − 37 (since x ≥ 1).
The last statement is equivalent to (y − 1)(z − 1) > −36, which is evidently true.
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Hence xyz + 12 divides (x + 2) + (y + 2) + (z + 2) + 43. They cannot be equal: x, y, z must all be
odd, otherwise xyz + 12 is not prime, but then (x + 2) + (y + 2) + (z + 2) + 43 is even and so not
equal to xyz + 12. Thus 2(xyz + 12) ≤ x+ y + z + 49, implying 2yz− 1 ≤ x(2yz− 1) ≤ y + z + 25.
It follows that (2y − 1)(2z − 1) ≤ 53. Earlier we proved that z ≥ 14; since z is odd, we must
in fact have z ≥ 15. Moreover, 2y − 1 ≤ 53/(2z − 1) ≤ 53/29 < 2. Therefore x = y = 1. It
follows that z + 12 is prime and 15 ≤ z ≤ 27; therefore z = 17, 19, or 25. Also, z + 12 divides
(x+ 2) + (y + 2) + (z + 2) + 43 = z + 51. However, this is false for z = 17, 19, or 25. Consequently,
the answer is negative; i.e., the requested triples (a, b, c) do not exist.

USAJMO 5. (Proposed by Ivan Borsenco)

A

B C

O

H

P

D M

N

Set ∠CAB = A, ∠ABC = B, and ∠BCA = C. Because H is the orthocenter, we have ∠HBC =
90◦ − C and ∠HCB = 90◦ −B. In triangle BHC, we have ∠BHC = 180◦ − ∠HBC − ∠HCB =
B + C. Because BHNC is cyclic, we have ∠BNC = ∠BHC = B + C. Extend segment AD
through D to meet the circumcircle (denoted by ω) of triangle ABC at P . It is clear that P is

the midpoint of minor arc B̄C (of ω) and O,M,P all lie on the perpendicular bisector of segment
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BC. In particular, BPCN is a kite with symmetry axis PN . Because ABPC is cyclic, we have
∠BPC = 180◦ − ∠BAC = B + C = ∠BNC. We can further conclude that BPCN is a rhombus,
implying that line BC is the perpendicular bisector of segment NP , and so DN = NP and
∠DPN = ∠DNP .

Set x = ∠HAP . Because AH ‖ OP , we have ∠DNP = ∠DPN = ∠HAP = x. Because O is the
circumcenter of triangle ABC, we have ∠AOC = 2B and ∠CAO = ∠ACO = 90◦−B. Because H is
the orthocenter of triangle ABC, we have ∠BAH = 90◦−B. Because ∠BAH = 90◦−B = ∠CAO,
∠BAC and ∠HAO share common angle bisector AD; that is,

∠DNP = ∠DPN = ∠HAP = ∠OAP = ∠OAD = x.

Consequently, we have

∠ADO = ∠ADN − ∠ODN = ∠DNP + ∠DPN − ∠ODN = 2x− ∠ODN

and
∠HAN = ∠HAO − ∠OAN = ∠HAP + ∠OAP − ∠OAN = 2x− ∠OAN.

It suffices to show that ∠ODN = ∠OAN , which is clearly true because ADNO is cyclic as
∠DNP = ∠OAD = x.

Alternate solution (by Titu Andreescu and Cosmin Pohoata). The key idea is to prove that
ADNO is cyclic. Once this is proven, the problem follows by noticing that ∠ADO = ∠ANO =
∠HAN , where the latter holds due to the fact that ON‖AH.

To prove the concyclicity, one can simply use Power of a Point. First, one has to construct P as
in the first solution, and notice that M is the midpoint of segment PN . This follows from the fact
that the reflection of H across line BC lies on the circumcircle Ω of 4ABC. This implies that the
circumcircle of 4BHC is the reflection of Ω across line BC, so line BC must indeed bisect PN by
symmetry. Next, let O′ denote the orthogonal projection of O on AD. Clearly OO′DM is cyclic,
so Power of a Point yields PM · PO = PD · PO′. But O′ is the midpoint of PA, so PO′ = PA/2.
Since PM = PN/2, this yields

PN · PO = PD · PA,

which by Power of a Point gives the concyclity of ADNO. This completes the proof.

USAJMO 6. (Proposed by Maria Monks Gillespie)

We may assume the points have been labeled as P1, P2, . . . , P2n in order, going counterclockwise
from (1, 0). Now, write out the color of each point in order, and replace each R with a +1 and each
B with a −1, to get a list p1, . . . , p2n of +1’s and −1’s. Consider the partial sums p1 + · · ·+ pk of
this sequence, and choose the index k such that the kth partial sum has as small a value as possible;
if several partial sums are tied for smallest, let k be the lowest index among them. Now, rotate the
circle clockwise so that points P1, . . . , Pk are moved past (1, 0); the resulting sequence of +1’s and
−1’s from the new orientation now has all nonnegative partial sums, and the total sum is 0.

Consider any red point in the rotated diagram and label it R1. The arc R1 → B1 does not
cross (1, 0), for otherwise the sequence ends with a string of +1’s and the partial sums before
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those +1’s would be negative. Furthermore, the sequence of entries from R1 to B1 looks like
+1,+1,+1, . . . ,+1,−1, and so removing R1 and B1 is equivalent to removing a consecutive pair
of a +1 and −1, so the partial sums remain all nonnegative. It follows that the next pairing also
doesn’t cross (1, 0), and so on, so no matter which way we pick the ordering of the red points in
the rotated circle, there are no counterclockwise arcs Ri → Bi containing (1, 0).

Finally, note that in any ordering of the red points, the blue points among P1, . . . , Pk are all paired
with red points, and those red points among P1, . . . , Pk are paired with blue points in this same
subsequence since there are no crossings in the rotated picture. Let m be the difference between
the number of blue and red points among P1, . . . , Pk. Then it follows that exactly m blue points in
P1, . . . , Pk were matched with red points from Pk+1, . . . , P2n. Therefore, when we rotate the circle
back to its original position, there are exactly m crossings, no matter which ordering we pick for
the red points. Since m is independent of the ordering, the proof is complete.

Problems and solutions c© 2017, Mathematical Association of America.
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§0 Problems
1. Prove that there exist infinitely many pairs of relatively prime positive integers

a, b > 1 for which a+ b divides ab + ba.

2. Show that the Diophantine equation(
3x3 + xy2

) (
x2y + 3y3

)
= (x− y)7

has infinitely many solutions in positive integers, and characterize all the solutions.

3. Let ABC be an equilateral triangle and P a point on its circumcircle. Set D =
PA ∩BC, E = PB ∩ CA, F = PC ∩AB. Prove that the area of triangle DEF is
twice the area of triangle ABC.

4. Are there any triples (a, b, c) of positive integers such that (a−2)(b−2)(c−2)+12 is
a prime number that properly divides the positive number a2+ b2+ c2+abc−2017?

5. Let O and H be the circumcenter and the orthocenter of an acute triangle ABC.
Points M and D lie on side BC such that BM = CM and ∠BAD = ∠CAD.
Ray MO intersects the circumcircle of triangle BHC in point N . Prove that
∠ADO = ∠HAN .

6. Let P1, P2, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1, other
than (1, 0). Each point is colored either red or blue, with exactly n red points and
n blue points. Let R1, R2, . . . , Rn be any ordering of the red points. Let B1 be
the nearest blue point to R1 traveling counterclockwise around the circle starting
from R1. Then let B2 be the nearest of the remaining blue points to R2 travelling
counterclockwise around the circle from R2, and so on, until we have labeled all of
the blue points B1, . . . , Bn. Show that the number of counterclockwise arcs of the
form Ri → Bi that contain the point (1, 0) is independent of the way we chose the
ordering R1, . . . , Rn of the red points.
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§1 Solutions to Day 1
§1.1 JMO 2017/1, proposed by Gregory Galperin
Available online at https://aops.com/community/p8108366.

Problem statement

Prove that there exist infinitely many pairs of relatively prime positive integers
a, b > 1 for which a+ b divides ab + ba.

One construction: let d ≡ 1 (mod 4), d > 1. Let x = dd+2d

d+2 . Then set

a =
x+ d

2
, b =

x− d

2
.

To see this works, first check that b is odd and a is even. Let d = a− b be odd. Then:

a+ b | ab + ba ⇐⇒ (−b)b + ba ≡ 0 (mod a+ b)

⇐⇒ ba−b ≡ 1 (mod a+ b)

⇐⇒ bd ≡ 1 (mod d+ 2b)

⇐⇒ (−2)d ≡ dd (mod d+ 2b)

⇐⇒ d+ 2b | dd + 2d.

So it would be enough that

d+ 2b =
dd + 2d

d+ 2
=⇒ b =

1

2

(
dd + 2d

d+ 2
− d

)
which is what we constructed. Also, since gcd(x, d) = 1 it follows gcd(a, b) = gcd(d, b) =
1.

Remark. Ryan Kim points out that in fact, (a, b) = (2n− 1, 2n+ 1) is always a solution.
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§1.2 JMO 2017/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p8108503.

Problem statement

Show that the Diophantine equation(
3x3 + xy2

) (
x2y + 3y3

)
= (x− y)7

has infinitely many solutions in positive integers, and characterize all the solutions.

Let x = da, y = db, where gcd(a, b) = 1 and a > b. The equation is equivalent to

(a− b)7 | ab
(
a2 + 3b2

) (
3a2 + b2

)
(?)

with the ratio of the two becoming d. Note that

• If a and b are both odd, then a2+3b2 ≡ 4 (mod 8). Similarly 3a2+b2 ≡ 4 (mod 8).
Hence 24 exactly divides right-hand side, contradiction.

• Now suppose a− b is odd. We have gcd(a− b, a) = gcd(a− b, b) = 1 by Euclid, but
also

gcd(a− b, a2 + 3b2) = gcd(a− b, 4b2) = 1

and similarly gcd(a−b, 3a2+b2) = 1. Thus a−b is coprime to each of a, b, a2+3b2,
3a2 + b2 and this forces a− b = 1.

Of course (?) holds whenever a − b = 1 as well, and thus (?) ⇐⇒ a − b = 1. This
describes all solutions.

Remark. For cosmetic reasons, one can reconstruct the curve explicitly by selecting b =
1
2 (n − 1), a = 1

2 (n + 1) with n > 1 an odd integer. Then d = ab(a2 + 3b2)(3a2 + b2) =
(n−1)(n+1)(n2+n+1)(n2−n+1)

4 = n6−1
4 , and hence the solution is

(x, y) = (da, db) =

(
(n+ 1)(n6 − 1)

8
,
(n− 1)(n6 − 1)

8

)
.

The smallest solutions are (364, 182), (11718, 7812), . . . .
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§1.3 JMO 2017/3, proposed by Titu Andreescu, Luis Gonzalez, Cosmin
Pohoata

Available online at https://aops.com/community/p8108450.

Problem statement

Let ABC be an equilateral triangle and P a point on its circumcircle. Set D =
PA ∩BC, E = PB ∩ CA, F = PC ∩AB. Prove that the area of triangle DEF is
twice the area of triangle ABC.

¶ First solution (barycentric) We invoke barycentric coordinates on ABC. Let P =
(u : v : w), with uv + vw + wu = 0 (circumcircle equation with a = b = c). Then
D = (0 : v : w), E = (u : 0 : w), F = (u : v : 0). Hence

[DEF ]

[ABC]
=

1

(u+ v)(v + w)(w + u)
det

0 v w
u 0 w
u v 0


=

2uvw

(u+ v)(v + w)(w + u)

=
2uvw

(u+ v + w)(uv + vw + wu)− uvw

=
2uvw

−uvw
= −2

as desired (areas signed).

¶ Second solution (“nice” lengths) WLOG ABPC is convex. Let x = AB = BC =
CA. By Ptolemy’s theorem and strong Ptolemy,

PA = PB + PC

PA2 = PB · PC +AB ·AC = PB · PC + x2

=⇒ x2 + PB2 + PB · PC + PC2.

Also, PD · PA = PB · PC and similarly since PA bisects ∠BPC (causing 4BPD ∼
4APC).

Now P is the Fermat point of 4DEF , since ∠DPF = ∠FPE = ∠EPD = 120◦. Thus

[DEF ] =

√
3

4

∑
cyc

PE · PF

=

√
3

4

∑
cyc

(
PA · PC

PB

)(
PA · PB

PC

)

=

√
3

4

∑
cyc

PA2

=

√
3

4

(
(PB + PC)2 + PB2 + PC2

)
=

√
3

4
· 2x2 = 2[ABC].
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§2 Solutions to Day 2
§2.1 JMO 2017/4, proposed by Titu Andreescu
Available online at https://aops.com/community/p8117256.

Problem statement

Are there any triples (a, b, c) of positive integers such that (a−2)(b−2)(c−2)+12 is
a prime number that properly divides the positive number a2+ b2+ c2+ abc− 2017?

No such (a, b, c).
Assume not. Let x = a− 2, y = b− 2, z = c− 2, hence x, y, z ≥ −1.

a2 + b2 + c2 + abc− 2017 = (x+ 2)2 + (y + 2)2 + (z + 2)2

+ (x+ 2)(y + 2)(z + 2)− 2017

= (x+ y + z + 4)2 + (xyz + 12)− 452.

Thus the divisibility relation becomes

p = xyz + 12 | (x+ y + z + 4)2 − 452 > 0

so either

p = xyz + 12 | x+ y + z − 41

p = xyz + 12 | x+ y + z + 49

Assume x ≥ y ≥ z, hence x ≥ 14 (since x + y + z ≥ 41). We now eliminate several
edge cases to get x, y, z 6= −1 and a little more:

Claim — We have x ≥ 17, y ≥ 5, z ≥ 1, and gcd(xyz, 6) = 1.

Proof. First, we check that neither y nor z is negative.

• If x > 0 and y = z = −1, then we want p = x+12 to divide either x− 43 or x+47.
We would have 0 ≡ x− 43 ≡ −55 (mod p) or 0 ≡ x+47 ≡ 35 (mod p), but p > 11
contradiction.

• If x, y > 0, and z = −1, then p = 12−xy > 0. However, this is clearly incompatible
with x ≥ 14.

Finally, obviously xyz 6= 0 (else p = 12). So p = xyz + 12 ≥ 14 · 12 + 12 = 26 or p ≥ 29.
Thus gcd(6, p) = 1 hence gcd(6, xyz) = 1.

We finally check that y = 1 is impossible, which forces y ≥ 5. If y = 1 and hence z = 1
then p = x + 12 should divide either x + 51 or x − 39. These give 39 ≡ 0 (mod p) or
25 ≡ 0 (mod p), but we are supposed to have p ≥ 29.

In that situation x+ y + z − 41 and x+ y + z + 49 are both even, so whichever one is
divisible by p is actually divisible by 2p. Now we deduce that:

x+ y + z + 49 ≥ 2p = 2xyz + 24 =⇒ 25 ≥ 2xyz − x− y − z.
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But x ≥ 17 and y ≥ 5 thus

2xyz − x− y − z = z(2xy − 1)− x− y

≥ 2xy − 1− x− y

> (x− 1)(y − 1) > 60

which is a contradiction. Having exhausted all the cases we conclude no solutions exist.
The condition that x+y+ z−41 > 0 (which comes from “properly divides”) cannot be

dropped. Examples of solutions in which x+ y + z − 41 = 0 include (x, y, z) = (5, 5, 31)
and (x, y, z) = (1, 11, 29).

7

http://web.evanchen.cc


JMO 2017 Solution Notes web.evanchen.cc, updated 2 June 2023

§2.2 JMO 2017/5, proposed by Ivan Borsenco
Available online at https://aops.com/community/p8117237.

Problem statement

Let O and H be the circumcenter and the orthocenter of an acute triangle ABC.
Points M and D lie on side BC such that BM = CM and ∠BAD = ∠CAD.
Ray MO intersects the circumcircle of triangle BHC in point N . Prove that
∠ADO = ∠HAN .

It’s known that N is the reflection of the arc midpoint P across M .
The main claim is that ADNO is cyclic. To see this let P and Q be the arc midpoints

of B̂C, so that ADMQ is cyclic (as ]QAD = ]QMD = 90◦) . Then PN · PO =
PM · PQ = PD · PA as advertised.

A

B C

P

Q

D

O

M

N

To finish, note that ]HAN = ]ONA = ]ODA.

Remark. The orthocenter H is superficial and can be deleted basically immediately. One
can reverse-engineer the fact that ADNO is cyclic from the truth of the problem statement.

Remark. One can also show ADNO concyclic by just computing ]DAO = ]PAO and
]DNO = ]DPN = ]APQ in terms of the angles of the triangle, or even more directly
just because

]DNO = ]DNP = ]NPD = ]OPD = ]ONA = ]HAN.
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§2.3 JMO 2017/6, proposed by Maria Monks
Available online at https://aops.com/community/p8117190.

Problem statement

Let P1, P2, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1, other than
(1, 0). Each point is colored either red or blue, with exactly n red points and n blue
points. Let R1, R2, . . . , Rn be any ordering of the red points. Let B1 be the nearest
blue point to R1 traveling counterclockwise around the circle starting from R1. Then
let B2 be the nearest of the remaining blue points to R2 travelling counterclockwise
around the circle from R2, and so on, until we have labeled all of the blue points B1,
. . . , Bn. Show that the number of counterclockwise arcs of the form Ri → Bi that
contain the point (1, 0) is independent of the way we chose the ordering R1, . . . , Rn

of the red points.

We present two solutions, one based on swapping and one based on an invariant.

¶ First “local” solution by swapping two points Let 1 ≤ i < n be any index and
consider the two red points Ri and Ri+1. There are two blue points Bi and Bi+1 associated
with them.

Claim — If we swap the locations of points Ri and Ri+1 then the new arcs Ri → Bi

and Ri+1 → Bi+1 will cover the same points.

Proof. Delete all the points R1, . . . , Ri−1 and B1, . . . , Bi−1; instead focus on the positions
of Ri and Ri+1.

The two blue points can then be located in three possible ways: either 0, 1, or 2 of
them lie on the arc Ri → Ri+1. For each of the cases below, we illustrate on the left the
locations of Bi and Bi+1 and the corresponding arcs in green; then on the right we show
the modified picture where Ri and Ri+1 have swapped. (Note that by hypothesis there
are no other blue points in the green arcs).

9
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RiRi+1

BiBi+1

Ri+1Ri

BiBi+1

RiRi+1

Bi

Bi+1

Ri+1Ri

Bi

Bi+1

RiRi+1

Bi Bi+1

Ri+1Ri

Bi Bi+1

Case 1

Case 2

Case 3

Observe that in all cases, the number of arcs covering any given point on the circumference
is not changed. Consequently, this proves the claim.

Finally, it is enough to recall that any permutation of the red points can be achieved
by swapping consecutive points (put another way: (i i+ 1) generates the permutation
group Sn). This solves the problem.

Remark. This proof does not work if one tries to swap Ri and Rj if |i− j| 6= 1. For example
if we swapped Ri and Ri+2 then there are some issues caused by the possible presence of
the blue point Bi+1 in the green arc Ri+2 → Bi+2.

¶ Second longer solution using an invariant Visually, if we draw all the segments
Ri → Bi then we obtain a set of n chords. Say a chord is inverted if satisfies the problem
condition, and stable otherwise. The problem contends that the number of stable/inverted
chords depends only on the layout of the points and not on the choice of chords.

(1, 0)

−1

0−1

0

+1

0 −1

0

In fact we’ll describe the number of inverted chords explicitly. Starting from (1, 0) we
keep a running tally of R−B; in other words we start the counter at 0 and decrement

10
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by 1 at each blue point and increment by 1 at each red point. Let x ≤ 0 be the lowest
number ever recorded. Then:

Claim — The number of inverted chords is −x (and hence independent of the
choice of chords).

This is by induction on n. I think the easiest thing is to delete chord R1B1; note that
the arc cut out by this chord contains no blue points. So if the chord was stable certainly
no change to x. On the other hand, if the chord is inverted, then in particular the last
point before (1, 0) was red, and so x < 0. In this situation one sees that deleting the
chord changes x to x+ 1, as desired.

11
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9th United States of America Junior Mathematical Olympiad

Day 1. 12:30 PM – 5:00 PM EDT

April 18, 2018

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAJMO 1. For each positive integer n, find the number of n-digit positive integers that satisfy
both of the following conditions:

• no two consecutive digits are equal, and

• the last digit is a prime.

USAJMO 2. Let a, b, c be positive real numbers such that a + b + c = 4 3
√
abc. Prove that

2(ab + bc + ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

USAJMO 3. (∗) Let ABCD be a quadrilateral inscribed in circle ω with AC ⊥ BD. Let E and
F be the reflections of D over lines BA and BC, respectively, and let P be the intersection of lines
BD and EF . Suppose that the circumcircle of 4EPD meets ω at D and Q, and the circumcircle
of 4FPD meets ω at D and R. Show that EQ = FR.

c© 2018, Mathematical Association of America.



9th United States of America Junior Mathematical Olympiad

Day 2. 12:30 PM – 5:00 PM EDT

April 19, 2018

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAJMO 4. Triangle ABC is inscribed in a circle of radius 2 with ∠ABC ≥ 90◦, and x is a real
number satisfying the equation x4 + ax3 + bx2 + cx+ 1 = 0, where a = BC, b = CA, c = AB. Find
all possible values of x.

USAJMO 5. Let p be a prime, and let a1, a2, . . . , ap be integers. Show that there exists an integer
k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

USAJMO 6. Karl starts with n cards labeled 1, 2, 3, . . . , n lined up in a random order on his
desk. He calls a pair (a, b) of these cards swapped if a > b and the card labeled a is to the left of
the card labeled b. For instance, in the sequence of cards 3, 1, 4, 2, there are three swapped pairs of
cards, (3, 1), (3, 2), and (4, 2).

He picks up the card labeled 1 and inserts it back into the sequence in the opposite position: if the
card labeled 1 had i cards to its left, then it now has i cards to its right. He then picks up the card
labeled 2 and reinserts it in the same manner, and so on until he has picked up and put back each
of the cards 1, 2, . . . , n exactly once in that order. (For example, the process starting at 3, 1, 4, 2
would be 3, 1, 4, 2→ 3, 4, 1, 2→ 2, 3, 4, 1→ 2, 4, 3, 1→ 2, 3, 4, 1.)

Show that, no matter what lineup of cards Karl started with, his final lineup has the same number
of swapped pairs as the starting lineup.

c© 2018, Mathematical Association of America.
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USAJMO 1.

First solution. Let us call a positive integer great if it has no consecutive digits equal and its last
digit is prime. Let p(n) denote the number of great n-digit numbers, so the problem is asking us

to compute p(n). We claim that p(n) = 2 · 9
n−(−1)n

5 .

For n ≥ 2, we say an n-digit number is good if it ends in a prime digit and has no two consecutive
digits equal among its first n−1 digits. Since the first n−1 digits and the last digit may be treated
independently, the number of good n-digit numbers is 4 · 9n−1.
Clearly, any great number is good. On the other hand, a good n-digit number fails to be great
if its last two digits are equal. By disregarding the last digit, such good-but-not-great numbers
are in bijection with great (n − 1)-digit numbers. Thus, for n ≥ 2, we have the equation p(n) =
4 · 9n−1 − p(n− 1). (If n = 1, we have p(1) = 4 · 90 = 4.) Applying this recursively, we find that

p(n) = 4 · (9n−1 − 9n−2 + 9n−3 − · · ·+ (−1)n−2 · 9 + (−1)n−1) = 4 · 9n − (−1)n

10
,

as claimed.

Second solution. Define great numbers and p(n) as above. For n ≥ 3, we will count the number
of great n-digit numbers by considering two cases:

• If the second digit is 0, then note that the third digit must be non-zero, so the last n − 2
digits form a great number. Meanwhile, the first digit can be any non-zero digit. Thus, there
are 9 · p(n− 2) great n-digit numbers of this form.

• If the second digit is not 0, then the last n − 1 digits form a great number, while there are
8 possibilities for the first digit (it can be any non-zero digit not equal to the second digit).
This gives 8 · p(n− 1) great n-digit numbers of this form.

We conclude that p(n) = 8p(n − 1) + 9p(n − 2) for all n ≥ 3. This is a second order recurrence,
which we may solve by factoring its characteristic polynomial t2 − 8t − 9 = (t − 9)(t + 1). The
factorization implies that p(n) takes the form p(n) = A · 9n +B · (−1)n for some constants A and
B. We can solve the system

9A−B = p(1) = 4

81A+B = p(2) = 32,

which yields A = 2
5 and B = −2

5 , so that

p(n) =
2 (9n − (−1)n)

5
.

USAJMO 2.
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First solution. Assume without loss of generality that c = min(a, b, c). By the AM-GM inequality
and the given condition, we have

4c(a+ b+ c) + 4ab ≥ 2
√

16 · abc(a+ b+ c)

= 2

√
16

(
a+ b+ c

4

)3

(a+ b+ c)

= (a+ b+ c)2.

Subtracting 2(ab+ bc+ ca) from both sides, this gives

2(ab+ bc+ ca) + 4c2 ≥ a2 + b2 + c2,

as desired.

Remark. The equality in the AM-GM step occurs if and only if c(a + b + c) = ab. Solving for
a+ b+ c and substituting into the condition a+ b+ c = 4 3

√
abc, this implies 8c2 = ab. Substituting

this back into the equation c(a+ b+ c) = ab, we conclude that

c(a+ b+ c) = 8c2 =⇒ a+ b = 7c.

We then have
a− b = ±

√
(a+ b)2 − 4ab = ±

√
49c2 − 32c2 = ±

√
17c.

It follows that {2a, 2b} = {(7−
√

17)c, (7 +
√

17)c}. Hence, equality holds if and only if (a, b, c) is
a permutation of (

(7−
√

17)r, (7 +
√

17)r, 2r
)

for some positive real number r.

Second solution. Suppose, as above, that c = min(a, b, c), and write A = a/c, B = b/c, and
D = A+B. The given condition becomes A+B+ 1 = 4 3

√
AB, or equivalently, AB = (D+ 1)3/64.

In terms of A and B, the problem asks us to prove that

2(AB +A+B) + 4 ≥ A2 +B2 + 1,

which can be rearranged as

2(A+B) + 3− (A+B)2 + 4AB ≥ 0.

After substituting in D, this inequality becomes

2D + 3−D2 + (D + 1)3/16 ≥ 0.

Since the left-hand side factors as (D + 1)(D − 7)2/16, the inequality always holds.

Third solution: Assuming that c = min(a, b, c) and by adding 2(ab+ bc+ ca) to both sides, our
inequality becomes

4c(a+ b+ c) + 4ab ≥ (a+ b+ c)2.



2018 USAJMO – Solutions 3

Since both the given condition and the desired claim are homogeneous, we may assume without
loss of generality that a+ b+ c = 8, so our task is to prove that if ab = 8/c, then 32c+ 4ab ≥ 64.
This clearly holds, since for any positive real number c we have 32

(
c+ 1

c

)
≥ 64.

USAJMO 3.

First solution. Let X and Y be the feet of the perpendiculars from D to lines BA and BC,
respectively, and let Z be the intersection of lines BD and AC. By Simson’s theorem, the points
X, Y , Z are collinear. A homothety with ratio 2 about D maps X,Y, Z to E,F, P ′, respectively,
where P ′ is the orthocenter of 4ABC. Hence, P ′ lies on line EF as well as line BD, so P ′ = P .

B

A C

D

X

Y

Z

E

F

P

Q

R

Suppose now we extend ray
−−→
CP to meet ω again at Q′. Then line BA is the perpendicular bisector

of both PQ′ and DE; consequently, PQ′ED is an isosceles trapezoid. In particular, it is cyclic,

and so Q′ = Q. In the same way, R is the second intersection of ray
−→
AP with ω.

Now, because of the two isosceles trapezoids we have found, we conclude

EQ = PD = FR,

as desired.

Second solution. Here is a solution which does not identify the point P at all. We know that
BE = BD = BF , by construction.
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B

A C

D

E

F

P

Q′

R′

Claim 1. The points B, Q, E are collinear. Similarly the points B, R, F are collinear.

Proof. Work with directed angles modulo 180◦. Let Q′ be the intersection of line BE with circle
ω (distinct from B). Let α = ∠DEB = ∠BDE and β = ∠BFD = ∠FDB.

We know that BE = BD = BF , so B is the circumcenter of 4DEF . Thus, ∠DEP = ∠DEF =
90◦ − β. Then

∠DPE = ∠DEP + ∠PDE = (90◦ − β) + α

= α− β + 90◦;

∠DQ′B = ∠DCB = ∠DCA+ ∠ACB

= ∠DBA− (90◦ − ∠DBC) = −(90◦ − α)− (90◦ − (90◦ − β))

= α− β + 90◦.

Thus Q′ lies on the circumcircle of 4DPE, so Q′ = Q. Similarly for R.

Now, by power of a point we have BQ · BE = BP · BD = BR · BF , so BQ = BP = BR. Hence
EQ = DP = FR.

USAJMO 4.

The given equation can be rewritten as

(
x2 +

ax

2

)2
+

(
b− a2 + c2

4

)
x2 +

(cx
2

+ 1
)2

= 0.
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Noting that we must have x 6= 0, the equation holds if and only if

b =
a2 + c2

4
and x = −a

2
= −2

c
.

The assumption ∠ABC ≥ 90◦ and the fact that the circle’s diameter is 4 imply a2 + c2 ≤ b2 ≤ 4b;
but since we saw that b = (a2 + c2)/4, both of these inequalities are equalities. We conclude that
∠ABC = 90◦, b = 4, a2 + c2 = 16, and ac = 4. These last two equations imply (a + c)2 =
16 + 2 · 4 = 24 and (a− c)2 = 16− 2 · 4 = 8. Since a, c > 0, we have a+ c = 2

√
6 and a− c = ±2

√
2.

Hence the only possible values of x = −a/2 are −1
2(
√

6 +
√

2) or −1
2(
√

6−
√

2). Conversely, these

are indeed possible, by having a right triangle with sides a =
√

6 +
√

2, b = 4, c =
√

6 −
√

2 or
a =
√

6−
√

2, b = 4, c =
√

6 +
√

2, respectively.

Remark. One can also show that the acute angles of the triangle are 15 degrees and 75 degrees.

USAJMO 5.

The statement is trivial for p = 2, so assume p = 2q + 1 is odd. Create a p × p table of numbers,
as follows:

a1 + 1 · 0 a2 + 2 · 0 · · · ap + p · 0
a1 + 1 · 1 a2 + 2 · 1 · · · ap + p · 1

...
...

. . .
...

a1 + 1 · (p− 1) a2 + 2 · (p− 1) · · · ap + p · (p− 1)

Interpret all the numbers above modulo p. Examine two different columns, say columns i and j.
We claim they agree (modulo p) in exactly one row. Indeed, ai + ik ≡ aj + jk (mod p) holds if and
only if (i − j)k ≡ aj − ai (mod p). Since p is prime and i 6≡ j (mod p), this condition holds for a
unique value of k (namely, k ≡ (aj − ai)(i− j)−1 (mod p)).

Thus, there are
(
p
2

)
= p(p−1)

2 = pq pairs of integers that are congruent modulo p and lie in the same
row of the table. Since there are only p rows, some row, say {an + nk}n, must contain at most q
such pairs.

We claim that this k satisfies our requirement. Indeed, if we read the p entries in this row one by
one, each entry either is distinct from all the previous ones, or is congruent to at least one previous
entry and thereby completes a pair. Since the latter case happens at most q times, there must be
at least p− q = (p+ 1)/2 distinct entries (modulo p), completing the proof.

USAJMO 6.

First solution. Consider the following alternative procedure: When Karl removes the card labeled
1, before he inserts it, he adds n to its label to make it a card labeled n + 1. Then he reinserts
the card as in the original procedure. Now, the new arrangement of cards has the same number of
swapped pairs as before, since the 1 used to be part of i swapped pairs using the cards to its left,
and now the n+ 1 is part of i swapped pairs using the cards to its right.

By the same argument, if he next removes the card labeled 2 and adds n to its label before
reinserting it in its new position, and so on, he ends up with a permutation of n+ 1, n+ 2, . . . , 2n
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that has the same number of swapped pairs as the one he started with. But this permutation clearly
corresponds to the ending permutation from Karl’s original procedure upon subtracting n from all
the labels, and this subtraction doesn’t change the number of swapped pairs. This completes the
proof.

Second solution. At each moment during the procedure, define the “charge” on a card to be the
net (positive or negative) number of steps it would take to the left if it were to be moved next. The
charge depends only on the card’s location. For example, if there are 4 cards, their charges from
left to right are −3,−1,+1,+3.

At each stage, let X be the number of swapped pairs, and let Y be the sum of the charges on all
of the cards that have not yet moved. We claim that each move leaves X + Y unchanged. To see
this, suppose that card i is being moved c steps to the left. (We take c to be positive; the case
of c negative is similar.) When card i passes a lower-numbered card, this creates a swapped pair,
increasing X by +1. When card i passes a higher-numbered card, it removes a swapped pair, thus
changing X by −1; but it also moves the higher-numbered card one step to the right, increasing its
charge (which is included in Y ) by +2. Thus the net increase in X + Y is again +1. So the total
effect of passing c cards is to increase X + Y by +c. But also, after we move card i, its own charge
(which was +c) is no longer included in Y . So on balance, X + Y is unchanged.

So X + Y is unchanged by the entire process. But Y is zero at the beginning of the process (all
the charges sum to zero, by symmetry), and also at the end (when Y is just the empty sum). So
X, the number of swapped pairs, is also the same at the beginning as at the end. This is what we
needed to prove.
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§0 Problems
1. For each positive integer n, find the number of n-digit positive integers for which

no two consecutive digits are equal, and the last digit is a prime.

2. Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

3. Let ABCD be a quadrilateral inscribed in circle ω with AC ⊥ BD. Let E and F
be the reflections of D over BA and BC, respectively, and let P be the intersection
of BD and EF . Suppose that the circumcircles of EPD and FPD meet ω at Q
and R different from D. Show that EQ = FR.

4. Find all real numbers x for which there exists a triangle ABC with circumradius 2,
such that ∠ABC ≥ 90◦, and

x4 + ax3 + bx2 + cx+ 1 = 0

where a = BC, b = CA, c = AB.

5. Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer
k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

6. Karl starts with n cards labeled 1, 2, . . . n lined up in random order on his desk. He
calls a pair (a, b) of cards swapped if a > b and the card labeled a is to the left of
the card labeled b.
Karl picks up the card labeled 1 and inserts it back into the sequence in the opposite
position: if the card labeled 1 had i cards to its left, then it now has i cards to its
right. He then picks up the card labeled 2 and reinserts it in the same manner, and
so on, until he has picked up and put back each of the cards 1, . . . , n exactly once
in that order.
For example, if n = 4, then one example of a process is

3142 −→ 3412 −→ 2341 −→ 2431 −→ 2341

which has three swapped pairs both before and after.
Show that, no matter what lineup of cards Karl started with, his final lineup has
the same number of swapped pairs as the starting lineup.

2
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§1 Solutions to Day 1
§1.1 JMO 2018/1, proposed by Zachary Franco, Zuming Feng
Available online at https://aops.com/community/p10226138.

Problem statement

For each positive integer n, find the number of n-digit positive integers for which no
two consecutive digits are equal, and the last digit is a prime.

Almost trivial. Let an be the desired answer. We have

an + an−1 = 4 · 9n−1

for all n, by padding the (n− 1) digit numbers with a leading zero.
Since a0 = 0, a1 = 4, solving the recursion gives

an =
2

5
(9n − (−1)n) .

The end.

Remark. For concreteness, the first few terms are 0, 4, 32, 292, . . . .

3
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§1.2 JMO 2018/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p10226140.

Problem statement

Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

WLOG let c = min(a, b, c) = 1 by scaling. The given inequality becomes equivalent to

4ab+ 2a+ 2b+ 3 ≥ (a+ b)2 ∀a+ b = 4(ab)1/3 − 1.

Now, let t = (ab)1/3 and eliminate a+ b using the condition, to get

4t3 + 2(4t− 1) + 3 ≥ (4t− 1)2 ⇐⇒ 0 ≤ 4t3 − 16t2 + 16t = 4t(t− 2)2

which solves the problem.
Equality occurs only if t = 2, meaning ab = 8 and a+ b = 7, which gives

{a, b} =

{
7±

√
17

2

}

with the assumption c = 1. Scaling gives the curve of equality cases.
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§1.3 JMO 2018/3, proposed by Ray Li
Available online at https://aops.com/community/p10226149.

Problem statement

Let ABCD be a quadrilateral inscribed in circle ω with AC ⊥ BD. Let E and F be
the reflections of D over BA and BC, respectively, and let P be the intersection of
BD and EF . Suppose that the circumcircles of EPD and FPD meet ω at Q and
R different from D. Show that EQ = FR.

Most of this problem is about realizing where the points P , Q, R are.

¶ First solution (Evan Chen) Let X, Y , be the feet from D to BA, BC, and let
Z = BD ∩AC. By Simson theorem, the points X, Y , Z are collinear. Consequently, the
point P is the reflection of D over Z, and so we conclude P is the orthocenter of 4ABC.

B

A C

D

X

Y

Z

E

F

P

Q

R

Suppose now we extend ray CP to meet ω again at Q′. Then BA is the perpendicular
bisector of both PQ′ and DE; consequently, PQ′ED is an isosceles trapezoid. In
particular, it is cyclic, and so Q′ = Q. In the same way R is the second intersection of
ray AP with ω.

Now, because of the two isosceles trapezoids we have found, we conclude

EQ = PD = FR

as desired.

Remark. Alternatively, after identifying P , one can note BQE and BRF are collinear.
Since BE = BD = BF , upon noticing BQ = BP = BR we are also done.

¶ Second solution (Danielle Wang) Here is a solution which does not identify the
point P at all. We know that BE = BD = BF , by construction.
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B

A C

D

E

F

P

Q′

R′

Claim — The points B, Q, E are collinear. Similarly the points B, R, F are
collinear.

Proof. Work directed modulo 180◦. Let Q′ be the intersection of BE with (ABCD). Let
α = ]DEB = ]BDE and β = ]BFD = ]FDB.

Observe that BE = BD = BF , so B is the circumcenter of 4DEF . Thus, ]DEP =
]DEF = 90◦ − β. Then

]DPE = ]DEP + ]PDE = (90◦ − β) + α

= α− β + 90◦

]DQ′B = ]DCB = ]DCA+ ]ACB

= ]DBA− (90◦ − ]DBC) = −(90◦ − α)− (90◦ − (90◦ − β))

= α− β + 90◦.

Thus Q′ lies on the desired circle, so Q′ = Q.

Now, by power of a point we have BQ·BE = BP ·BD = BR ·BF , so BQ = BP = BR.
Hence EQ = PD = FR.
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§2 Solutions to Day 2
§2.1 JMO 2018/4, proposed by Titu Andreescu
Available online at https://aops.com/community/p10232384.

Problem statement

Find all real numbers x for which there exists a triangle ABC with circumradius 2,
such that ∠ABC ≥ 90◦, and

x4 + ax3 + bx2 + cx+ 1 = 0

where a = BC, b = CA, c = AB.

The answer is x = −1
2(
√
6±

√
2).

We prove this the only possible answer. Evidently x < 0. Now, note that

a2 + c2 ≤ b2 ≤ 4b

since b ≤ 4 (the diameter of its circumcircle). Then,

0 = x4 + ax3 + bx2 + cx+ 1

= x2

[(
x+

1

2
a

)2

+

(
1

x
+

1

2
c

)2

+

(
b− a2 + c2

4

)]
≥ 0 + 0 + 0 = 0.

In order for equality to hold, we must have x = −1
2a, 1/x = −1

2c, and a2 + c2 = b2 = 4b.
This gives us b = 4, ac = 4, a2 + c2 = 16. Solving for a, c > 0 implies

{a, c} =
{√

6±
√
2
}
.

This gives the x values claimed above; by taking a, b, c as deduced here, we find they
work too.

Remark. Note that by perturbing 4ABC slightly, we see a priori that the set of possible
x should consist of unions of intervals (possibly trivial). So it makes sense to try inequalities
no matter what.
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§2.2 JMO 2018/5, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p10232389.

Problem statement

Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer k
such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

For each k = 0, . . . , p− 1 let Gk be the graph on {1, . . . , p} where we join {i, j} if and
only if

ai + ik ≡ aj + jk (mod p) ⇐⇒ k ≡ −ai − aj
i− j

(mod p).

So we want a graph Gk with at least 1
2p connected components.

However, each {i, j} appears in exactly one graph Gk, so some graph has at most
1
p

(
p
2

)
= 1

2(p − 1) edges (by “pigeonhole”). This graph has at least 1
2(p + 1) connected

components, as desired.

Remark. Here is an example for p = 5 showing equality can occur:
0 0 3 4 3
0 1 0 2 2
0 2 2 0 1
0 3 4 3 0
0 4 1 1 4

 .

Ankan Bhattacharya points out more generally that ai = i2 is sharp in general.
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§2.3 JMO 2018/6, proposed by Maria Monks Gillespie
Available online at https://aops.com/community/p10232393.

Problem statement

Karl starts with n cards labeled 1, 2, . . . n lined up in random order on his desk. He
calls a pair (a, b) of cards swapped if a > b and the card labeled a is to the left of
the card labeled b.

Karl picks up the card labeled 1 and inserts it back into the sequence in the
opposite position: if the card labeled 1 had i cards to its left, then it now has i cards
to its right. He then picks up the card labeled 2 and reinserts it in the same manner,
and so on, until he has picked up and put back each of the cards 1, . . . , n exactly
once in that order.

For example, if n = 4, then one example of a process is

3142 −→ 3412 −→ 2341 −→ 2431 −→ 2341

which has three swapped pairs both before and after.
Show that, no matter what lineup of cards Karl started with, his final lineup has

the same number of swapped pairs as the starting lineup.

The official solution is really tricky. Call the process P .
We define a new process P ′ where, when re-inserting card i, we additionally change its

label from i to n+ i. An example of P ′ also starting with 3142 is:

3142 −→ 3452 −→ 6345 −→ 6475 −→ 6785.

Note that now, each step of P ′ preserves the number of inversions. Moreover, the final
configuration of P ′ is the same as the final configuration of P with all cards incremented
by n, and of course thus has the same number of inversions. Boom.
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are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.
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§0 Problems
1. There are a+ b bowls arranged in a row, numbered 1 through a+ b, where a and

b are given positive integers. Initially, each of the first a bowls contains an apple,
and each of the last b bowls contains a pear. A legal move consists of moving an
apple from bowl i to bowl i + 1 and a pear from bowl j to bowl j − 1, provided
that the difference i− j is even. We permit multiple fruits in the same bowl at the
same time. The goal is to end up with the first b bowls each containing a pear and
the last a bowls each containing an apple. Show that this is possible if and only if
the product ab is even.

2. For which pairs of integers (a, b) do there exist functions f : Z → Z and g : Z → Z
obeying

f(g(x)) = x+ a and g(f(x)) = x+ b

for all integers x?

3. Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC.
Show that line PE bisects CD.

4. Let ABC be a triangle with ∠B > 90◦ and let E and F be the feet of the altitudes
from B and C. Can line EF be tangent to the A-excircle?

5. Let n be a nonnegative integer. Determine the number of ways to choose sets
Sij ⊆ {1, 2, . . . , 2n}, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such
that

• |Sij | = i+ j, and
• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

6. Let m and n be relatively prime positive integers. The numbers m
n and n

m are
written on a blackboard. At any point, Evan may pick two of the numbers x and
y written on the board and write either their arithmetic mean 1

2(x + y) or their
harmonic mean 2xy

x+y . For which (m,n) can Evan write 1 on the board in finitely
many steps?
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§1 Solutions to Day 1
§1.1 JMO 2019/1, proposed by Jim Propp
Available online at https://aops.com/community/p12189456.

Problem statement

There are a+ b bowls arranged in a row, numbered 1 through a+ b, where a and
b are given positive integers. Initially, each of the first a bowls contains an apple,
and each of the last b bowls contains a pear. A legal move consists of moving an
apple from bowl i to bowl i+ 1 and a pear from bowl j to bowl j − 1, provided that
the difference i− j is even. We permit multiple fruits in the same bowl at the same
time. The goal is to end up with the first b bowls each containing a pear and the
last a bowls each containing an apple. Show that this is possible if and only if the
product ab is even.

First we show that if ab is even then the goal is possible. We prove the result by induction
on a+ b.

• If min(a, b) = 0 there is nothing to check.

• If min(a, b) = 1, say a = 1, then b is even, and we can swap the (only) leftmost
apple with the rightmost pear by working only with those fruits.

• Now assume min(a, b) ≥ 2 and a+ b is odd. Then we can swap the leftmost apple
with rightmost pear by working only with those fruits, reducing to the situation of
(a− 1, b− 1) which is possible by induction (at least one of them is even).

• Finally assume min(a, b) ≥ 2 and a+ b is even (i.e. a and b are both even). Then
we can swap the apple in position 1 with the pear in position a+ b− 1, and the
apple in position 2 with the pear in position a+ b. This reduces to the situation of
(a− 2, b− 2) which is also possible by induction.

Now we show that the result is impossible if ab is odd. Define

X = number apples in odd-numbered bowls
Y = number pears in odd-numbered bowls.

Note that X − Y does not change under this operation. However, if a and b are odd,
then we initially have X = 1

2(a + 1) and Y = 1
2(b − 1), while the target position has

X = 1
2(a− 1) and Y = 1

2(b+ 1). So when ab is odd this is not possible.

Remark. Another proof that ab must be even is as follows.
First, note that apples only move right and pears only move left, a successful operation

must take exactly ab moves. So it is enough to prove that the number of moves made must
be even.

However, the number of fruits in odd-numbered bowls either increases by +2 or −2 in
each move (according to whether i and j are both even or both odd), and since it ends up
being the same at the end, the number of moves must be even.

Alternatively, as pointed out in the official solutions, one can consider the sums of squares
of positions of fruits. The quantity changes by[

(i+ 1)2 + (j − 1)2
]
− (i2 + j2) = 2(i− j) + 2 ≡ 2 (mod 4)
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at each step, and eventually the sums of squares returns to zero, as needed.
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§1.2 JMO 2019/2, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12189493.

Problem statement

For which pairs of integers (a, b) do there exist functions f : Z → Z and g : Z → Z
obeying

f(g(x)) = x+ a and g(f(x)) = x+ b

for all integers x?

The answer is if a = b or a = −b. In the former case, one can take f(x) ≡ x + a and
g(x) ≡ x. In the latter case, one can take f(x) ≡ −x+ a and g(x) = −x.

Now we prove these are the only possibilities. First:

Claim — The functions f and g are bijections.

Proof. Surjectivity is obvious. To see injective, note that if f(u) = f(v) then g(f(u)) =
g(f(v)) =⇒ u+ b = v + b =⇒ u = v, and similarly for g.

Note also that for any x, we have

f(x+ b) = f(g(f(x))) = f(x) + a

g(x+ a) = g(f(g(x))) = g(x) + b.

If either a is zero or b is zero, we immediately get the other is zero, and hence done. So
assume ab 6= 0.

If |b| > |a|, then two of

{f(0), f(1), . . . , f(b− 1)} (mod |a|)

coincide, which together with repeatedly applying the first equation above will then give
a contradiction to injectivity of f . Similarly, if |a| > |b| swapping the roles of f and g
(and a and b) will give a contradiction to injectivity of g. This completes the proof.

Remark. Here is a way to visualize the argument, so one can see pictorially what is going
on. We draw two parallel number lines indexed by Z. Starting from 0, we draw red arrow
from 0 to f(0), and then a blue arrow from f(0) to g(f(0)) = b, and then a red arrow from
b to g(b) = f(0) + a, and so on. These arrows can be extended both directions, leading to
an infinite “squaretooth” wave. The following is a picture of an example with a, b > 0.

Z

Z

0 b 2b

f(0)− a f(0) f(0) + a f(0) + 2a

f

f f f
g

g g

g

The problem is essentially trying to decompose our two copies of Z into multiple squaretooth
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waves. We expect for this to be possible, the “width” of the waves on the top and bottom
must be the same — i.e., that |a| = |b|.

Remark. This also suggests how to classify all functions f and g satisfying the condition.
If a = b = 0 then any pair of functions f and g which are inverses to each other is okay.
There are thus uncountably many pairs of functions (f, g) here.

If a = b > 0, then one sets f(0), f(1), . . . , f(a − 1) as any values which are distinct
modulo b, at which point f and g are uniquely determined. An example for a = b = 3 is

f(x) =


x+ 42 x ≡ 0 (mod 3)

x+ 13 x ≡ 1 (mod 3)

x− 37 x ≡ 2 (mod 3),

g(x) =


x− 39 x ≡ 0 (mod 3)

x+ 40 x ≡ 1 (mod 3)

x− 10 x ≡ 2 (mod 3).

The analysis for a = b < 0 and a = −b are similar, but we don’t include the details here.
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§1.3 JMO 2019/3, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12189455.

Problem statement

Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC.
Show that line PE bisects CD.

Here are three solutions. The first two are similar although the first one makes use of
symmedians. The last solution by inversion is more advanced.

¶ First solution using symmedians We define point P to obey

AP

BP
=

AD2

BC2
=

AE2

BE2

so that PE is the E-symmedian of 4EAB, therefore the E-median of 4ECD.
Now, note that

AD2 = AP ·AB and BC2 = BP ·BA.

This implies 4APD ∼ 4ADB and 4BPC ∼ 4BCA. Thus

]DPA = ]ADB = ]ACB = ]BCP

and so P satisfies the condition as in the statement (and is the unique point to do so), as
needed.

¶ Second solution using only angle chasing (by proposer) We again re-define P to
obey AD2 = AP ·AB and BC2 = BP ·BA. As before, this gives 4APD ∼ 4ABD and
4BPC ∼ 4BDP and so we let

θ := ]DPA = ]ADB = ]ACB = ]BCP.

Our goal is to now show PE bisects CD.
Let K = AC ∩ PD and L = AD ∩ PC. Since ]KPA = θ = ]ACB, quadrilateral

BPKC is cyclic. Similarly, so is APLD.

7

http://web.evanchen.cc
https://aops.com/community/p12189455


JMO 2019 Solution Notes web.evanchen.cc, updated 2 June 2023

A B

D

P

C

K

L
E

Finally AKLB is cyclic since

]BKA = ]BKC = ]BPC = θ = ]DPA = ]DLA = ]BLA.

This implies ]CKL = ]LBA = ]DCK, so KL ‖ BC. Then PE bisects BC by Ceva’s
theorem on 4PCD.

¶ Third solution (using inversion) By hypothesis, the circle ωa centered at A with
radius AD is orthogonal to the circle ωb centered at B with radius BC. For brevity, we
let Ia and Ib denote inversion with respect to ωa and ωb.

We let P denote the intersection of AB with the radical axis of ωa and ωb; hence
P = Ia(B) = Ib(A). This already implies that

]DPA
Ia= ]ADB = ]ACB

Ib= ]BPC

so P satisfies the angle condition.

A B

D

P

C

K

L
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Claim — The point K = Ia(C) lies on ωb and DP . Similarly L = Ib(D) lies on ωa

and CP .

Proof. The first assertion follows from the fact that ωb is orthogonal to ωa. For the other,
since (BCD) passes through A, it follows P = Ia(B), K = Ia(C), and D = Ia(D) are
collinear.

Finally, since C, L, P are collinear, we get A is concyclic with K = Ia(C), L = Ia(L),
B = Ia(B), i.e. that AKLB is cyclic. So KL ‖ CD by Reim’s theorem, and hence PE
bisects CD by Ceva’s theorem.
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§2 Solutions to Day 2
§2.1 JMO 2019/4, proposed by Ankan Bhattacharya, Zack Chroman, Anant

Mudgal
Available online at https://aops.com/community/p12195848.

Problem statement

Let ABC be a triangle with ∠B > 90◦ and let E and F be the feet of the altitudes
from B and C. Can line EF be tangent to the A-excircle?

We show it is not possible, by contradiction (assuming EF is indeed tangent). Thus
BECF is a convex cyclic quadrilateral inscribed in a circle with diameter BC. Note
also that the A-excircle lies on the opposite side from A as line EF , since A, E, C are
collinear in that order.

¶ First solution by similarity Note that 4AEF is similar to 4ABC (and oppositely
oriented). However, since they have the same A-exradius, it follows they are congruent.

B

CE

F

A

Consequently we get EF = BC. But this implies BFCE is a rectangle, contradiction.

¶ Second length solution by tangent lengths By t(•) we mean the length of the
tangent from P to the A-excircle. It is a classical fact for example that t(A) = s. The
main idea is to use the fact that

a cosA = EF = t(E) + t(F ).

Here EF = a cosA follows from the extended law of sines applied to the circle with
diameter BC, since there we have EF = BC sin∠ECF = a sin∠ACF = a cosA. We
may now compute

t(E) = t(A)−AE = s− c cosA
t(F ) = t(A)−AF = s− b cosA.

Therefore,

a cosA = 2s− (b+ c) cosA =⇒ (a+ b+ c) cosA = 2s

=⇒ cosA = 1.

This is an obvious contradiction.

Remark. On the other hand, there really is an equality case with A being some point at
infinity (meaning cosA = 1). So, this problem is “sharper” than one might expect; the
answer is not “obviously no”.
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¶ Third solution by Pitot and trigonometry In fact, the t(•) notation from the previous
solution gives us a classical theorem once we note the A-excircle is tangent to all four
lines EF , BC, BF and CE:

Claim (Pitot theorem) — We have BF + EF = BC + CE.

Proof. Here is a proof for completeness. By t(B) we mean the length of the tangent from
B to the A-excircle, and define t(C), t(E), t(F ) similarly. Then

BF = t(B)− t(F ) EF = t(E) + t(F )

BC = t(B) + t(C) CE = t(E)− t(C)

and summing gives the result.

A

B C

E

F

J

We now calculate all the lengths using trigonometry:

BC = a

BF = a cos(180◦ −B) = a cos(A+ C)

CE = a cosC
EF = BC sin∠ECF = a sin∠ACF = a cosA.

Thus, we apparently have

cos(A+ C) + cosA = 1 + cosC

but this is impossible since cos(A + C) < cosC (since A + C = 180 − B < 90◦) and
cosA < 1.
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¶ Fourth solution by Pitot and Ptolemy (Evan Chen) We give a trig-free way to finish
from Pitot’s theorem

BF + EF = BC + CE.

Assume that x = BF , y = CE, and BC = 1; then the above relation becomes

1 + y − x = BC + CE −BF = EF = EF · 1 = xy +
√
(1− x2)(1− y2)

with the last step by Ptolemy’s theorem. This rearranges to give

(1 + y)(1− x) =
√

(1− x2)(1− y2) =⇒ 1 + y

1− y
=

1 + x

1− x
=⇒ x = y

but that means BECF is a rectangle: contradicting the fact that lines BE and CF meet
at a point A.

¶ Fifth solution, by angle chasing only! Let J denote the A-excenter. Then J should
be the intersection of the internal bisectors of ∠FEC and ∠FBC, so it is the midpoint
of arc F̂C on the circle with diameter BC.

A

B C

E

F

J

But now we get ∠BJC = 90◦ from J lying on this circle. Yet ∠BJC = 90◦ − 1
2∠A in

general, so ∠A = 0◦ which is impossible.

¶ Sixth solution (Zuming Feng) This is similar to the preceding solution, but phrased
using contradiction and inequalities. We let X and Y denote the tangency points of the
A-excircle on lines AB and AC. Moreover, let J denote the A-excenter.

B

C
E

F

J

A

X

Y
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Note that AB > AE and AX = AY , therefore BX < EY . By considering the
right triangles XBJ and Y EJ (which both have JX = JY ), we conclude tan∠XBJ >
tan∠Y EJ , thus

∠XBJ > ∠Y EJ.

However, if line EF was actually tangent to the A-excircle, we would have

2∠XBJ = ∠XBC = ∠FBC = ∠FEC = ∠FEY = 2∠JEY

which is a contradiction.

¶ Seventh solution, by complex numbers, for comedic effect (Evan Chen) Let us
denote the tangency points of the A-excircle with sides BC, CA, AB as x, y, z. Assume
moreover that line EF is tangent to the A-excircle at a point P .

Also, for brevity let s = xy + yz + zx. Then, we have

E =
2py

p+ y
=

1

2
(b+ y + y − y2b) =

zx

z + x
+ y − y2

z + x

=⇒ 2
1
p + 1

y

=
xy + xz + zx− y2

z + x
=⇒

1
p + 1

y

2
=

x+ z

s− y2
.

Similarly by considering the point F ,

1
p + 1

z

2
=

x+ y

s− z2
.

Thus we can eliminate P and obtain

=⇒
1
y − 1

z

2
=

x+ z

s− y2
− x+ y

s− z2
=

−s(y − z) + x(y2 − z2) + (y3 − z3)

(s− y2)(s− z2)

⇐⇒ 1

2yz
=

s− x(y + z)− (y2 + yz + z2)

(s− y2)(s− z2)
=

−(y2 + z2)

(s− y2)(s− z2)

⇐⇒ 0 = (s− y2)(s− z2) + 2yz(y2 + z2)

= [x(y + z) + y(z − y)] [x(y + z) + z(y − z)] + 2yz(y2 + z2)

= x2(y + z)2 − (y − z)2 · x(y + z) + yz(2y2 + 2z2 − (y − z)2)

= x2(y + z)2 − (y − z)2 · x(y + z) + yz(y + z)2

= xyz(y + z)

[
x

y
+

x

z
− y

z
− z

y
+ 2 +

y

x
+

z

x

]
.

However, 4XY Z is obtuse with ∠X > 90◦, we have y + z 6= 0. Note that

x
y + y

x = 2Re x
y = 2 cos(2∠XZY )

x
z + z

x = 2Re x
z = 2 cos(2∠XY Z)

y
z + z

y = 2Re y
z < 2

and since cos(2∠XZY ) + cos(2∠XY Z) > 0 (say by sum-to-product), we are done.
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§2.2 JMO 2019/5, proposed by Ricky Liu
Available online at https://aops.com/community/p12195861.

Problem statement

Let n be a nonnegative integer. Determine the number of ways to choose sets
Sij ⊆ {1, 2, . . . , 2n}, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such
that

• |Sij | = i+ j, and

• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

The answer is (2n)!·2n2 . First, we note that ∅ = S00 ( S01 ( · · · ( Snn = {1, . . . , 2n} and
thus multiplying by (2n)! we may as well assume S0i = {1, . . . , i} and Sin = {1, . . . , n+ i}.
We illustrate this situation by placing the sets in a grid, as below for n = 4; our goal is
to fill in the rest of the grid.

1234 12345 123456 1234567 12345678
123
12
1
∅


We claim the number of ways to do so is 2n

2 . In fact, more strongly even the partial
fillings are given exactly by powers of 2.

Claim — Fix a choice T of cells we wish to fill in, such that whenever a cell is in T ,
so are all the cells above and left of it. (In other words, T is a Young tableau.) The
number of ways to fill in these cells with sets satisfying the inclusion conditions is
2|T |.

An example is shown below, with an indeterminate set marked in red (and the rest of T
marked in blue). 

1234 12345 123456 1234567 12345678
123 1234 12346 123467
12 124 1234 or 1246
1 12
∅ 2


Proof. The proof is by induction on |T |, with |T | = 0 being vacuous.

Now suppose we have a corner
[
B C
A S

]
where A, B, C are fixed and S is to be chosen.

Then we may write B = A ∪ {x} and C = A ∪ {x, y} for x, y /∈ A. Then the two choices
of S are A ∪ {x} (i.e. B) and A ∪ {y}, and both of them are seen to be valid.

In this way, we gain a factor of 2 any time we add one cell as above to T . Since we
can achieve any Young tableau in this way, the induction is complete.
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§2.3 JMO 2019/6, proposed by Yannick Yao
Available online at https://aops.com/community/p12195834.

Problem statement

Let m and n be relatively prime positive integers. The numbers m
n and n

m are written
on a blackboard. At any point, Evan may pick two of the numbers x and y written
on the board and write either their arithmetic mean 1

2(x + y) or their harmonic
mean 2xy

x+y . For which (m,n) can Evan write 1 on the board in finitely many steps?

We claim this is possible if and only m+ n is a power of 2. Let q = m/n, so the numbers
on the board are q and 1/q.

Impossibility: The main idea is the following.

Claim — Suppose p is an odd prime. Then if the initial numbers on the board are
−1 (mod p), then all numbers on the board are −1 (mod p).

Proof. Let a ≡ b ≡ −1 (mod p). Note that 2 6≡ 0 (mod p) and a+ b ≡ −2 6≡ 0 (mod p).
Thus a+b

2 and 2ab
a+b both make sense modulo p and are equal to −1 (mod p).

Thus if there exists any odd prime divisor p of m+ n (implying p - mn), then

q ≡ 1

q
≡ −1 (mod p).

and hence all numbers will be −1 (mod p) forever. This implies that it’s impossible to
write 1, whenever m+ n is divisible by some odd prime.

Construction: Conversely, suppose m+ n is a power of 2. We will actually construct
1 without even using the harmonic mean.

q q−1q+q−1

2
3q+q−1

4
q+3q−1

4

7q+q−1

8
5q+3q−1

8
3q+5q−1

8
q+7q−1

8

Note that
n

m+ n
· q + m

m+ n
· 1
q
= 1

and obviously by taking appropriate midpoints (in a binary fashion) we can achieve this
using arithmetic mean alone.
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Note: For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-
scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

Let  be an integer. Carl has  books arranged on a bookshelf. Each book has a height and a width. No two books have the
same height, and no two books have the same width. Initially, the books are arranged in increasing order of height from left to right.
In a move, Carl picks any two adjacent books where the left book is wider and shorter than the right book, and swaps their
locations. Carl does this repeatedly until no further moves are possible. Prove that regardless of how Carl makes his moves, he
must stop after a finite number of moves, and when he does stop, the books are sorted in increasing order of width from left to
right.

Solution

Let  be the incircle of a fixed equilateral triangle . Let  be a variable line that is tangent to  and meets the interior of
segments  and  at points  and , respectively. A point  is chosen such that  and .
Find all possible locations of the point , over all choices of .

Solution

An empty  cube is given, and a  grid of square unit cells is drawn on each of its six
faces. A beam is a  rectangular prism. Several beams are placed inside the cube subject to the following
conditions:

The two  faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are

 possible positions for a beam.)
No two beams have intersecting interiors.
The interiors of each of the four  faces of each beam touch either a face of the cube or the interior of the face
of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Solution

Let  be a convex quadrilateral inscribed in a circle and satisfying . Points  and 
are chosen on sides  and  such that  and . Prove that .
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Solution

Suppose that     are distinct ordered pairs of nonnegative integers. Let  denote the
number of pairs of integers  satisfying  and . Determine the largest possible
value of  over all possible choices of the  ordered pairs.

Solution

Let  be an integer. Let  be a nonconstant -variable polynomial with real coefficients. Assume that
whenever  are real numbers, at least two of which are equal, we have . Prove that

 cannot be written as the sum of fewer than  monomials. (A monomial is a polynomial of the form

, where  is a nonzero real number and , , ,  are nonnegative integers.)
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This is a compilation of solutions for the 2020 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let n ≥ 2 be an integer. Carl has n books arranged on a bookshelf. Each book has

a height and a width. No two books have the same height, and no two books have
the same width.
Initially, the books are arranged in increasing order of height from left to right. In
a move, Carl picks any two adjacent books where the left book is wider and shorter
than the right book, and swaps their locations. Carl does this repeatedly until no
further moves are possible.
Prove that regardless of how Carl makes his moves, he must stop after a finite
number of moves, and when he does stop, the books are sorted in increasing order
of width from left to right.

2. Let ω be the incircle of a fixed equilateral triangle ABC. Let ` be a variable line
that is tangent to ω and meets the interior of segments BC and CA at points P
and Q, respectively. A point R is chosen such that PR = PA and QR = QB. Find
all possible locations of the point R, over all choices of `.

3. An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit
cells is drawn on each of its six faces. A beam is a 1× 1× 2020 rectangular prism.
Several beams are placed inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite
faces of the cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.
• The interiors of each of the four 1× 2020 faces of each beam touch either a

face of the cube or the interior of the face of another beam.
What is the smallest positive number of beams that can be placed to satisfy these
conditions?

4. Let ABCD be a convex quadrilateral inscribed in a circle and satisfying

DA < AB = BC < CD.

Points E and F are chosen on sides CD and AB such that BE ⊥ AC and EF ‖ BC.
Prove that FB = FD.

5. Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of non-
negative integers. Let N denote the number of pairs of integers (i, j) satisfying
1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1. Determine the largest possible value of N
over all possible choices of the 100 ordered pairs.

6. Let n ≥ 2 be an integer. Let P (x1, x2, . . . , xn) be a nonconstant n-variable polyno-
mial with real coefficients. Assuming that P vanishes whenever two of its arguments
are equal, prove that P has at least n! terms.
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§1 Solutions to Day 1
§1.1 JMO 2020/1, proposed by Milan Haiman
Available online at https://aops.com/community/p15952780.

Problem statement

Let n ≥ 2 be an integer. Carl has n books arranged on a bookshelf. Each book has
a height and a width. No two books have the same height, and no two books have
the same width.

Initially, the books are arranged in increasing order of height from left to right. In
a move, Carl picks any two adjacent books where the left book is wider and shorter
than the right book, and swaps their locations. Carl does this repeatedly until no
further moves are possible.

Prove that regardless of how Carl makes his moves, he must stop after a finite
number of moves, and when he does stop, the books are sorted in increasing order
of width from left to right.

We say that a pair of books (A,B) is height-inverted if A is to the left of B and taller
than A. Similarly define width-inverted pairs.

Note that every operation decreases the number of width-inverted pairs. This proves
the procedure terminates, since the number of width-inverted pairs starts at

(
n
2

)
and

cannot increase indefinitely.
Now consider a situation where no more moves are possible. Assume for contradiction

two consecutive books (A,B) are still width-inverted. Since the operation isn’t possible
anymore, they are also height-inverted. In particular, the operation could never have
swapped A and B. But this contradicts the assumption there were no height-inverted
pairs initially.
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§1.2 JMO 2020/2, proposed by Titu Andreescu, Waldemar Pompe
Available online at https://aops.com/community/p15952801.

Problem statement

Let ω be the incircle of a fixed equilateral triangle ABC. Let ` be a variable line
that is tangent to ω and meets the interior of segments BC and CA at points P and
Q, respectively. A point R is chosen such that PR = PA and QR = QB. Find all
possible locations of the point R, over all choices of `.

Let r be the inradius. Let T be the tangency point of PQ on arc D̂E of the incircle,
which we consider varying. We define R1 and R2 to be the two intersections of the circle
centered at P with radius PA, and the circle centered at Q with radius QB. We choose
R1 to lie on the opposite side of C as line PQ.

A B

C

DE

I

R1

P

Q
T

A′B′

R2

Claim — The point R1 is the unique point on ray TI with R1I = 2r.

Proof. Define S to be the point on ray TI with SI = 2r. Note that there is a homothety
at I which maps 4DTE to 4ASB, for some point S.

Note that since TASD is an isosceles trapezoid, it follows PA = PS. Similarly,
QB = QS. So it follows that S = R1.

Since T can be any point on the open arc D̂E, it follows that the locus of R1 is exactly
the open 120◦ arc of ÂB of the circle centered at I with radius 2r (i.e. the circumcircle
of ABC).

It remains to characterize R2. Since TI = r, IR1 = 2r, it follows TR2 = 3r and
IR2 = 4r. Define A′ on ray DI such that A′I = 4r, and B′ on ray IE such that B′I = 4r.
Then it follows, again by homothety, that the locus of R2 is the 120◦ arc ‘A′B′ of the
circle centered at I with radius 4r.
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In conclusion, the locus of R is the two open 120◦ arcs we identified.
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§1.3 JMO 2020/3, proposed by Alex Zhai
Available online at https://aops.com/community/p15952773.

Problem statement

An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit
cells is drawn on each of its six faces. A beam is a 1× 1× 2020 rectangular prism.
Several beams are placed inside the cube subject to the following conditions:

• The two 1 × 1 faces of each beam coincide with unit cells lying on opposite
faces of the cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1 × 2020 faces of each beam touch either a
face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these
conditions?

Answer: 3030 beams.

Construction: We first give a construction with 3n/2 beams for any n× n× n box,
where n is an even integer. Shown below is the construction for n = 6, which generalizes.
(The left figure shows the cube in 3d; the right figure shows a direct view of the three
visible faces.)

Left face Right face

Top face

To be explicit, impose coordinate axes such that one corner of the cube is the origin. We
specify a beam by two opposite corners. The 3n/2 beams come in three directions, n/2
in each direction:

• (0, 0, 0) → (1, 1, n), (2, 2, 0) → (3, 3, n), (4, 4, 0) → (5, 5, n), and so on;

• (1, 0, 0) → (2, n, 1), (3, 0, 2) → (4, n, 3), (5, 0, 4) → (6, n, 5), and so on;
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• (0, 1, 1) → (n, 2, 2), (0, 3, 3) → (n, 4, 4), (0, 5, 5) → (n, 6, 6), and so on.

This gives the figure we drew earlier and shows 3030 beams is possible.

Necessity: We now show at least 3n/2 beams are necessary. Maintain coordinates,
and call the beams x-beams, y-beams, z-beams according to which plane their long edges
are perpendicular too. Let Nx, Ny, Nz be the number of these.

Claim — If min(Nx, Ny, Nz) = 0, then at least n2 beams are needed.

Proof. Assume WLOG that Nz = 0. Orient the cube so the z-plane touches the ground.
Then each of the n layers of the cube (from top to bottom) must be completely filled,
and so at least n2 beams are necessary,

We henceforth assume min(Nx, Ny, Nz) > 0.

Claim — If Nz > 0, then we have Nx +Ny ≥ n.

Proof. Again orient the cube so the z-plane touches the ground. We see that for each of
the n layers of the cube (from top to bottom), there is at least one x-beam or y-beam.
(Pictorially, some of the x and y beams form a “staircase”.) This completes the proof.

Proceeding in a similar fashion, we arrive at the three relations

Nx +Ny ≥ n

Ny +Nz ≥ n

Nz +Nx ≥ n.

Summing gives Nx +Ny +Nz ≥ 3n/2 too.

Remark. The problem condition has the following “physics” interpretation. Imagine the
cube is a metal box which is sturdy enough that all beams must remain orthogonal to the
faces of the box (i.e. the beams cannot spin). Then the condition of the problem is exactly
what is needed so that, if the box is shaken or rotated, the beams will not move.

Remark. Walter Stromquist points out that the number of constructions with 3030 beams
is actually enormous: not dividing out by isometries, the number is (2 · 1010!)3.
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§2 Solutions to Day 2
§2.1 JMO 2020/4, proposed by Milan Haiman
Available online at https://aops.com/community/p15952890.

Problem statement

Let ABCD be a convex quadrilateral inscribed in a circle and satisfying

DA < AB = BC < CD.

Points E and F are chosen on sides CD and AB such that BE ⊥ AC and EF ‖ BC.
Prove that FB = FD.

We present three approaches. We note that in the second two approaches, the result
remains valid even if AB 6= BC, as long E is replaced by the point on AC satisfying
EA = EC. So the result is actually somewhat more general.

¶ First solution by inscribed angle theorem Since EF ‖ BC we may set θ = ∠FEB =
∠CBE = ∠EBF . This already implies FE = FB, so we will in fact prove that F is the
circumcenter of 4BED.

A

B

C

D

E

F

Note that ∠BDC = ∠BAC = 90◦−θ. However, ∠BFE = 180◦−2θ. So by the inscribed
angle theorem, D lies on the circle centered at F with radius FE = FB, as desired.

Remark. Another approach to the given problem is to show that B is the D-excenter of
4DAE, and F is the arc midpoint of ’DAE of the circumcircle of 4DAE. In my opinion,
this approach is much clumsier.

¶ Second general solution by angle chasing By Reim’s theorem, AFED is cyclic.
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A

B

C

D

E

F

Hence

]FDB = ]FDC − ]BDC = ]FAE − ]FAC

= ]CAE = ]ECA = ]DCA = ]DBA = ]DBF

as desired.

¶ Third general solution by Pascal Extend rays AE and DF to meet the circumcircle
again at G and H. By Pascal’s theorem on HDCBAG, it follows that E, F , and
GH ∩BC are collinear, which means that EF ‖ GH ‖ BC.

A

B

C

D

H

G

E

F

Since EA = EC, it follows DAGC in isosceles trapezoid. But also GHBC is an isosceles
trapezoid. Thus mD̂A = mĜC = m‘BH, so DAHB is an isosceles trapezoid. Thus
FD = FB.

Remark. Addicts of projective geometry can use Pascal on DBCAHG to finish rather than
noting the equal arcs.
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§2.2 JMO 2020/5, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p15952792.

Problem statement

Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of non-
negative integers. Let N denote the number of pairs of integers (i, j) satisfying
1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1. Determine the largest possible value of N
over all possible choices of the 100 ordered pairs.

The answer is 197. In general, if 100 is replaced by n ≥ 2 the answer is 2n− 3.
The idea is that if we let Pi = (ai, bi) be a point in the coordinate plane, and let

O = (0, 0) then we wish to maximize the number of triangles 4OPiPj which have area
1/2. Call such a triangle good.

Construction of 197 points: It suffices to use the points (1, 0), (1, 1), (2, 1), (3, 1),
. . . , (99, 1) as shown. Notice that:

• There are 98 good triangles with vertices (0, 0), (k, 1) and (k+1, 1) for k = 1, . . . , 98.

• There are 99 good triangles with vertices (0, 0), (1, 0) and (k, 1) for k = 1, . . . , 99.

This is a total of 98 + 99 = 197 triangles.

O (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)
· · ·

Proof that 197 points is optimal: We proceed by induction on n to show the bound
of 2n− 3. The base case n = 2 is evident.

For the inductive step, suppose (without loss of generality) that the point P = Pn =
(a, b) is the farthest away from the point O among all points.

Claim — This farthest point P = Pn is part of at most two good triangles.

Proof. We must have gcd(a, b) = 1 for P to be in any good triangles at all, since otherwise
any divisor of gcd(a, b) also divides 2[OPQ]. Now, we consider the locus of all points Q
for which [OPQ] = 1/2. It consists of two parallel lines passing with slope OP , as shown.
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(u, v)

(u′, v′)

O

P = (a, b)

Since gcd(a, b) = 1, see that only two lattice points on this locus actually lie inside the
quarter-circle centered at O with radius OP . Indeed if one of the points is (u, v) then the
others on the line are (u± a, v ± b) where the signs match. This proves the claim.

This claim allows us to complete the induction by simply deleting Pn.
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§2.3 JMO 2020/6, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p15952921.

Problem statement

Let n ≥ 2 be an integer. Let P (x1, x2, . . . , xn) be a nonconstant n-variable polyno-
mial with real coefficients. Assuming that P vanishes whenever two of its arguments
are equal, prove that P has at least n! terms.

We present two solutions.

¶ First solution using induction (by Ankan) Begin with the following observation:

Claim — Let 1 ≤ i < j ≤ n. There is no term of P which omits both xi and xj .

Proof. Note that P ought to become identically zero if we set xi = xj = 0, since it is
zero for any choice of the remaining n− 2 variables, and the base field R is infinite.

Remark (Technical warning for experts). The fact we used is not true if R is replaced by
a field with finitely many elements, such as Fp, even with one variable. For example the
one-variable polynomial Xp −X vanishes on every element of Fp, by Fermat’s little theorem.

We proceed by induction on n ≥ 2 with the base case n = 2 being clear. Assume
WLOG P is not divisible by any of x1, . . . , xn, since otherwise we may simply divide
out this factor. Now for the inductive step, note that

• The polynomial P (0, x2, x3, . . . , xn) obviously satisfies the inductive hypothesis and
is not identically zero since x1 - P , so it has at least (n− 1)! terms.

• Similarly, P (x1, 0, x3, . . . , xn) also has at least (n− 1)! terms.

• Similarly, P (x1, x2, 0, . . . , xn) also has at least (n− 1)! terms.

• . . .and so on.

By the claim, all the terms obtained in this way came from different terms of the original
polynomial P . Therefore, P itself has at least n · (n− 1)! = n! terms.

Remark. Equality is achieved by the Vandermonde polynomial P =
∏

1≤i<j≤n(xi − xj).

¶ Second solution using Vandermonde polynomial (by Yang Liu) Since xi−xj divides
P for any i 6= j, it follows that P should be divisible by the Vandermonde polynomial

V =
∏
i<j

(xj − xi) =
∑
σ

sgn(σ)xσ(0)1 x
σ(1)
2 . . . xσ(n−1)

n

where the sum runs over all permutations σ on {0, . . . , n− 1}.
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Consequently, we may write

P =
∑
σ

sgn(σ)xσ(0)1 x
σ(1)
2 . . . xσ(n−1)

n Q

The main idea is that each of the n! terms of the above sum has a monomial not appearing
in any of the other terms.

As an example, consider xn−1
1 xn−2

2 . . . x1n−1x
0
n. Among all monomial in Q, consider the

monomial xe11 xe22 . . . xenn with the largest e1, then largest e2, . . . . (In other words, take
the lexicographically largest (e1, . . . , en).) This term

x
e1+(n−1)
1 x

e2+(n−2)
2 . . . xenn

can’t appear anywhere else because it is strictly lexicographically larger than any other
term appearing in any other expansion.

Repeating this argument with every σ gives the conclusion.
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 For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-
scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

Let  denote the set of positive integers. Find all functions  such that for positive integers  and 

Solution

Rectangles   and  are erected outside an acute triangle  Suppose that

Prove that lines   and  are concurrent.

Solution

An equilateral triangle  of side length  is given. Suppose that  equilateral triangles with side length 1 and with non-
overlapping interiors are drawn inside , such that each unit equilateral triangle has sides parallel to , but with opposite
orientation. (An example with  is drawn below.)

Prove that
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This is a compilation of solutions for the 2021 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Find all functions f : N → N which satisfy f(a2+ b2) = f(a)f(b) and f(a2) = f(a)2

for all positive integers a and b.

2. Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle
ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

3. An equilateral triangle ∆ of side length L > 0 is given. Suppose that n equilateral
triangles with side length 1 and with non-overlapping interiors are drawn inside ∆,
such that each unit equilateral triangle has sides parallel to ∆, but with opposite
orientation. Prove that

n ≤ 2

3
L2.

4. Carina has three pins, labeled A, B, and C, respectively, located at the origin of
the coordinate plane. In a move, Carina may move a pin to an adjacent lattice
point at distance 1 away. What is the least number of moves that Carina can make
in order for triangle ABC to have area 2021?

5. A finite set S of positive integers has the property that, for each s ∈ S, and
each positive integer divisor d of s, there exists a unique element t ∈ S satisfying
gcd(s, t) = d. (The elements s and t could be equal.)
Given this information, find all possible values for the number of elements of S.

6. Let n ≥ 4 be an integer. Find all positive real solutions to the following system of
2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.
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§1 Solutions to Day 1
§1.1 JMO 2021/1, proposed by Vincent Huang
Available online at https://aops.com/community/p21498724.

Problem statement

Find all functions f : N → N which satisfy f(a2 + b2) = f(a)f(b) and f(a2) = f(a)2

for all positive integers a and b.

The answer is f ≡ 1 only, which works. We prove it’s the only one.
The bulk of the problem is:

Claim — If f(a) = f(b) = 1 and a > b, then f(a2 − b2) = f(2ab) = 1.

Proof. Write

1 = f(a)f(b) = f(a2 + b2) =
√
f ((a2 + b2)2)

=
√
f ((a2 − b2)2 + (2ab)2)

=
√
f(a2 − b2)f(2ab).

By setting a = b = 1 in the given statement we get f(1) = f(2) = 1. Now a simple
induction on n shows f(n) = 1:

• If n = 2k take (u, v) = (k, 1) hence 2uv = n.

• If n = 2k + 1 take (u, v) = (k + 1, k) hence u2 − v2 = n.
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§1.2 JMO 2021/2, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p21498558.

Problem statement

Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle
ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

The angle condition implies the circumcircles of the three rectangles concur at a single
point P . Then ]CPB2 = ]CPA1 = 90◦, hence P lies on A1B2 etc., so we’re done.

Remark. As one might guess from the two-sentence solution, the entire difficulty of the
problem is getting the characterization of the concurrence point.
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§1.3 JMO 2021/3, proposed by Alex Zhai
Available online at https://aops.com/community/p21499596.

Problem statement

An equilateral triangle ∆ of side length L > 0 is given. Suppose that n equilateral
triangles with side length 1 and with non-overlapping interiors are drawn inside ∆,
such that each unit equilateral triangle has sides parallel to ∆, but with opposite
orientation. Prove that

n ≤ 2

3
L2.

We present the approach of Andrew Gu. For each triangle, we draw a green regular
hexagon of side length 1/2 as shown below.

Claim — All the hexagons are disjoint and lie inside ∆.

Proof. Annoying casework.

Since each hexagon has area 3
√
3

8 and lies inside ∆, we conclude

3
√
3

8
· n ≤

√
3

4
L2 =⇒ n ≤ 2

3
L2.

Remark. The constant 2
3 is sharp and cannot be improved. The following tessellation shows

how to achieve the 2
3 density. In the figure on the left, one of the green hexagons is drawn

in for illustration. The version on the right has all the hexagons.
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§2 Solutions to Day 2
§2.1 JMO 2021/4, proposed by Brandon Wang
Available online at https://aops.com/community/p21498566.

Problem statement

Carina has three pins, labeled A, B, and C, respectively, located at the origin of the
coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at
distance 1 away. What is the least number of moves that Carina can make in order
for triangle ABC to have area 2021?

The answer is 128.
Define the bounding box of triangle ABC to be the smallest axis-parallel rectangle

which contains all three of the vertices A, B, C.

A

B

C

X

YZ

Lemma
The area of a triangle ABC is at most half the area of the bounding box.

Proof. This can be proven by explicit calculation in coordinates. Nonetheless, we
outline a geometric approach. By considering the smallest/largest x coordinate and
the smallest/largest y coordinate, one can check that some vertex of the triangle must
coincide with a corner of the bounding box (there are four “extreme” coordinates across
the 3 · 2 = 6 coordinates of our three points).

So, suppose the bounding box is AXY Z. Imagine fixing C and varying B along the
perimeter entire rectangle. The area is a linear function of B, so the maximal area should
be achieved when B coincides with one of the vertices {A,X, Y, Z}. But obviously the
area of 4ABC is

• exactly 0 if B = A,

• at most half the bounding box if B ∈ {X,Z} by one-half-base-height,

• at most half the bounding box if B = Y , since 4ABC is contained inside either
4AY Z or 4AXZ.

We now proceed to the main part of the proof.
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Claim — If n moves are made, the bounding box has area at most (n/2)2. (In
other words, a bounding box of area A requires at least

⌈
2
√
A
⌉

moves.)

Proof. The sum of the width and height of the bounding box increases by at most 1 each
move, hence the width and height have sum at most n. So, by AM-GM, their product is
at most (n/2)2.

This immediately implies n ≥ 128, since the bounding box needs to have area at least
4042 > 63.52.

On the other hand, if we start all the pins at the point (3, 18) then we can reach the
following three points in 128 moves:

A = (0, 0)

B = (64, 18)

C = (3, 64)

and indeed triangle ABC has area exactly 2021.
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§2.2 JMO 2021/5, proposed by Carl Schildkraut
Available online at https://aops.com/community/p21498580.

Problem statement

A finite set S of positive integers has the property that, for each s ∈ S, and
each positive integer divisor d of s, there exists a unique element t ∈ S satisfying
gcd(s, t) = d. (The elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

The answer is that |S| must be a power of 2 (including 1), or |S| = 0 (a trivial case we
do not discuss further).

Construction: For any nonnegative integer k, a construction for |S| = 2k is given by

S = {(p1 or q1)× (p2 or q2)× · · · × (pk or qk)}

for 2k distinct primes p1, . . . , pk, q1, . . . , qk.

Converse: the main claim is as follows.

Claim — In any valid set S, for any prime p and x ∈ S, νp(x) ≤ 1.

Proof. Assume for contradiction e = νp(x) ≥ 2.

• On the one hand, by taking x in the statement, we see e
e+1 of the elements of S

are divisible by p.

• On the other hand, consider a y ∈ S such that νp(y) = 1 which must exist (say
if gcd(x, y) = p). Taking y in the statement, we see 1

2 of the elements of S are
divisible by p.

So e = 1, contradiction.

Now since |S| equals the number of divisors of any element of S, we are done.
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§2.3 JMO 2021/6, proposed by Mohsen Jamaali
Available online at https://aops.com/community/p21498967.

Problem statement

Let n ≥ 4 be an integer. Find all positive real solutions to the following system of
2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.

The answer is that the only solution is (1, 2, 1, 2, . . . , 1, 2) which works.
We will prove a2k is a constant sequence, at which point the result is obvious.

¶ First approach (Andrew Gu) Apparently, with indices modulo 2n, we should have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

for every index k (this eliminates all aodd’s). Define

m = min
k

a2k and M = max
k

a2k.

Look at the indices i and j achieving m and M to respectively get

m =
2

m
+

1

a2i−2
+

1

a2i+2
≥ 2

m
+

1

M
+

1

M
=

2

m
+

2

M

M =
2

M
+

1

a2j−2
+

1

a2j+2
≤ 2

M
+

1

m
+

1

m
=

2

m
+

2

M
.

Together this gives m ≥ M , so m = M . That means a2i is constant as i varies, solving
the problem.

¶ Second approach (author’s solution) As before, we have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

The proof proceeds in three steps.

• Define
S =

∑
k

a2k, and T =
∑
k

1

a2k
.

Summing gives S = 4T . On the other hand, Cauchy-Schwarz says S · T ≥ n2, so
T ≥ 1

2n.
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• On the other hand,
1 =

1

a2k−2a2k
+

2

a22k
+

1

a2ka2k+2

Sum this modified statement to obtain

n =
∑
k

(
1

a2k
+

1

a2k+2

)2 QM-AM
≥ 1

n

(∑
k

1

a2k
+

1

a2k+2

)2

=
1

n
(2T )2

So T ≤ 1
2n.

• Since T ≤ 1
2n and T ≥ 1

2n, we must have equality everywhere above. This means
a2k is a constant sequence.

Remark. The problem is likely intractable over C, in the sense that one gets a high-degree
polynomial which almost certainly has many complex roots. So it seems likely that most
solutions must involve some sort of inequality, using the fact we are over R>0 instead.

10

http://web.evanchen.cc


1 Day 1
1.1 Problem 1
1.2 Problem 2
1.3 Problem 3

2 Day 2
2.1 Problem 4
2.2 Problem 5
2.3 Problem 6

 For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-
scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

For which positive integers  does there exist an infinite arithmetic sequence of integers  and an infinite geometric
sequence of integers  satisfying the following properties?

  is divisible by  for all integers ;

  is not divisible by .

Solution

Let  and  be positive integers. The cells of an  grid are colored amber and bronze such that

there are at least  amber cells and at least  bronze cells. Prove that it is possible to choose 
amber cells and  bronze cells such that no two of the  chosen cells lie in the same row or column.

Solution

Let  and  be fixed integers, and . Given are  identical black rods and  identical white rods,
each of side length .

We assemble a regular -gon using these rods so that parallel sides are the same color. Then, a convex -gon  is formed by
translating the black rods, and a convex -gon  is formed by translating the white rods. An example of one way of doing the
assembly when  and  is shown below, as well as the resulting polygons  and .
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Prove that the difference of the areas of  and  depends only on the numbers  and , and not on how the -gon was
assembled.

Solution

 Let  be a rhombus, and let  and  be points such that  lies inside the rhombus,  lies outside the rhombus,
and . Prove that there exist points  and  on lines  and  such that  is
also a rhombus.

Solution

Find all pairs of primes  for which  and  are both perfect squares.

Solution

Let  be complex numbers, and define

for all nonnegative integers .

Suppose that  for all . Prove that

Solution

Day 2

Problem 4

Problem 5

Problem 6

https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_3
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_4
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_5
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_6


Copyright © 2023 Art of Problem Solving

2022 USAJMO (Problems • Resources (http://www.
artofproblemsolving.com/Forum/resources.php?c=

182&cid=176&year={{{year}}}))

Preceded by
2021 USAJMO

Followed by
2023 USAJMO

1 • 2 • 3 • 4 • 5 • 6

All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org). 

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2022_USAJMO_Problems&oldid=193638"

https://artofproblemsolving.com/wiki/index.php/2022_USAJMO
https://artofproblemsolving.com/wiki/index.php/2021_USAJMO_Problems
http://www.artofproblemsolving.com/Forum/resources.php?c=182&cid=176&year={{{year}}}
https://artofproblemsolving.com/wiki/index.php/2021_USAJMO
https://artofproblemsolving.com/wiki/index.php/2023_USAJMO
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_1
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_2
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_3
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_4
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_5
https://artofproblemsolving.com/wiki/index.php/2022_USAJMO_Problems/Problem_6
https://artofproblemsolving.com/wiki/index.php/USAJMO_Problems_and_Solutions
http://www.maa.org/
http://amc.maa.org/
https://artofproblemsolving.com/wiki/index.php/File:AMC_logo.png
https://artofproblemsolving.com/wiki/index.php?title=2022_USAJMO_Problems&oldid=193638


JMO 2022 Solution Notes
Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2022 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. For which positive integers m does there exist an infinite sequence in Z/mZ which

is both an arithmetic progression and a geometric progression, but is nonconstant?

2. Let a and b be positive integers. Every cell of an (a+ b+ 1)× (a+ b+ 1) grid is
colored either amber or bronze such that there are at least a2 + ab− b amber cells
and at least b2 + ab− a bronze cells. Prove that it is possible to choose a amber
cells and b bronze cells such that no two of the a+ b chosen cells lie in the same
row or column.

3. Let b ≥ 2 and w ≥ 2 be fixed integers, and n = b+ w. Given are 2b identical black
rods and 2w identical white rods, each of side length 1.
We assemble a regular 2n-gon using these rods so that parallel sides are the same
color. Then, a convex 2b-gon B is formed by translating the black rods, and a
convex 2w-gon W is formed by translating the white rods. An example of one
way of doing the assembly when b = 3 and w = 2 is shown below, as well as the
resulting polygons B and W .

W

B

Prove that the difference of the areas of B and W depends only on the numbers b
and w, and not on how the 2n-gon was assembled.

4. Let ABCD be a rhombus, and let K and L be points such that K lies inside
the rhombus, L lies outside the rhombus, and KA = KB = LC = LD. Prove
that there exist points X and Y on lines AC and BD such that KXLY is also a
rhombus.

5. Find all pairs of primes (p, q) for which p− q and pq − q are both perfect squares.

6. Let a0, b0, c0 be complex numbers, and define

an+1 = a2n + 2bncn

bn+1 = b2n + 2cnan

cn+1 = c2n + 2anbn

for all nonnegative integers n. Suppose that max {|an|, |bn|, |cn|} ≤ 2022 for all
n ≥ 0. Prove that

|a0|2 + |b0|2 + |c0|2 ≤ 1.

2
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§1 Solutions to Day 1
§1.1 JMO 2022/1, proposed by Holden Mui
Available online at https://aops.com/community/p24774800.

Problem statement

For which positive integers m does there exist an infinite sequence in Z/mZ which
is both an arithmetic progression and a geometric progression, but is nonconstant?

Answer: m must not be squarefree.
The problem is essentially asking when there exists a nonconstant arithmetic progression

in Z/mZ which is also a geometric progression. Now,

• If m is squarefree, then consider three (s−d, d, s+d) in arithmetic progression. It’s
geometric if and only if d2 = (s − d)(s + d) (mod m), meaning d2 ≡ 0 (mod m).
Then d ≡ 0 (mod m). So any arithmetic progression which is also geometric is
constant in this case.

• Conversely if p2 | m for some prime p, then any arithmetic progression with common
difference m/p is geometric by the same calculation.

3
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§1.2 JMO 2022/2, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p24774812.

Problem statement

Let a and b be positive integers. Every cell of an (a + b + 1) × (a + b + 1) grid is
colored either amber or bronze such that there are at least a2 + ab− b amber cells
and at least b2+ ab− a bronze cells. Prove that it is possible to choose a amber cells
and b bronze cells such that no two of the a+ b chosen cells lie in the same row or
column.

Claim — There exists a transversal Ta with at least a amber cells. Analogously,
there exists a transversal Tb with at least b bronze cells.

Proof. If one picks a random transversal, the expected value of the number of amber
cells is at least

a2 + ab− b2

a+ b+ 1
= (a− 1) +

1

a+ b+ 1
> a− 1.

Now imagine we transform Ta to Tb in some number of steps, by repeatedly choosing
cells c and c′ and swapping them with the two other corners of the rectangle formed by
their row/column, as shown in the figure.

c

c′

=⇒

By “discrete intermediate value theorem”, the number of amber cells will be either a or
a+ 1 at some point during this transformation. This completes the proof.
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§1.3 JMO 2022/3, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p24775345.

Problem statement

Let b ≥ 2 and w ≥ 2 be fixed integers, and n = b+ w. Given are 2b identical black
rods and 2w identical white rods, each of side length 1.

We assemble a regular 2n-gon using these rods so that parallel sides are the same
color. Then, a convex 2b-gon B is formed by translating the black rods, and a convex
2w-gon W is formed by translating the white rods. An example of one way of doing
the assembly when b = 3 and w = 2 is shown below, as well as the resulting polygons
B and W .

W

B

Prove that the difference of the areas of B and W depends only on the numbers b
and w, and not on how the 2n-gon was assembled.

We are going to prove that one may swap a black rod with an adjacent white rod (as well
as the rods parallel to them) without affecting the difference in the areas of B −W . Let
~u and ~v denote the originally black and white vectors that were adjacent on the 2n-gon
and are now going to be swapped. Let ~x denote the sum of all the other black vectors
between ~u and −~u, and define ~y similarly. See the diagram below, where B0 and W0 are
the polygons before the swap, and B1 and W1 are the resulting changed polygons.

5
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B0

x⃗

−x⃗

u⃗ B1

x⃗

−x⃗
v⃗

W0

v⃗
y⃗

−y⃗

W1

u⃗ y⃗

−y⃗

Observe that the only change in B and W is in the parallelograms shown above in
each diagram. Letting ∧ denote the wedge product, we need to show that

~u ∧ ~x− ~v ∧ ~y = ~v ∧ ~x− ~u ∧ ~y

which can be rewritten as
(~u− ~v) ∧ (~x+ ~y) = 0.

In other words, it would suffice to show ~u−~v and ~x+~y are parallel. (Students not familiar
with wedge products can replace every ∧ with the cross product × instead.)

Claim — Both ~u− ~v and ~x+ ~y are perpendicular to vector ~u+ ~v.

Proof. We have (~u− ~v) ⊥ (~u+ ~v) because ~u and ~v are the same length.
For the other perpendicularity, note that ~u+ ~v + ~x+ ~y traces out a diameter of the

circumcircle of the original 2n-gon; call this diameter AB, so

A+ ~u+ ~v + ~x+ ~y = B.

Now point A+ ~u+ ~v is a point on this semicircle, which means (by the inscribed angle
theorem) the angle between ~u+ ~v and ~x+ ~y is 90◦.

6
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§2 Solutions to Day 2
§2.1 JMO 2022/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p24774800.

Problem statement

Let ABCD be a rhombus, and let K and L be points such that K lies inside the
rhombus, L lies outside the rhombus, and KA = KB = LC = LD. Prove that there
exist points X and Y on lines AC and BD such that KXLY is also a rhombus.

To start, notice that 4AKB ∼= 4DLC by SSS. Then by the condition K lies inside
the rhombus while L lies outside it, we find that the two congruent triangles are just
translations of each other (i.e. they have the same orientation).

¶ First solution Let M be the midpoint of KL and is O the center of the rhom-
bus.

Claim — MO ⊥ AB.

Proof. Let U and V denote the midpoint of AB and CD respectively. Then KU and
LV are obviously translates, and perpendicular to AB ‖ CD. Since M is the midpoint
of KL and O is the midpoint of UV , the result follows.

We choose X and Y to be the intersections of the perpendicular bisector of KL with
AC and BD.

A

B

C

D

K

L

X

Y

M

O

U

V

Claim — The midpoint of XY coincides with the midpoint of KL.

Proof. Because

XY ⊥ KL ‖ BC

MO ⊥ AB

BD ⊥ AC

7
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it follows that 4MOY , which was determined by the three lines XY , MO, BD, is similar
to 4ABC. In particular, it is isosceles with MY = MO. Analogously, MX = MO.

Remark. It is also possible to simply use coordinates to prove both claims.

¶ Second solution (author’s solution) In this solution, we instead define X and Y
as the intersections of the circles centered at K and L of equal radii KA, which will be
denoted ωK and ωL. It is clear that KXLY is a rhombus under this construction, so it
suffices to show that X and Y lie on AC and BD (in some order).

A

B

C

D

K

L

X

Y

ωL

ωK

To see this, let AC meet ωK again at X ′. We have

]CXD = ]BXC = ]AXB =
1

2
m ÃB = m C̃D

where the arcs are directed modulo 360◦; here ÃB is the arc of ωK cut out by ]AXB,
and D̃C is the analogous arc of ωL. This implies X ′ lies on ωL by the inscribed angle
theorem. Hence X = X ′, and it follows X lies on AC.

Analogously Y lies on BD.

Remark. The angle calculation above can also be replaced with a length calculation, as
follows.

Let M and N be the projections of K and L onto AC, respectively. Then X ′ is the
reflection of A across M ; analogously, the second intersection X ′′ with AC should be the
reflection of C across N . So to get X = X ′ = X ′′, we would need to show AC = 2MN .

However, note that AKLD is a parallelogram. As MN was the projection of KL onto
AC, its length should be the same as the projection of AD onto AC, which is obviously
1
2AC because the projection of D onto AC is exactly the midpoint of AC (i.e. the center of
the rhombus).
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§2.2 JMO 2022/5, proposed by Holden Mui
Available online at https://aops.com/community/p24774670.

Problem statement

Find all pairs of primes (p, q) for which p− q and pq − q are both perfect squares.

The answer is (3, 2) only.
Set

a2 = p− q

b2 = pq − q.

Note that 0 < a < p, and 0 < b < p (because q ≤ p). Now subtracting gives

(b− a)︸ ︷︷ ︸
<p

(b+ a)︸ ︷︷ ︸
<2p

= b2 − a2 = p(q − 1)

The inequalities above now force b+ a = p. Hence q − 1 = b− a.
This means p and q − 1 have the same parity, which can only occur if q = 2. Finally,

taking mod 3 shows p ≡ 0 (mod 3). So (3, 2) is the only possibility (and it does work).
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§2.3 JMO 2022/6, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p24775314.

Problem statement

Let a0, b0, c0 be complex numbers, and define

an+1 = a2n + 2bncn

bn+1 = b2n + 2cnan

cn+1 = c2n + 2anbn

for all nonnegative integers n. Suppose that max {|an|, |bn|, |cn|} ≤ 2022 for all
n ≥ 0. Prove that

|a0|2 + |b0|2 + |c0|2 ≤ 1.

For brevity, set sn := |an|2 + |bn|2 + |cn|2. Note that the sn are real numbers.

Claim (Key miraculous identity) — We have

sn+1 − s2n = 2|anbn + bncn + cnan|2.

Proof. We prove this by mechanical calculation. First,

sn+1 =
∣∣a2n + 2bncn

∣∣2 + ∣∣b2n + 2cnan
∣∣2 + ∣∣c2n + 2anbn

∣∣2
=

∑
cyc

∣∣a2n + 2bncn
∣∣2

=
∑
cyc

(a2n + 2bncn)(an
2 + 2bncn)

=
∑
cyc

(
|an|4 + 2an

2bncn + 2a2nbncn + 4|bn|2|cn|2
)

= s2n + 2
∑
cyc

(
an

2bncn + a2nbncn + |bn|2|cn|2
)
.

Meanwhile,

|anbn + bncn + cnan|2 =
(
anbn + bncn + cnan

) (
anbn + bncn + cnan

)
= |an|2|b2n|+ anbn

2
cn + a2nbncn

+ anb
2
ncn + |bn|2|cn|2 + anbncn

2

+ an
2bncn + anbnc

2
n + |an|2|cn|2

which exactly matches the earlier sum, term for term.

In particular, sn+1 ≥ s2n, so applying repeatedly,

sn ≥ s2
n

0 .

Hence if s0 > 1, it follows sn is unbounded, contradicting max {|an|, |bn|, |cn|} ≤ 2022.
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Remark. The originally intended solution was to capture all three recursions in the following
way. First, change the recursion to

an+1 = a2n + 2bncn

cn+1 = b2n + 2cnan

bn+1 = c2n + 2anbn

which is OK because we are just rearranging the terms in each triple. Then if ω is any
complex number with ω3 = 1, and we define

zn := an + bnω + cnω
2,

the recursion amounts to saying that zn+1 = z2n. This allows us to analyze |zn| in a similar
way as above, as now |zn| = |z0|2

n .

11
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Find all triples of positive integers  that satisfy the equation

In an acute triangle , let  be the midpoint of . Let  be the foot of the perpendicular from  to . Suppose
that the circumcircle of triangle  intersects line  at two distinct points  and . Let  be the midpoint of .
Prove that .

Consider an -by-  board of unit squares for some odd positive integer . We say that a collection  of identical dominoes is a

maximal grid-aligned configuration on the board if  consists of  dominoes where each domino covers exactly
two neighboring squares and the dominoes don't overlap:  then covers all but one square on the board. We are allowed to slide
(but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let  be the number of distinct maximal grid-aligned configurations obtainable from  by

repeatedly sliding dominoes. Find the maximum value of  as a function of .

Two players,  and , play the following game on an infinite grid of unit squares, all initially colored white. The players take turns
starting with . On 's turn,  selects one white unit square and colors it blue. On 's turn,  selects two white unit squares
and colors them red. The players alternate until  decides to end the game. At this point,  gets a score, given by the number of
unit squares in the largest (in terms of area) simple polygon containing only blue unit squares. What is the largest score  can
guarantee?

(A simple polygon is a polygon (not necessarily convex) that does not intersect itself and has no holes.

A positive integer  is selected, and some positive integers are written on a board. Alice and Bob play the following game. On
Alice's turn, she must replace some integer  on the board with , and on Bob's turn he must replace some even integer 
on the board with . Alice goes first and they alternate turns. If on his turn Bob has no valid moves, the game ends.
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After analyzing the integers on the board, Bob realizes that, regardless of what moves Alice makes, he will be able to force the
game to end eventually. Show that, in fact, for this value of  and these integers on the board, the game is guaranteed to end
regardless of Alice's or Bob's moves.

Isosceles triangle , with , is inscribed in circle . Let  be an arbitrary point inside  such that
. Ray  intersects  again at  (other than ). Point  (other than ) is chosen on  such that

. Line  intersects rays  and  at points  and , respectively. Prove that
.
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This is a compilation of solutions for the 2023 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Find all triples of positive integers (x, y, z) satisfying

2(x+ y + z + 2xyz)2 = (2xy + 2yz + 2zx+ 1)2 + 2023.

2. In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

3. Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2 − 1)/2 dominoes where each domino covers exactly
two neighboring squares and the dominoes don’t overlap: C then covers all but
one square on the board. We are allowed to slide (but not rotate) a domino
on the board to cover the uncovered square, resulting in a new maximal grid-
aligned configuration with another square uncovered. Let k(C) be the number
of distinct maximal grid-aligned configurations obtainable from C by repeatedly
sliding dominoes.
Find the maximum possible value of k(C) as a function of n.

4. Two players, Blake and Ruby, play the following game on an infinite grid of unit
squares, all initially colored white. The players take turns starting with Blake. On
Blake’s turn, Blake selects one white unit square and colors it blue. On Ruby’s turn,
Ruby selects two white unit squares and colors them red. The players alternate
until Blake decides to end the game. At this point, Blake gets a score, given by the
number of unit squares in the largest (in terms of area) simple polygon containing
only blue unit squares.
What is the largest score Blake can guarantee?

5. Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate
turns. If on his turn Bob has no valid moves, the game ends.
After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show
that, in fact, for this value of a and these N integers on the board, the game is
guaranteed to end regardless of Alice’s or Bob’s moves.

6. Isosceles triangle ABC, with AB = AC, is inscribed in circle ω. Let D be an
arbitrary point inside BC such that BD 6= DC. Ray AD intersects ω again at E
(other than A). Point F (other than E) is chosen on ω such that ∠DFE = 90◦.
Line FE intersects rays AB and AC at points X and Y , respectively. Prove that
∠XDE = ∠EDY .
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§1 Solutions to Day 1
§1.1 JMO 2023/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p27349258.

Problem statement

Find all triples of positive integers (x, y, z) satisfying

2(x+ y + z + 2xyz)2 = (2xy + 2yz + 2zx+ 1)2 + 2023.

Answer: (3, 3, 2) and permutations.
The solution hinges upon the following claim:

Claim — The identity

2(x+ y + z + 2xyz)2 − (2xy + 2yz + 2zx+ 1)2 = (2x2 − 1)(2y2 − 1)(2z2 − 1)

is true.

Proof. This can be proved by manually expanding; we show where it “came from”. In
algebraic number theory, there is a norm function Norm : Q(

√
2)→ Q defined by

Norm(a+ b
√
2) = a2 − 2b2

which is multiplicative, meaning

Norm(u · v) = Norm(u) ·Norm(v).

This means that for any rational numbers x, y, z, we should have

Norm
(
(1 +

√
2x)(1 +

√
2y)(1 +

√
2z)
)

= Norm(1 +
√
2x) ·Norm(1 +

√
2y) ·Norm(1 +

√
2z).

But (1 +
√
2x)(1 +

√
2y)(1 +

√
2z) = (2xy + 2yz + 2zx+ 1) + (x+ y + z + 2xyz)

√
2 so

the above equation is the negative of the desired identity.

We are thus reduced to find positive integers x, y, z satisfying

(2x2 − 1)(2y2 − 1)(2z2 − 1) = 2023 = 7 · 172.

Each of the factors is a positive integer greater than 1. The only divisors of 2023 of the
form 2t2 − 1 are 1, 7, 17. This gives the answers claimed.
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§1.2 JMO 2023/2, proposed by Holden Mui
Available online at https://aops.com/community/p27349297.

Problem statement

In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

We show several different approaches. In all solutions, let D denote the foot of the
altitude from A.

A

B CD
M

P

Q

N

R

¶ Most common synthetic approach The solution hinges on the following claim:

Claim — Q coincides with the reflection of D across M .

Proof. Note that ]ADC = ]APC = 90◦, so ADPC is cyclic. Then by power of a point
(with the lengths directed),

MB ·MQ = MA ·MP = MC ·MD.

Since MB = MC, the claim follows.

It follows that MN ‖ AD, as M and N are respectively the midpoints of AQ and DQ.
Thus MN ⊥ BC, and so N lies on the perpendicular bisector of BC, as needed.

Remark (David Lin). One can prove the main claim without power of a point as well, as
follows: Let R be the foot from B to AM , so BRCP is a parallelogram. Note that ABDR
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is cyclic, and hence

]DRM = ]DBA = QBA = ]QPA = ]QPM.

Thus, DR ‖ PQ, so DRQ is also a parallelogram.

¶ Synthetic approach with no additional points at all

Claim — 4BPC ∼ 4ANM (oppositely oriented).

Proof. We have 4BMP ∼ 4AMQ from the given concyclicity of ABPQ. Then

BM

BP
=

AM

AQ
=⇒ 2BM

BP
=

AM

AQ/2
=⇒ BC

BP
=

AM

AN

implying the similarity (since ]MAQ = ]BPM).

This similarity gives us the equality of directed angles

] (BC,MN) = −] (PC,AM) = 90◦

as desired.

¶ Synthetic approach using only the point R Again let R be the foot from B to AM ,
so BRCP is a parallelogram.

Claim — ARQC is cyclic; equivalently, 4MAQ ∼ 4MCR.

Proof. MR ·MA = MP ·MA = MB ·MQ = MC ·MQ.

Note that in 4MCR, the M -median is parallel to CP and hence perpendicular to
RM . The same should be true in 4MAQ by the similarity, so MN ⊥MQ as needed.

¶ Cartesian coordinates approach with power of a point Suppose we set B = (−1, 0),
M = (0, 0), C = (1, 0), and A = (a, b). One may compute:

←−→
AM : 0 = bx− ay ⇐⇒ y =

b

a
x

←→
CP : 0 = a(x− 1) + by ⇐⇒ y = −a

b
(x− 1) = −a

b
x+

a

b
.

P =

(
a2

a2 + b2
,

ab

a2 + b2

)

Now note that
AM =

√
a2 + b2, PM =

a√
a2 + b2

together with power of a point

AM · PM = BM ·QM

to immediately deduce that Q = (a, 0). Hence N = (0, b/2) and we’re done.
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¶ Cartesian coordinates approach without power of a point (outline) After computing
A and P as above, one could also directly calculate

Perpendicular bisector of AB : y = −a+ 1

b
x+

a2 + b2 − 1

2b

Perpendicular bisector of PB : y = −
(
2a

b
+

b

a

)
x− b

2a

Perpendicular bisector of PA : y = −a

b
x+

a+ a2 + b2

2b
.

Circumcenter of 4PAB =

(
−a+ 1

2
,
2a2 + 2a+ b2

2b

)
.

This is enough to extract the coordinates of Q = (•, 0), because B = (−1, 0) is given,
and the x-coordinate of the circumcenter should be the average of the x-coordinates of
B and Q. In other words, Q = (−a, 0). Hence, N =

(
0, b

2

)
, as needed.

¶ Ill-advised barycentric approach (outline) Use reference triangle ABC. The A-
median is parametrized by (t : 1 : 1) for t ∈ R. So because of CP ⊥ AM , we are looking
for t such that (

t ~A+ ~B + ~C

t+ 2
− ~C

)
⊥

(
A−

~B + ~C

2

)
.

This is equivalent to (
t ~A+ ~B − (t+ 1)~C

)
⊥
(
2 ~A− ~B − ~C

)
.

By the perpendicularity formula for barycentric coordinates (EGMO 7.16), this is equiva-
lent to

0 = a2t− b2 · (3t+ 2) + c2 · (2− t)

=
(
a2 − 3b2 − c2

)
t− 2(b2 − c2)

=⇒ t =
2(b2 − c2)

a2 − 3b2 − c2
.

In other words,
P =

(
2(b2 − c2) : a2 − 3b2 − c2 : a2 − 3b2 − c2

)
.

A long calculation gives a2yP zP + b2zPxP + c2xP yP = (a2 − 3b2 − c2)(a2 − b2 + c2)(a2 −
2b2 − 2c2). Together with xP + yP + zP = 2a2 − 4b2 − 4c2, this makes the equation of
(ABP ) as

0 = −a2yz − b2zx− c2xy +
a2 − b2 + c2

2
z(x+ y + z).

To solve for Q, set x = 0 to get to get

a2yz =
a2 − b2 + c2

2
z(y + z) =⇒ y

z
=

a2 − b2 + c2

a2 + b2 − c2
.

In other words,
Q =

(
0 : a2 − b2 + c2 : a2 + b2 − c2

)
.

Taking the average with A = (1, 0, 0) then gives

N =
(
2a2 : a2 − b2 + c2 : a2 + b2 − c2

)
.

The equation for the perpendicular bisector of BC is given by (see EGMO 7.19)

0 = a2(z − y) + x(c2 − b2)

which contains N , as needed.
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¶ Extremely ill-advised complex numbers approaches (outline) Suppose we pick a, b,
c as the unit circle, and let m = (b+ c)/2. Using the fully general “foot” formula, one
can get

p =
(a−m)c+ (a−m)c+ am− am

2(a−m)
=

a2b− a2c− ab2 − 2abc− ac2 + b2c+ 3bc2

4bc− 2a(b+ c)

Meanwhile, an extremely ugly calculation will eventually yield

q =
bc
a + b+ c− a

2

so

n =
a+ q

2
=

a+ b+ c+ bc
a

4
=

(a+ b)(a+ c)

2a
.

There are a few ways to then verify NB = NC. The simplest seems to be to verify that

n− b+c
2

b− c
=

a− b− c+ bc
a

4(b− c)
=

(a− b)(a− c)

2a(b− c)

is pure imaginary, which is clear.
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§1.3 JMO 2023/3, proposed by Holden Mui
Available online at https://aops.com/community/p27349423.

Problem statement

Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2−1)/2 dominoes where each domino covers exactly two
neighboring squares and the dominoes don’t overlap: C then covers all but one square
on the board. We are allowed to slide (but not rotate) a domino on the board to cover
the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned
configurations obtainable from C by repeatedly sliding dominoes.

Find the maximum possible value of k(C) as a function of n.

The answer is that

k(C) ≤
(
n+ 1

2

)2

.

Remark (Comparison with USAMO version). In the USAMO version of the problem,
students instead are asked to find all possible values of k(C). The answer is k(C) ∈{
1, 2, . . . ,

(
n−1
2

)2} ∪ {(n+1
2

)2}.

Index the squares by coordinates (x, y) ∈ {1, 2, . . . , n}2. We say a square is special if
it is empty or it has the same parity in both coordinates as the empty square.

Construct a directed graph G = G(C) whose vertices are special squares as follows: for
each domino on a special square s, we draw a directed edge from s to the special square
that domino points to, if any. (If the special square has both odd coordinates, all special
squares have an outgoing edge except the empty cell. In the even-even case, some arrows
may point “off the board” and not be drawn.)

Claim — Any undirected connected component of G is acyclic unless the cycle
contains the empty square inside it.
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Proof. Consider a cycle of G; we are going to prove that the number of chessboard cells
enclosed is always odd.

This can be proven directly by induction, but for theatrical effect, we use Pick’s
theorem. Mark the center of every chessboard cell on or inside the cycle to get a lattice.
The dominoes of the cycle then enclose a polyominoe which actually consists of 2 × 2
squares, meaning its area is a multiple of 4.

Hence B/2+ I − 1 is a multiple of 4, in the notation of Pick’s theorem. As B is twice the
number of dominoes, and a parity argument on the special squares shows that number is
even, it follows that B is also a multiple of 4 (these correspond to blue and black in the
figure above). This means I is odd (the red dots in the figure above), as desired.

Consider the connected component T of the graph containing the empty square; it’s
acyclic, so it’s a tree. Notice that all the arrows along T point towards the empty cell,
and moving a domino corresponds to flipping an arrow. Therefore:

Claim — k(C) is exactly the number of vertices of T .

Proof. Starting with the underlying tree, the set of possible graphs is described by picking
one vertex to be the sink (the empty cell) and then directing all arrows towards it.

This implies that k(C) ≤
(
n+1
2

)2, the total number of vertices of G (this could only
occur if the special squares are odd-odd, not even-even). Equality is achieved as long as
T is a spanning tree; one example of a way to achieve this is using the snake configuration
below.

Remark. In Russia 1997/11.8 it’s shown that as long as the missing square is a corner, we
have G = T . The proof is given implicitly from our work here: when the empty cell is in a
corner, it cannot be surrounded, ergo G has no cycles at all. Since it has one fewer edge
than vertex, it’s a tree.

9
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§2 Solutions to Day 2
§2.1 JMO 2023/4, proposed by David Torres
Available online at https://aops.com/community/p27349414.

Problem statement

Two players, Blake and Ruby, play the following game on an infinite grid of unit
squares, all initially colored white. The players take turns starting with Blake. On
Blake’s turn, Blake selects one white unit square and colors it blue. On Ruby’s turn,
Ruby selects two white unit squares and colors them red. The players alternate
until Blake decides to end the game. At this point, Blake gets a score, given by the
number of unit squares in the largest (in terms of area) simple polygon containing
only blue unit squares.

What is the largest score Blake can guarantee?

The answer is 4 squares.

¶ Algorithm for Blake to obtain at least 4 squares We simply let Blake start with
any cell blue, then always draw adjacent to a previously drawn blue cell until this is no
longer possible.

Note that for n ≤ 3, any connected region of n blue cells has more than 2n liberties
(non-blue cells adjacent to a blue cell); up to translation, rotation, and reflection, all the
cases are shown in the figure below with liberties being denoted by circles.

So as long as n ≤ 3, it’s impossible that Ruby has blocked every liberty, since Ruby
has colored exactly 2n cells red. Therefore, this algorithm could only terminate once
n ≥ 4.

¶ Algorithm for Ruby to prevent more than 4 squares Divide the entire grid into 2×2
squares, which we call windows. Any time Blake makes a move in a cell c, let Ruby mark
any orthogonal neighbors of c in its window; then place any leftover red cells arbitrarily.
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Claim — It’s impossible for any window to contain two orthogonally adjacent blue
cells.

Proof. By construction: if there were somehow two adjacent blue cells in the same
window, whichever one was played first should have caused red cells to be added.

We show this gives the upper bound of 4 squares. Consider a blue cell w, and assume
WLOG it is in the southeast corner of a window. Label squares x, y, z as shown below.

w x

y z

Note that by construction, the blue polygon cannot leave the square {w, x, y, z}, since
whenever one of these four cells is blue, its neighbours outside that square are guaranteed
to be red. This implies the bound.

Remark (For Tetris fans). Here is a comedic alternative finish after proving the claim.
Consider the possible tetrominoes (using the notation of https://en.wikipedia.org/wiki/
Tetromino#One-sided_tetrominoes). We claim that only the square (O) is obtainable; as

• T, J/L, and I all have three cells in a row, so they can’t occur;

• S and Z can’t occur either; if the bottom row of an S crossed a window boundary,
then the top row doesn’t for example.

Moreover, the only way a blue O could be obtained is if each of it cells is in a different
window. In that case, no additional blue cells can be added: it’s fully surrounded by red.

Finally, for any k-omino with k > 4, one can find a tetromino as a subset. (Proof: take
the orthogonal adjacency graph of the k-omino, choose a spanning tree, and delete leaves
from the tree until there are only four vertices left.)

Remark (Common wrong approach). Suppose Ruby employs the following algorithm
whenever Blake places a square x. If either the north and west neighbors of x are unoccupied,
place red squares on both of them. With any leftover red squares, place them at other
neighbors of x if possible. Finally, place any other red squares arbitrarily. (Another variant,
the one Evan originally came up with, is to place east if possible when west is occupied,
place south if possible when north is occupied, and then place any remaining red squares
arbitrarily.)

As written, this strategy does not work. The reason is that one can end up in the following
situation (imagine the blue square in the center is played first; moves for Ruby are drawn as
red X’s):
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1

2

3

In order to prevent Blake from winning, Ruby would need to begin playing moves not
adjacent to Blake’s most recent move.

Thus in order for this solution to be made correct, one needs a careful algorithm for how
Ruby should play when the north and west neighbors are not available. As far as I am
aware, there are some specifications that work (and some that don’t), but every working
algorithm I have seen seems to involve some amount of casework.

It is even more difficult to come up with a solution involving playing on just “some” two
neighbors of recently added blue squares without the “prefer north and west” idea.
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§2.2 JMO 2023/5, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349336.

Problem statement

Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate turns.
If on his turn Bob has no valid moves, the game ends.

After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show that,
in fact, for this value of a and these N integers on the board, the game is guaranteed
to end regardless of Alice’s or Bob’s moves.

For N = 1, there is nothing to prove. We address N ≥ 2 only henceforth. Let S denote
the numbers on the board.

Claim — When N ≥ 2, if ν2(x) < ν2(a) for all x ∈ S, the game must terminate no
matter what either player does.

Proof. The ν2 of a number is unchanged by Alice’s move and decreases by one on Bob’s
move. The game ends when every ν2 is zero.

Hence, in fact the game will always terminate in exactly
∑

x∈S ν2(x) moves in this
case, regardless of what either player does.

Claim — When N ≥ 2, if there exists a number x on the board such that ν2(x) ≥
ν2(a), then Alice can cause the game to go on forever.

Proof. Denote by x the first entry of the board (its value changes over time). Then
Alice’s strategy is to:

• Operate on the first entry if ν2(x) = ν2(a) (the new entry thus has ν2(x+a) > ν2(a));

• Operate on any other entry besides the first one, otherwise.

A double induction then shows that

• Just before each of Bob’s turns, ν2(x) > ν2(a) always holds; and

• After each of Bob’s turns, ν2(x) ≥ ν2(a) always holds.

In particular Bob will never run out of legal moves, since halving x is always legal.
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§2.3 JMO 2023/6, proposed by Anton Trygub
Available online at https://aops.com/community/p27349508.

Problem statement

Isosceles triangle ABC, with AB = AC, is inscribed in circle ω. Let D be an
arbitrary point inside BC such that BD 6= DC. Ray AD intersects ω again at E
(other than A). Point F (other than E) is chosen on ω such that ∠DFE = 90◦.
Line FE intersects rays AB and AC at points X and Y , respectively. Prove that
∠XDE = ∠EDY .

We present three solutions.

¶ Angle chasing solution Note that (BDA) and (CDA) are congruent, since BA = CA
and ∠BDA + ∠CDA = 180◦. So these two circles are reflections around line ED.
Moreover, (DEF ) is obviously also symmetric around line ED.

E

B

C

A

D

F

X

Y

Y

Hence, the radical axis of (BDA) and (DEF ), and the radical axis of (CDA) and (DEF ),
should be symmetric about line DE. But these radical axii are exactly lines XD and
Y D, so we’re done.

Remark (Motivation). The main idea is that you can replace DX and DY with the radical
axii, letting X ′ and Y ′ be the second intersections of the blue circles. Then for the problem
to be true, you’d need X ′ and Y ′ to be reflections. That’s equivalent to (BDA) and (CDA)
being congruent; you check it and it’s indeed true.

¶ Harmonic solution (mine) Let T be the point on line XFEY such that ∠EDT = 90◦,
and let AT meet ω again at K. Then

TD2 = TF · TE = TK · TA =⇒ ∠DKT = 90◦
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so line DK passes through the antipode M of A.

E

B C

A

D

F

X

Y

M

T

K

Thus,
−1 = (AM ;CB)ω

D
= (EK;BC)ω

A
= (TE;XY )

and since ∠EDT = 90◦ we’re done.

Remark (Motivation). The idea is to kill the points X and Y by reinterpreting the desired
condition as (TD;XY ) = −1 and then projecting through A onto ω. This eliminates
points X and Y altogether and reduces the problem to showing that TA passes through the
harmonic conjugate of E with respect to BC on ω.

The labels on the diagram are slightly misleading in that 4EBC should probably be
thought of as the “reference” triangle.

¶ Pascal solution (Zuming Feng) Extend ray FD to the antipode T of E on ω. Then,

• By Pascal’s theorem on EFTABC, the points X, D, and P := EC ∩ AT are
collinear.

• Similarly by Pascal’s theorem on EFTACB, the points the points Y , D, and
Q := EB ∩AT are collinear.
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E

B

C

A

D

F

X

Y

T PQ

Now it suffices to prove ED bisects ∠QDP . However, ED is the angle bisector of
∠QEP = ∠BEC, but also EA ⊥ QP . Thus triangle QEP is isosceles with QE = PE,
and EA cuts it in half. Since D is on EA, the result follows now.
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