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Toomates Coolección 
 

Los libros de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un 

ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser 
digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele 

suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que 

no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales pretenden 
cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima 

calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, pretende 

convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende 
pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos 

que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el 
libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Estos libros se comparten bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve y 

se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los libros se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” de 

MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 

 

Toomates Coolección Problem Solving (en español):  
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¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones 

editables “MS Word” de todos los materiales, para facilitar su edición.  

 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 
 

¡No utilices una versión anticuada! Todos estos libros se revisan y amplían constantemente. Descarga 
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Índex. 
 

  Enunciados Soluciones Estadísticas 

2011 53  5  8  

2012 54  20  23  

2013 55  39  42  

2014 56  59  61  

2015 57  70  72  

2016 58  82  84  

2017 59  96  98  

2018 60  114  117  142 

2019 61  144  147  174 

2020 62  176  179  201 

2021 63  203  206  239 

2022 64  241  244  266 

2023 65  268  271  302 

 

 

 

Fuente. 
 https://web.evanchen.cc/problems.html 
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53rd IMO Team Selection Test

Lincoln, Nebraska

Day I 1:30 PM - 6:00 PM

June 26, 2011

1. Find all real-valued functions f defined on pairs of real numbers, having the following prop-
erty: for all real numbers a, b, c, the median of f(a, b), f(b, c), f(c, a) equals the median of
a, b, c.
(The median of three real numbers, not necessarily distinct, is the number that is in the middle
when the three numbers are arrange in nondecreasing order.)

2. Two circles ω1 and ω2 intersect at points A and B. Line ` is tangent to ω1 at P and to ω2 at Q
so that A is closer to ` than B. Let X and Y be points on major arcs PA (on ω1) and AQ (on
ω2), respectively, such that AX/PX = AY/QY = c. Extend segments PA and QA through
A to R and S, respectively, such that AR = AS = c · PQ. Given that the circumcenter of
triangle ARS lies on line XY , prove that ∠XPA = ∠AQY .

3. Prove that there exists a real constant c such that for any pair (x, y) of real numbers, there
exist relatively prime integers m and n satisfying the relation√

(x−m)2 + (y − n)2 < c log(x2 + y2 + 2).
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53rd IMO Team Selection Test

Lincoln, Nebraska

Day II 1:30 PM - 6:00 PM

June 27, 2011

4. Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter and circum-
center, respectively. Let M and N be the midpoints of sides AB and AC, respectively. Rays
MH and NH meet at ω at P and Q, respectively. Lines MN and PQ meet at R. Prove that
OA ⊥ RA.

5. At a certain orphanage, every pair of orphans are either friends or enemies. For every three
of an orphan’s friends, an even number of pairs of them are enemies. Prove that it’s possible
to assign each orphan two parents such that every pair of friends shares exactly one parent,
but no pair of enemies does, and no three parents are in a love triangle (where each pair of
them has a child).

6. Let a,b,c be positive real numbers in the interval [0, 1] with a + b, b + c, c + a ≥ 1, prove that

1 ≤ (1− a)2 + (1− b)2 + (1− c)2 +
2
√

2abc√
a2 + b2 + c2

.
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2



53rd IMO Team Selection Test

Lincoln, Nebraska

Day III 1:30 PM - 6:00 PM

June 29, 2011

7. Let ABC be a triangle. Its excircles touch sides BC, CA, AB at D, E, F , respectively. Prove
that the perimeter of triangle ABC is at most twice that of triangle DEF .

8. Let x0, x1, · · ·, xn0−1 be integers, and let d1, d2, · · ·, dk be positive integers with n0 = d1 >
d2 > · · · > dk and gcd(d1, d2, · · · dk) = 1. For every integer n ≥ n0, define

xn =

⌊
xn−d1

+ xn−d2
+ · · ·+ xn−dk

k

⌋
.

Show that the sequence {xn} is eventually constant.

9. Let n be a positive integer. Suppose we are given 2n + 1 distinct sets, each containing finitely
many objects. Place each set into one of two categories, the red sets and the blue sets, so that
there is at least one set in each category. We define the symmetric difference of two sets as
the set of objects belonging to exactly one of the two sets. Prove that there are at least 2n

different sets which can be obtained as the symmetric difference of a red set and a blue set.

Copyright c© Committee on the American Mathematics Competitions,
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TSTST 2011 Solution Notes
Lincoln, Nebraska

Evan Chen《陳誼廷》
28 October 2023

This is a compilation of solutions for the 2011 TSTST. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
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1 Solutions to Day 1 3
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§0 Problems
1. Find all real-valued functions f defined on pairs of real numbers, having the

following property: for all real numbers a, b, c, the median of f(a, b), f(b, c), f(c, a)
equals the median of a, b, c.
(The median of three real numbers, not necessarily distinct, is the number that is
in the middle when the three numbers are arranged in nondecreasing order.)

2. Two circles ω1 and ω2 intersect at points A and B. Line ` is tangent to ω1 at P
and to ω2 at Q so that A is closer to ` than B. Let X and Y be points on major
arcs P̂A (on ω1) and AQ (on ω2), respectively, such that AX/PX = AY /QY = c.
Extend segments PA and QA through A to R and S, respectively, such that
AR = AS = c · PQ. Given that the circumcenter of triangle ARS lies on line XY ,
prove that ∠XPA = ∠AQY .

3. Prove that there exists a real constant c such that for any pair (x, y) of real numbers,
there exist relatively prime integers m and n satisfying the relation√

(x−m)2 + (y − n)2 < c log(x2 + y2 + 2).

4. Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter
and circumcenter, respectively. Let M and N be the midpoints of sides AB and
AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN
and PQ meet at R. Prove that OA ⊥ RA.

5. At a certain orphanage, every pair of orphans are either friends or enemies. For
every three of an orphan’s friends, an even number of pairs of them are enemies.
Prove that it’s possible to assign each orphan two parents such that every pair of
friends shares exactly one parent, but no pair of enemies does, and no three parents
are in a love triangle (where each pair of them has a child).

6. Let a, b, c be real numbers in the interval [0, 1] with a+ b, b+ c, c+ a ≥ 1. Prove
that

1 ≤ (1− a)2 + (1− b)2 + (1− c)2 +
2
√
2abc√

a2 + b2 + c2
.

7. Let ABC be a triangle. Its excircles touch sides BC, CA, AB at D, E, F . Prove
that the perimeter of triangle ABC is at most twice that of triangle DEF .

8. Let x0, x1, . . . , xn0−1 be integers, and let d1, d2, . . . , dk be positive integers with
n0 = d1 > d2 > · · · > dk and gcd(d1, d2, . . . , dk) = 1. For every integer n ≥ n0,
define

xn =

⌊
xn−d1 + xn−d2 + · · ·+ xn−dk

k

⌋
.

Show that the sequence (xn) is eventually constant.

9. Let n be a positive integer. Suppose we are given 2n+1 distinct sets, each containing
finitely many objects. Place each set into one of two categories, the red sets and
the blue sets, so that there is at least one set in each category. We define the
symmetric difference of two sets as the set of objects belonging to exactly one of
the two sets. Prove that there are at least 2n different sets which can be obtained
as the symmetric difference of a red set and a blue set.
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§1 Solutions to Day 1
§1.1 TSTST 2011/1
Available online at https://aops.com/community/p2374841.

Problem statement

Find all real-valued functions f defined on pairs of real numbers, having the following
property: for all real numbers a, b, c, the median of f(a, b), f(b, c), f(c, a) equals the
median of a, b, c.

(The median of three real numbers, not necessarily distinct, is the number that is
in the middle when the three numbers are arranged in nondecreasing order.)

The following solution is joint with Andrew He.
We prove the following main claim, from which repeated applications can deduce the

problem.

Claim — Let a < b < c be arbitrary. On {a, b, c}2, f takes one of the following two
forms, where the column indicates the x-value and the row indicates the y-value.

f a b c

a a b ≥ c
b ≤ a b ≥ c
c ≤ a b c

or

f a b c

a a ≤ a ≤ a
b b b b
c ≥ c ≥ c c

Proof. First, we of course have f(x, x) = x for all x. Now:

• By considering the assertion for (a, a, c) and (a, c, c) we see that one of f(a, c) and
f(c, a) is ≥ c and the other is ≤ a.

• Hence, by considering (a, b, c) we find that one of f(a, b) and f(b, c) must be b, and
similarly for f(b, a) and f(c, b).

• Now, WLOG f(b, a) = b; we prove we get the first case.

• By considering (a, a, b) we deduce f(a, b) ≤ a, so f(b, c) = b and then f(c, b) ≥ c.

• Finally, considering (c, b, a) once again in conjunction with the first bullet, we arrive
at the conclusion that f(a, c) ≤ a; similarly f(c, a) ≥ c.

From this it’s easy to obtain that f(x, y) ≡ x or f(x, y) ≡ y are the only solutions.

3
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§1.2 TSTST 2011/2
Available online at https://aops.com/community/p2374843.

Problem statement

Two circles ω1 and ω2 intersect at points A and B. Line ` is tangent to ω1 at P
and to ω2 at Q so that A is closer to ` than B. Let X and Y be points on major
arcs P̂A (on ω1) and AQ (on ω2), respectively, such that AX/PX = AY /QY = c.
Extend segments PA and QA through A to R and S, respectively, such that
AR = AS = c · PQ. Given that the circumcenter of triangle ARS lies on line XY ,
prove that ∠XPA = ∠AQY .

We begin as follows:

Claim — There is a spiral similarity centered at X mapping AR to PQ. Similarly
there is a spiral similarity centered at Y mapping SA to PQ.

Proof. Since ]XAR = ]XAP = ]XPQ, and AR/AX = PQ/PX is given.

Now the composition of the two spiral similarities

AR
X7−→ PQ

Y7−→ SA

must be a rotation, since AR = AS. The center of this rotation must coincide with the
circumcenter O of 4ARS, which is known to lie on line XY .

A

Q

P

X

Y

R

S
O

O′

As O is a fixed-point of the composed map above, we may let O′ be the image of O
under the rotation at X, so that

4XPA
+∼ 4XO′O, 4Y QA

+∼ 4Y O′O.

Because
XO

XO′ =
XA

XP
= c

Y Q

Y A
=

Y O

Y O′

4
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

it follows O′O bisects ∠XO′Y . Finally, we have

]XPA = ]XO′O = ]OO′Y = ]AQY.

Remark. Indeed, this also shows XP ‖ Y Q; so the positive homothety from ω1 to ω2 maps
P to Q and X to Y .
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§1.3 TSTST 2011/3
Available online at https://aops.com/community/p2374845.

Problem statement

Prove that there exists a real constant c such that for any pair (x, y) of real numbers,
there exist relatively prime integers m and n satisfying the relation√

(x−m)2 + (y − n)2 < c log(x2 + y2 + 2).

This is actually the same problem as USAMO 2014/6. Surprise!
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TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§2 Solutions to Day 2
§2.1 TSTST 2011/4
Available online at https://aops.com/community/p2374848.

Problem statement

Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter
and circumcenter, respectively. Let M and N be the midpoints of sides AB and
AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN
and PQ meet at R. Prove that OA ⊥ RA.

Let MH and NH meet the nine-point circle again at P ′ and Q′, respectively. Recall
that H is the center of the homothety between the circumcircle and the nine-point circle.
From this we can see that P and Q are the images of this homothety, meaning that

HQ = 2HQ′ and HP = 2HP ′.

Since M , P ′, Q′, N are cyclic, Power of a Point gives us

MH ·HP ′ = HN ·HQ′.

Multiplying both sides by two, we thus derive

HM ·HP = HN ·HQ.

It follows that the points M , N , P , Q are concyclic.

A

B C

H

O

M N

P

Q

R

Q′

P ′

Let ω1, ω2, ω3 denote the circumcircles of MNPQ, AMN , and ABC, respectively.
The radical axis of ω1 and ω2 is line MN , while the radical axis of ω1 and ω3 is line PQ.
Hence the line R lies on the radical axis of ω2 and ω3.

But we claim that ω2 and ω3 are internally tangent at A. This follows by noting the
homothety at A with ratio 2 sends M to B and N to C. Hence the radical axis of ω2

and ω3 is a line tangent to both circles at A.
Hence RA is tangent to ω3. Therefore, RA ⊥ OA.
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§2.2 TSTST 2011/5
Available online at https://aops.com/community/p2374849.

Problem statement

At a certain orphanage, every pair of orphans are either friends or enemies. For
every three of an orphan’s friends, an even number of pairs of them are enemies.
Prove that it’s possible to assign each orphan two parents such that every pair of
friends shares exactly one parent, but no pair of enemies does, and no three parents
are in a love triangle (where each pair of them has a child).

Of course, we consider the graph with vertices as children and edges as friendships.
Consider all the maximal cliques in the graph (i.e. repeatedly remove maximal cliques
until no edges remain; thus all edges are in some clique).

Claim — Every vertex is in at most two maximal cliques.

Proof. Indeed, consider a vertex v adjacent to w1 and w2, but with w1 not adjacent to
w2. Then by condition, any third vertex u must be adjacent to exactly one of w1 and
w2. Moreover, given vertices u and u′ adjacent to w1, vertices u and u′ are adjacent too.
This proves the claim.

Now, for every maximal clique we assign a particular parent to all vertices in that
clique, adding in additional distinct parents if there are any deficient children. This
satisfies the friendship/enemy condition. Moreover, one can readily check that there are
no love triangles: given children a, b, c such that a and b share a parent while a and c
share another parent, according to the claim b and c can’t share a third parent. This
completes the problem.

Remark. This solution is highly motivated for the following reason: by experimenting
with small cases, one quickly finds that given some vertices which form a clique, one must
assign some particular parent to all vertices in that clique. That is, the requirements of the
problem are sufficiently rigid that there is no room for freedom on our part, so we know
a priori that an assignment based on cliques (as above) must work. From there we know
exactly what to prove, and everything else follows through.

Ironically, the condition that there be no love triangle actually makes the problem easier,
because it tells us exactly what to do!
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§2.3 TSTST 2011/6
Available online at https://aops.com/community/p2374852.

Problem statement

Let a, b, c be real numbers in the interval [0, 1] with a+ b, b+ c, c+a ≥ 1. Prove that

1 ≤ (1− a)2 + (1− b)2 + (1− c)2 +
2
√
2abc√

a2 + b2 + c2
.

The following approach is due to Ashwin Sah.
We will prove the inequality for any a, b, c the sides of a possibly degenerate triangle

(which is implied by the condition), ignoring the particular constant 1. Homogenizing,
we instead prove the problem in the following form:

Claim — We have

k2 ≤ (k − a)2 + (k − b)2 + (k − c)2 +
2
√
2abc√

a2 + b2 + c2

for any a, b, c, k with (a, b, c) the sides of a possibly degenerate triangle.

Proof. For any particular (a, b, c) this is a quadratic in k of the form 2k2− 2(a+ b+ c)k+
C ≥ 0; thus we will verify it holds for k = 1

2(a+ b+ c).
Letting x = 1

2(b+c−a) as is usual, the problem rearranges to In that case, the problem
amounts to

(x+ y + z)2 ≤ x2 + y2 + z2 +
2(x+ y)(y + z)(z + x)√

x2 + y2 + z2 + xy + yz + zx

or equivalently

x2 + y2 + z2 + xy + yz + zx ≤
(
(x+ y)(y + z)(z + x)

xy + yz + zx

)2

.

To show this, one may let t = xy + yz + zx, then using (x + y)(x + z) = x2 + B this
becomes

t2(x2 + y2 + z2 + t) ≤ (x2 + t)(y2 + t)(z2 + t)

which is obvious upon expansion.

Remark. The inequality holds actually for all real numbers a, b, c, with very disgusting
proofs.
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§3 Solutions to Day 3
§3.1 TSTST 2011/7
Available online at https://aops.com/community/p2374855.

Problem statement

Let ABC be a triangle. Its excircles touch sides BC, CA, AB at D, E, F . Prove
that the perimeter of triangle ABC is at most twice that of triangle DEF .

Solution by August Chen: It turns out that it is enough to take the orthogonal projection
of EF onto side BC (which has length a− (s− a)(cosB + cosC)) and sum cyclically:

−s+
∑
cyc

EF ≥ −s+
∑
cyc

[a− (s− a) (cosB + cosC)]

= s−
∑
cyc

a cosA =
∑
cyc

a

(
1

2
− cosA

)
= R

∑
cyc

sinA(1− 2 cosA)

= R
∑
cyc

(sinA− sin 2A) .

Thus we’re done upon noting that

sin 2B + sin 2C

2
= sin(B + C) cos(B − C) = sinA cos(B − C) ≤ sinA.

(Alternatively, one can avoid trigonometry by substituting cosA = b2+c2−a2

2bc and doing
some routine but long calculation.)
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§3.2 TSTST 2011/8
Available online at https://aops.com/community/p2374856.

Problem statement

Let x0, x1, . . . , xn0−1 be integers, and let d1, d2, . . . , dk be positive integers with
n0 = d1 > d2 > · · · > dk and gcd(d1, d2, . . . , dk) = 1. For every integer n ≥ n0,
define

xn =

⌊
xn−d1 + xn−d2 + · · ·+ xn−dk

k

⌋
.

Show that the sequence (xn) is eventually constant.

Note that if the initial terms are contained in some interval [A,B] then they will remain
in that interval. Thus the sequence is eventually periodic. Discard initial terms and let
the period be T ; we will consider all indices modulo T from now on.

Let M be the maximal term in the sequence (which makes sense since the sequence
is periodic). Note that if xn = M , we must have xn−di = M for all i as well. By
taking a linear combination

∑
cidi ≡ 1 (mod T ) (possibly be Bezout’s theorem, since

gcdi(di) = 1), we conclude xn−1 = M , as desired.
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§3.3 TSTST 2011/9
Available online at https://aops.com/community/p2374857.

Problem statement

Let n be a positive integer. Suppose we are given 2n+1 distinct sets, each containing
finitely many objects. Place each set into one of two categories, the red sets and the
blue sets, so that there is at least one set in each category. We define the symmetric
difference of two sets as the set of objects belonging to exactly one of the two sets.
Prove that there are at least 2n different sets which can be obtained as the symmetric
difference of a red set and a blue set.

We can interpret the problem as working with binary strings of length ` ≥ n+ 1, with `
the number of elements across all sets.

Let F be a field of cardinality 2`, hence F ∼= F⊕`
2 .

Then, we can think of red/blue as elements of F , so we have some B ⊆ F , and an
R ⊆ F . We wish to prove that |B +R| ≥ 2n. Want |B +R| ≥ 2n.

Equivalently, any element of a set X with |X| = 2n − 1 should omit some element of
|B +R|. To prove this: we know |B|+ |R| = 2n + 1, and define

P (b, r) =
∏
x∈X

(b+ r − x).

Consider b|B|−1r|R|−1. The coefficient of is
(
2n−1
|B|−1

)
, which is odd (say by Lucas theorem),

so the nullstellensatz applies.
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Team Selection Test for the Selection Team of 54th IMO

Lincoln, Nebraska

Day I 1:30 PM - 6:00 PM

June 22, 2012

1. Find all infinite sequences a1, a2, . . . of positive integers satisfying the following properties:

(a) a1 < a2 < a3 < · · ·,
(b) there are no positive integers i, j, k, not necessarily distinct, such that ai + aj = ak,

(c) there are infinitely many k such that ak = 2k − 1.

2. Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P . Let ω1 and
O1 denote the circumcircle and the circumcenter of triangle ABP . Let ω2 and O2 denote the
circumcircle and circumcenter of triangle CDP . Segment BC meets ω1 and ω2 again at S
and T (other than B and C), respectively. Let M and N be the midpoints of minor arcs ŜP

(not including B) and T̂P (not including C). Prove that MN ‖ O1O2.

3. Let N be the set of positive integers. Let f : N → N be a function satisfying the following
two conditions:

(a) f(m) and f(n) are relatively prime whenever m and n are relatively prime.

(b) n ≤ f(n) ≤ n + 2012 for all n.

Prove that for any natural number n and any prime p, if p divides f(n) then p divides n.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America
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Team Selection Test for the Selection Team of 54th IMO

Lincoln, Nebraska

Day II 1:30 PM - 6:00 PM

June 24, 2012

4. In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA, C to
AB be A1, B1, C1, respectively. Denote by A2 the intersection of lines BC and B1C1. Define
B2 and C2 analogously. Let D,E, F be the respective midpoints of sides BC,CA,AB. Show
that the perpendiculars from D to AA2, E to BB2 and F to CC2 are concurrent.

5. A rational number x is given. Prove that there exists a sequence x0, x1, x2, . . . of rational
numbers with the following properties:

(a) x0 = x;

(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 + 1
n ;

(c) xn is an integer for some n.

6. Positive real numbers x, y, z satisfy xyz + xy + yz + zx = x + y + z + 1. Prove that

1

3

(√
1 + x2

1 + x
+

√
1 + y2

1 + y
+

√
1 + z2

1 + z

)
≤
(
x + y + z

3

)5/8

.
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Team Selection Test for the Selection Team of 54th IMO

Lincoln, Nebraska

Day III 1:30 PM - 6:00 PM

June 26, 2012

7. Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A intersects side
BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side BC.
The circumcircle of triangle ADM intersects sides AB and AC again at Q and P (other
than A), respectively. Let N be the midpoint of segment PQ, and let H be the foot of
the perpendicular from L to line ND. Prove that line ML is tangent to the circumcircle of
triangle HMN .

8. Let n be a positive integer. Consider a triangular array of nonnegative integers as follows:

Row 1: a0,1

Row 2: a0,2 a1,2

...
...

...

Row n− 1: a0,n−1 a1,n−1 · · · an−2,n−1

Row n: a0,n a1,n a2,n · · · an−1,n.

Call such a triangular array stable if for every 0 ≤ i < j < k ≤ n we have

ai,j + aj,k ≤ ai,k ≤ ai,j + aj,k + 1.

For s1, . . . sn any nondecreasing sequence of nonnegative integers, prove that there exists a
unique stable triangular array such that the sum of all of the entries in row k is equal to sk.

9. Given a set S of n variables, a binary operation × on S is called simple if it satisfies (x×y)×z =
x× (y× z) for all x, y, z ∈ S and x× y ∈ {x, y} for all x, y ∈ S. Given a simple operation × on
S, any string of elements in S can be reduced to a single element, such as xyz → x× (y × z).
A string of variables in S is called full if it contains each variable in S at least once, and
two strings are equivalent if they evaluate to the same variable regardless of which simple
× is chosen. For example xxx, xx, and x are equivalent, but these are only full if n = 1.
Suppose T is a set of strings such that any full string is equivalent to exactly one element of
T . Determine the number of elements of T .

Copyright c© Committee on the American Mathematics Competitions,
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This is a compilation of solutions for the 2012 TSTST. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Determine all infinite strings of letters with the following properties:

(a) Each letter is either T or S,
(b) If position i and j both have the letter T , then position i+ j has the letter S,
(c) There are infinitely many integers k such that position 2k − 1 has the kth T .

2. Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P .
Let ω1 and O1 denote the circumcircle and circumcenter of triangle ABP . Let ω2

and O2 denote the circumcircle and circumcenter of triangle CDP . Segment BC
meets ω1 and ω2 again at S and T (other than B and C), respectively. Let M and
N be the midpoints of minor arcs ŜP (not including B) and T̂P (not including C).
Prove that MN ‖ O1O2.

3. Let N be the set of positive integers. Let f : N → N be a function satisfying the
following two conditions:
(a) f(m) and f(n) are relatively prime whenever m and n are relatively prime.
(b) n ≤ f(n) ≤ n+ 2012 for all n.

Prove that for any natural number n and any prime p, if p divides f(n) then p
divides n.

4. In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA,
C to AB be A1, B1, C1, respectively. Denote by A2 the intersection of lines BC
and B1C1. Define B2 and C2 analogously. Let D, E, F be the respective midpoints
of sides BC, CA, AB. Show that the perpendiculars from D to AA2, E to BB2

and F to CC2 are concurrent.

5. A rational number x is given. Prove that there exists a sequence x0, x1, x2, . . . of
rational numbers with the following properties:
(a) x0 = x;
(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 +

1
n ;

(c) xn is an integer for some n.

6. Positive real numbers x, y, z satisfy xyz+ xy+ yz+ zx = x+ y+ z+1. Prove that

1

3

(√
1 + x2

1 + x
+

√
1 + y2

1 + y
+

√
1 + z2

1 + z

)
≤
(
x+ y + z

3

)5/8

.

7. Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A
intersects side BC and Ω at D and L (other than A), respectively. Let M be the
midpoint of side BC. The circumcircle of triangle ADM intersects sides AB and
AC again at Q and P (other than A), respectively. Let N be the midpoint of
segment PQ, and let H be the foot of the perpendicular from L to line ND. Prove
that line ML is tangent to the circumcircle of triangle HMN .

8. Let n be a positive integer. Consider a triangular array of nonnegative integers as
follows:
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Row 1:

Row 2:

...
Row n− 1:

Row n:

a0,1
a0,2 a1,2

. .
. ...

. . .
a0,n−1 a1,n−1 . . . an−2,n−1

a0,n a1,n a2,n . . . an−1,n

Call such a triangular array stable if for every 0 ≤ i < j < k ≤ n we have

ai,j + aj,k ≤ ai,k ≤ ai,j + aj,k + 1.

For s1, . . . , sn any nondecreasing sequence of nonnegative integers, prove that there
exists a unique stable triangular array such that the sum of all of the entries in row
k is equal to sk.

9. Given a set S of n variables, a binary operation × on S is called simple if it satisfies
(x× y)× z = x× (y× z) for all x, y, z ∈ S and x× y ∈ {x, y} for all x, y ∈ S. Given
a simple operation × on S, any string of elements in S can be reduced to a single
element, such as xyz → x × (y × z). A string of variables in S is called full if it
contains each variable in S at least once, and two strings are equivalent if they
evaluate to the same variable regardless of which simple × is chosen. For example
xxx, xx, and x are equivalent, but these are only full if n = 1. Suppose T is a set
of full strings such that any full string is equivalent to exactly one element of T .
Determine the number of elements of T .
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§1 Solutions to Day 1
§1.1 TSTST 2012/1, proposed by Palmer Mebane
Available online at https://aops.com/community/p2745864.

Problem statement

Determine all infinite strings of letters with the following properties:

(a) Each letter is either T or S,

(b) If position i and j both have the letter T , then position i+ j has the letter S,

(c) There are infinitely many integers k such that position 2k − 1 has the kth T .

We wish to find all infinite sequences a1, a2, . . . of positive integers satisfying the following
properties:

(a) a1 < a2 < a3 < · · · ,

(b) there are no positive integers i, j, k, not necessarily distinct, such that ai+aj = ak,

(c) there are infinitely many k such that ak = 2k − 1.

If ak = 2k − 1 for some k > 1, let Ak = {a1, a2, . . . , ak}. By (b) and symmetry, we
have

2k − 1 ≥ |Ak −Ak| − 1

2
+ |Ak| ≥

2|Ak| − 2

2
+ |Ak| = 2k − 1.

But in order for |Ak − Ak| = 2|Ak| − 1, we must have Ak an arithmetic progression,
whence an = 2n− 1 for all n by taking k arbitrarily large.
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§1.2 TSTST 2012/2
Available online at https://aops.com/community/p2745851.

Problem statement

Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P .
Let ω1 and O1 denote the circumcircle and circumcenter of triangle ABP . Let ω2

and O2 denote the circumcircle and circumcenter of triangle CDP . Segment BC
meets ω1 and ω2 again at S and T (other than B and C), respectively. Let M and
N be the midpoints of minor arcs ŜP (not including B) and T̂P (not including C).
Prove that MN ‖ O1O2.

Let Q be the second intersection point of ω1, ω2. Suffice to show QP ⊥MN . Now Q is
the center of a spiral congruence which sends AC 7→ BD. So 4QAB and 4QCD are
similar isosceles. Now,

]QPA = ]QBA = ]DCQ = ]DPQ

and so QP is bisects ∠BPC.

Q

B C

A

D

P

O1
O2

S T

M N
I

Now, let I = BM ∩CN ∩ PQ be the incenter of 4PBC. Then IM · IB = IP · IQ =
IN · IC, so BMNC is cyclic, meaning MN is antiparallel to BC through ∠BIC. Since
QPI passes through the circumcenter of 4BIC, it follows now QPI ⊥MN as desired.
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§1.3 TSTST 2012/3
Available online at https://aops.com/community/p2745877.

Problem statement

Let N be the set of positive integers. Let f : N → N be a function satisfying the
following two conditions:

(a) f(m) and f(n) are relatively prime whenever m and n are relatively prime.

(b) n ≤ f(n) ≤ n+ 2012 for all n.

Prove that for any natural number n and any prime p, if p divides f(n) then p
divides n.

¶ First short solution, by Jeffrey Kwan Let p0, p1, p2, . . . denote the sequence of all
prime numbers, in any order. Pick any primes qi such that

q0 | f(p0), q1 | f(p1), q2 | f(p2), etc.

This is possible since each f value above exceeds 1. Also, since by hypothesis the f(pi)
are pairwise coprime, the primes qi are all pairwise distinct.

Claim — We must have qi = pi for each i. (Therefore, f(pi) is a power of pi for
each i.)

Proof. Assume to the contrary that q0 6= p0. By changing labels if necessary, assume
min(p1, p2, . . . , p2012) > 2012. Then by Chinese remainder theorem we can choose an
integer m such that

m+ i ≡ 0 (mod qi)

m 6≡ 0 (mod pi)

for 0 ≤ i ≤ 2012. But now f(m) should be coprime to all f(pi), ergo coprime to
q0q1 . . . q2012, violating m ≤ f(m) ≤ m+ 2012.

All that is left to do is note that whenever p - n, we have gcd(f(p), f(n)) = 1, hence
p - f(n). This is the contrapositive of the problem statement.

¶ Second solution with a grid Fix n and p, and assume for contradiction p - n.

Claim — There exists a large integer N with f(N) = N , that also satisfies N ≡ 1
(mod n) and N ≡ 0 (mod p).

Proof. We’ll need to pick both N and an ancillary integer M . Here is how: pick 2012·2013
distinct primes qi,j > n+ p+ 2013 for every i = 1, . . . , 2012 and j = 0, . . . , 2012, and use
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it to fill in the following table:

N + 1 N + 2 . . . N + 2012

M q0,1 q0,2 . . . q0,2012
M + 1 q1,1 q1,2 . . . q1,2012

...
...

... . . . ...
M + 2012 q2012,1 q2012,2 . . . q2012,2012

.

By the Chinese Remainder Theorem, we can construct N such that N +1 ≡ 0 (mod qi,1)
for every i, and similarly for N + 2, and so on. Moreover, we can also tack on the extra
conditions N ≡ 0 (mod p) and N ≡ 1 (mod n) we wanted.

Notice that N cannot be divisible by any of the qi,j ’s, since the qi,j ’s are greater than
2012.

After we’ve chosen N , we can pick M such that M ≡ 0 (mod q0,j) for every j, and
similarly M +1 ≡ 0 (mod q1,j), et cetera. Moreover, we can tack on the condition M ≡ 1
(mod N), which ensures gcd(M,N) = 1.

What does this do? We claim that f(N) = N now. Indeed f(M) and f(N) are
relatively prime; but look at the table! The table tells us that f(M) must have a common
factor with each of N + 1, . . . , N + 2012. So the only possibility is that f(N) = N .

Now we’re basically done. Since N ≡ 1 (mod n), we have gcd(N,n) = 1 and hence
1 = gcd(f(N), f(n)) = gcd(N, f(n)). But p | N and p | f(n), contradiction.
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§2 Solutions to Day 2
§2.1 TSTST 2012/4
Available online at https://aops.com/community/p2745854.

Problem statement

In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA,
C to AB be A1, B1, C1, respectively. Denote by A2 the intersection of lines BC and
B1C1. Define B2 and C2 analogously. Let D, E, F be the respective midpoints of
sides BC, CA, AB. Show that the perpendiculars from D to AA2, E to BB2 and
F to CC2 are concurrent.

We claim that they pass through the orthocenter H. Indeed, consider the circle with
diameter BC, which circumscribes quadrilateral BCB1C1 and has center D. Then by
Brokard theorem, AA2 is the polar of line H. Thus DH ⊥ AA2.

8

https://aops.com/community/p2745854


TSTST 2012 Solution Notes Evan Chen《陳誼廷》

§2.2 TSTST 2012/5
Available online at https://aops.com/community/p2745867.

Problem statement

A rational number x is given. Prove that there exists a sequence x0, x1, x2, . . . of
rational numbers with the following properties:

(a) x0 = x;

(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 +
1
n ;

(c) xn is an integer for some n.

Think of the sequence as a process over time. We’ll show that:

Claim — At any given time t, if the denominator of xt has some odd prime power
q = pe, then we can delete a factor of p from the denominator, while only adding
powers of two to the denominator.

(Thus we can just delete off all the odd primes one by one and then double appropriately
many times.)

Proof. The idea is to add only fractions of the form (2kq)−1.
Indeed, let n be large, and suppose t < 2r+1q < 2r+2q < · · · < 2r+mq < n. For some

binary variables εi ∈ {0, 1} we can have

xn = 2n−txt + c1 ·
ε1
q

+ c2 ·
ε2
q
· · ·+ cs ·

εm
q

where ci is some power of 2 (to be exact, ci = 2n−2r+iq

2r+1 , but the exact value doesn’t
matter).

If m is large enough the set {0, c1}+ {0, c2}+ · · ·+ {0, cm} spans everything modulo
p. (Actually, Cauchy-Davenport implies m = p is enough, but one can also just use
Pigeonhole to notice some residue appears more than p times, for m = O(p2).) Thus we
can eliminate one factor of p from the denominator, as desired.
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§2.3 TSTST 2012/6, proposed by Sung-Yoon Kim
Available online at https://aops.com/community/p2745861.

Problem statement

Positive real numbers x, y, z satisfy xyz + xy + yz + zx = x+ y + z + 1. Prove that

1

3

(√
1 + x2

1 + x
+

√
1 + y2

1 + y
+

√
1 + z2

1 + z

)
≤
(
x+ y + z

3

)5/8

.

The key is the identity

x2 + 1

x+ 1
=

(x2 + 1)(y + 1)(z + 1)

(x+ 1)(y + 1)(z + 1)

=
x(xyz + xy + xz) + x2 + yz + y + z + 1

2(1 + x+ y + z)

=
x(x+ y + z + 1− yz) + x2 + yz + y + z + 1

2(1 + x+ y + z)

=
(x+ y)(x+ z) + x2 + (x− xyz + y + z + 1)

2(1 + x+ y + z)

=
2(x+ y)(x+ z)

2(1 + x+ y + z)

=
(x+ y)(x+ z)

1 + x+ y + z
.

Remark. The “trick” can be rephrased as (x2 + 1)(y + 1)(z + 1) = 2(x+ y)(x+ z).

After this, straight Cauchy in the obvious way will do it (reducing everything to an
inequality in s = x+ y + z). One writes(∑

cyc

√
(x+ y)(x+ z)√

1 + s

)2

≤

(∑
cyc x+ y

)(∑
cyc x+ z

)
1 + s

=
4s2

1 + s

and so it suffices to check that 4s2

1+s ≤ 9(s/3)5/4, which is true because

(s/3)5 · 94 · (1 + s)4 − (4s2)4 = s5(s− 3)2(27s2 + 14s+ 3) ≥ 0.
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§3 Solutions to Day 3
§3.1 TSTST 2012/7
Available online at https://aops.com/community/p2745857.

Problem statement

Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A intersects
side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of
side BC. The circumcircle of triangle ADM intersects sides AB and AC again at
Q and P (other than A), respectively. Let N be the midpoint of segment PQ, and
let H be the foot of the perpendicular from L to line ND. Prove that line ML is
tangent to the circumcircle of triangle HMN .

By angle chasing, equivalent to show MN ‖ AD, so discard the point H. We now present
a three solutions.

¶ First solution using vectors We first contend that:

Claim — We have QB = PC.

Proof. Power of a Point gives BM · BD = AB · QB. Then use the angle bisector
theorem.

Now notice that the vector
−−→
MN =

1

2

(−−→
BQ+

−−→
CP
)

which must be parallel to the angle bisector since
−−→
BQ and

−−→
CP have the same magnitude.

¶ Second solution using spiral similarity let X be the arc midpoint of BAC. Then
ADMX is cyclic with diameter AM , and hence X is the Miquel point X of QBPC is the
midpoint of arc BAC. Moreover XND collinear (as XP = XQ, DP = DQ) on (APQ).

A

B C

L

D M

Q

P

N

H

X
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Then 4XNM ∼ 4XPC spirally, and

]XMN = ]XCP = ]XCA = ]XLA

thus done.

¶ Third solution using barycentrics (mine) Once reduced to MN ‖ AB, straight bary
will also work. By power of a point one obtains

P =
(
a2 : 0 : 2b(b+ c)− a2

)
Q =

(
a2 : 2c(b+ c)− a2 : 0

)
=⇒ N =

(
a2(b+ c) : 2bc(b+ c)− ba2 : 2bc(b+ c)− ca2

)
.

Now the point at infinity along AD is (−(b+ c) : b : c) and so we need only verify

det

a2(b+ c) 2bc(b+ c)− ba2 2bc(b+ c)− ca2

0 1 1
−(b+ c) b c

 = 0

which follows since the first row is −a2 times the third row plus 2bc(b + c) times the
second row.

12
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§3.2 TSTST 2012/8, proposed by Palmer Mebane
Available online at https://aops.com/community/p2745872.

Problem statement

Let n be a positive integer. Consider a triangular array of nonnegative integers as
follows:

Row 1:

Row 2:

...
Row n− 1:

Row n:

a0,1
a0,2 a1,2

. .
. ...

. . .
a0,n−1 a1,n−1 . . . an−2,n−1

a0,n a1,n a2,n . . . an−1,n

Call such a triangular array stable if for every 0 ≤ i < j < k ≤ n we have

ai,j + aj,k ≤ ai,k ≤ ai,j + aj,k + 1.

For s1, . . . , sn any nondecreasing sequence of nonnegative integers, prove that there
exists a unique stable triangular array such that the sum of all of the entries in row
k is equal to sk.

Firstly, here are illustrative examples showing the arrays for (s1, s2, s3, s4) = (2, 5, 9, x)
where 9 ≤ x ≤ 14. (The array has been left justified.)

2 ↙
4 1 ↙
5 3 1 ↙
5 3 1 0



2 ↙
4 1 ↙
5 3 1 ↙
6 3 1 0



2 ↙
4 1 ↙
5 3 1 ↙
6 3 2 0



2 ↙
4 1 ↙
5 3 1 ↙
6 4 2 0



2 ↙
4 1 ↙
5 3 1 ↙
6 4 2 1



2 ↙
4 1 ↙
5 3 1 ↙
7 4 2 1


Now we outline the proof. By induction on n, we may assume the first n − 1 rows

are fixed. Now, let N = sn vary. Now, we prove our result by (another) induction on
N ≥ sn−1.

The base case N = sn−1 is done by copying the n− 1st row and adding a zero at the
end. This is also unique, since ai,n ≥ ai−1,n + an−1,n for all i = 0, . . . , n − 2, whence∑

ai,n ≥ sn−1 follows.
Now the inductive step is based on the following lemma, which illustrates the idea of a

“unique increasable entry”.
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Lemma
Fix a stable array Construct a tournament on the n entries of the last row as follows:
for i < j,

• ai,n → aj,n if ai,n = ai,j + aj,n, and

• aj,n → ai,n if ai,n = ai,j + aj,n + 1.

Then this tournament is transitive. Also, except for N = sn−1, a 0 entry is never a
source.

Intuitively, ai,n → aj,n if ai,n blocks aj,n from increasing. For instance, in the example
2 ↙
4 1 ↙
5 3 1 ↙
6 3 1 0


the tournament is 1→ 3→ 0→ 6.

Proof of lemma. Let 0 ≤ i < j < k < n be indices. Let x = ai,n, y = aj,n, z = ak,n,
p = ai,j , s = ai,k, q = aj,k. Picture: p ↙

s q ↙
x y z


If x→ y → z → x happens, that means x = y + p, y = q + z, x = s+ z + 1, which gives
s = p+q−1, contradiction. Similarly if x← y ← z ← x then x = y+p+1, y = q+z+1,
x = s+ z, which gives s = p+ q + 2, also contradiction.

Now this allows us to perform our induction. Indeed, to show existence from N to N+1
we take a source of the tournament above and increase it. Conversely, to show uniqueness
for N , note that we can take the (nonzero) sink of the tournament and decrement it,
which gives N − 1; our uniqueness inductive hypothesis now finishes.

Remark. Colin Tang found a nice proof of uniqueness:

sk +

k−1∑
i=1

a0,i ≤ ka0,k ≤ sk +
∑
i=1

(a0,i + 1)

and similarly for other entries.
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§3.3 TSTST 2012/9, proposed by John Berman
Available online at https://aops.com/community/p2745874.

Problem statement

Given a set S of n variables, a binary operation × on S is called simple if it satisfies
(x× y)× z = x× (y× z) for all x, y, z ∈ S and x× y ∈ {x, y} for all x, y ∈ S. Given
a simple operation × on S, any string of elements in S can be reduced to a single
element, such as xyz → x × (y × z). A string of variables in S is called full if it
contains each variable in S at least once, and two strings are equivalent if they
evaluate to the same variable regardless of which simple × is chosen. For example
xxx, xx, and x are equivalent, but these are only full if n = 1. Suppose T is a set
of full strings such that any full string is equivalent to exactly one element of T .
Determine the number of elements of T .

The answer is (n!)2. In fact it is possible to essentially find all ×: one assigns a real
number to each variable in S. Then x× y takes the larger of {x, y}, and in the event of
a tie picks either “left” or “right”, where the choice of side is fixed among elements of
each size.

¶ First solution (Steven Hao) The main trick is the two lemmas, which are not hard
to show (and are motivated by our conjecture).

xx = x

xyxzx = xyzx.

Consequently, define a double rainbow to be the concatenation of two full strings of
length n, of which there are (n!)2. We claim that these form equivalence classes for T .

To see that any string s is equivalent to a double rainbow, note that s = ss, and hence
using the second identity above repeatedly lets us reduce ss to a double rainbow.

To see two distinct double rainbows R1 and R2 aren’t equivalent, one can use the
construction mentioned in the beginning. Specifically, take two variables a and b which
do not appear in the same order in R1 and R2. Then it’s not hard to see that abab, abba,
baab, baba are pairwise non-equivalent by choosing “left” or “right” appropriately. Now
construct × on the whole set by having a and b be the largest variables, so the rest of
the variables don’t matter in the evaluation of the string.

¶ Second solution outline (Ankan Bhattacharya) We outline a proof of the character-
ization claimed earlier, which will also give the answer (n!)2. We say a ∼ b if ab 6= ba.
Also, say a > b if ab = ba = a. The following are proved by finite casework, using the
fact that {ab, bc, ca} always has exactly two distinct elements for any different a, b, c.

• If a > b and b > c then a > c.

• If a ∼ b and b ∼ c then ab = a if and only if bc = b.

• If a ∼ b and b ∼ c then a ∼ c.

• If a ∼ b and a > c then b > c.

• If a ∼ b and c > a then c > b.
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This gives us the total ordering on the elements and the equivalence classes by ∼. In this
we way can check the claimed operations are the only ones.

We can then (as in the first solution) verify that every full string is equivalent to a
unique double rainbow — but this time we prove it by simply considering all possible ×,
because we have classified them all.
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Team Selection Test for the Selection Team of 55th IMO

Lincoln, Nebraska

Day I 1:00 PM - 5:30 PM

June 21, 2013

1. Let ABC be a triangle and D, E, F be the midpoints of arcs BC, CA, AB on the circumcircle.
Line `a passes through the feet of the perpendiculars from A to DB and DC. Line ma passes
through the feet of the perpendiculars from D to AB and AC. Let A1 denote the intersection
of lines `a and ma. Define points B1 and C1 similarly. Prove that triangles DEF and A1B1C1

are similar to each other.

2. A finite sequence of integers a1, a2, . . . , an is called regular if there exists a real number x
satisfying

bkxc = ak for 1 ≤ k ≤ n.

Given a regular sequence a1, a2, . . . , an, for 1 ≤ k ≤ n we say that the term ak is forced if the
following condition is satisfied: the sequence

a1, a2, . . . , ak−1, b

is regular if and only if b = ak. Find the maximum possible number of forced terms in a regular
sequence with 1000 terms.

3. Divide the plane into an infinite square grid by drawing all the lines x = m and y = n for
m,n ∈ Z. Next, if a square’s upper-right corner has both coordinates even, color it black;
otherwise, color it white (in this way, exactly 1/4 of the squares are black and no two black
squares are adjacent). Let r and s be odd integers, and let (x, y) be a point in the interior
of any white square such that rx− sy is irrational. Shoot a laser out of this point with slope
r/s; lasers pass through white squares and reflect off black squares. Prove that the path of
this laser will from a closed loop.

Committee on the American Mathematics Competitions,
Mathematical Association of America
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Team Selection Test for the Selection Team of 55th IMO

Lincoln, Nebraska

Day II 1:00 PM - 5:30 PM

June 23, 2013

4. Circle ω, centered at X, is internally tangent to circle Ω, centered at Y , at T . Let P and S be
variable points on Ω and ω, respectively, such that line PS is tangent to ω (at S). Determine
the locus of O – the circumcenter of triangle PST .

5. Let p be a prime. Prove that any complete graph with 1000p vertices, whose edges are labelled
with integers, has a cycle whose sum of labels is divisible by p.

6. Let N be the set of positive integers. Find all functions f : N→ N that satisfy the equation

fabc−a(abc) + fabc−b(abc) + fabc−c(abc) = a+ b+ c

for all a, b, c ≥ 2.
(Here f1(n) = f(n) and fk(n) = f(fk−1(n)) for every integer k greater than 1.)

Committee on the American Mathematics Competitions,
Mathematical Association of America

2



Team Selection Test for the Selection Team of 55th IMO

Lincoln, Nebraska

Day III 1:00 PM - 5:30 PM

June 25, 2013

7. A country has n cities, labelled 1, 2, 3, . . . , n. It wants to build exactly n− 1 roads between
certain pairs of cities so that every city is reachable from every other city via some sequence
of roads. However, it is not permitted to put roads between pairs of cities that have labels
differing by exactly 1, and it is also not permitted to put a road between cities 1 and n. Let
Tn be the total number of possible ways to build these roads.

(a) For all odd n, prove that Tn is divisible by n.

(b) For all even n, prove that Tn is divisible by n/2.

8. Define a function f : N→ N by f(1) = 1, f(n+ 1) = f(n) + 2f(n) for every positive integer n.
Prove that f(1), f(2), . . . , f(32013) leave distinct remainders when divided by 32013.

9. Let r be a rational number in the interval [−1, 1] and let θ = cos−1 r. Call a subset S of the
plane good if S is unchanged upon rotation by θ around any point of S (in both clockwise and
counterclockwise directions). Determine all values of r satisfying the following property: The
midpoint of any two points in a good set also lies in the set.

Committee on the American Mathematics Competitions,
Mathematical Association of America
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TSTST 2013 Solution Notes
Lincoln, Nebraska

Evan Chen《陳誼廷》
8 November 2023

This is a compilation of solutions for the 2013 TSTST. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be a triangle and D, E, F be the midpoints of arcs BC, CA, AB on the

circumcircle. Line `a passes through the feet of the perpendiculars from A to DB
and DC. Line ma passes through the feet of the perpendiculars from D to AB and
AC. Let A1 denote the intersection of lines `a and ma. Define points B1 and C1

similarly. Prove that triangles DEF and A1B1C1 are similar to each other.

2. A finite sequence of integers a1, a2, . . . , an is called regular if there exists a real
number x satisfying

bkxc = ak for 1 ≤ k ≤ n.

Given a regular sequence a1, a2, . . . , an, for 1 ≤ k ≤ n we say that the term ak is
forced if the following condition is satisfied: the sequence

a1, a2, . . . , ak−1, b

is regular if and only if b = ak.
Find the maximum possible number of forced terms in a regular sequence with
1000 terms.

3. Divide the plane into an infinite square grid by drawing all the lines x = m and
y = n for m,n ∈ Z. Next, if a square’s upper-right corner has both coordinates
even, color it black; otherwise, color it white (in this way, exactly 1/4 of the squares
are black and no two black squares are adjacent). Let r and s be odd integers,
and let (x, y) be a point in the interior of any white square such that rx − sy is
irrational. Shoot a laser out of this point with slope r/s; lasers pass through white
squares and reflect off black squares. Prove that the path of this laser will from a
closed loop.

4. Circle ω, centered at X, is internally tangent to circle Ω, centered at Y , at T . Let
P and S be variable points on Ω and ω, respectively, such that line PS is tangent
to ω (at S). Determine the locus of O – the circumcenter of triangle PST .

5. Let p be a prime. Prove that in a complete graph with 1000p vertices whose edges
are labelled with integers, one can find a cycle whose sum of labels is divisible by p.

6. Let N be the set of positive integers. Find all functions f : N → N that satisfy the
equation

fabc−a(abc) + fabc−b(abc) + fabc−c(abc) = a+ b+ c

for all a, b, c ≥ 2. (Here fk means f applied k times.)

7. A country has n cities, labelled 1, 2, 3, . . . , n. It wants to build exactly n− 1 roads
between certain pairs of cities so that every city is reachable from every other city
via some sequence of roads. However, it is not permitted to put roads between
pairs of cities that have labels differing by exactly 1, and it is also not permitted to
put a road between cities 1 and n. Let Tn be the total number of possible ways to
build these roads.
(a) For all odd n, prove that Tn is divisible by n.
(b) For all even n, prove that Tn is divisible by n/2.
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8. Define a function f : N → N by f(1) = 1, f(n+1) = f(n) + 2f(n) for every positive
integer n. Prove that f(1), f(2), . . . , f(32013) leave distinct remainders when
divided by 32013.

9. Let r be a rational number in the interval [−1, 1] and let θ = cos−1 r. Call a subset
S of the plane good if S is unchanged upon rotation by θ around any point of
S (in both clockwise and counterclockwise directions). Determine all values of r
satisfying the following property: The midpoint of any two points in a good set
also lies in the set.
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§1 Solutions to Day 1
§1.1 TSTST 2013/1
Available online at https://aops.com/community/p3181479.

Problem statement

Let ABC be a triangle and D, E, F be the midpoints of arcs BC, CA, AB on the
circumcircle. Line `a passes through the feet of the perpendiculars from A to DB
and DC. Line ma passes through the feet of the perpendiculars from D to AB and
AC. Let A1 denote the intersection of lines `a and ma. Define points B1 and C1

similarly. Prove that triangles DEF and A1B1C1 are similar to each other.

In fact, it is true for any points D, E, F on the circumcircle. More strongly we
contend:

Claim — Point A1 is the midpoint of HD.

Proof. Lines ma and `a are Simson lines, so they both pass through the point (a+ b+
c+ d)/2 in complex coordinates.

A1

A

B C

D

H

Hence A1B1C1 is similar to DEF through a homothety at H with ratio 1
2 .
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§1.2 TSTST 2013/2
Available online at https://aops.com/community/p3181480.

Problem statement

A finite sequence of integers a1, a2, . . . , an is called regular if there exists a real
number x satisfying

bkxc = ak for 1 ≤ k ≤ n.

Given a regular sequence a1, a2, . . . , an, for 1 ≤ k ≤ n we say that the term ak is
forced if the following condition is satisfied: the sequence

a1, a2, . . . , ak−1, b

is regular if and only if b = ak.
Find the maximum possible number of forced terms in a regular sequence with

1000 terms.

The answer is 985. WLOG, by shifting a1 = 0 (clearly a1 isn’t forced). Now, we construct
regular sequences inductively using the following procedure. Start with the inequality

0
1 ≤ x < 1

1 .

Then for each k = 2, 3, . . . , 1000 we perform the following procedure. If there is no
fraction of the form F = m

k in the interval A ≤ x < B, then ak is forced, and the interval
of possible x values does not change. Otherwise, ak is not forced, and we pick a value of
ak and update the interval accordingly.

The theory of Farey sequences tells us that when we have a stage a
b ≤ x < c

d then the
next time we will find a fraction in that interval is exactly a+c

b+d (at time k = b+ d), and
it will be the only such fraction.

So essentially, starting with 0
1 ≤ x < 1

1 we repeatedly replace one of the endpoints of
the intervals with the mediant, until one of the denominators exceeds 1000; we are trying
to minimize the number of non-forced terms, which is the number of denominators that
appear in this process. It is not hard to see that this optimum occurs by always replacing
the smaller of the denominators, so that the sequence is

0
1 ≤ x < 1

1
0
1 ≤ x < 1

2
1
3 ≤ x < 1

2
1
3 ≤ x < 2

5
3
8 ≤ x < 2

5
3
8 ≤ x < 5

13

and so on; we see that the non-forced terms in this optimal configuration are exactly the
Fibonacci numbers. There are 15 Fibonacci numbers less than 1000, hence the answer
1000− 15 = 985.
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§1.3 TSTST 2013/3
Available online at https://aops.com/community/p3181481.

Problem statement

Divide the plane into an infinite square grid by drawing all the lines x = m and
y = n for m,n ∈ Z. Next, if a square’s upper-right corner has both coordinates even,
color it black; otherwise, color it white (in this way, exactly 1/4 of the squares are
black and no two black squares are adjacent). Let r and s be odd integers, and let
(x, y) be a point in the interior of any white square such that rx− sy is irrational.
Shoot a laser out of this point with slope r/s; lasers pass through white squares and
reflect off black squares. Prove that the path of this laser will from a closed loop.

Here is Sammy Luo’s solution. Fix the speed of light at
√
r2 + s2 units per second. We

prove periodicity every six seconds.
We re-color the white squares as red, blue, or green according as to whether they have

a black square directly to the left/right, above/below, or neither, as shown below. Finally,
we fix time zero to be a moment just before the laser passes a horizontal (WLOG) lattice
line (not necessarily a wall). Shown below is an example for (r, s) = (3, 5).

h

v

v
h

v

v h

v

The main idea is to keep track of every time the laser passes a lattice line (again, not
necessarily a wall). There are four possible types of events:

• A horizontal h event where the laser switches from red to green (or vice-versa);

• A horizontal h event where the laser rebounds off a wall, remaining in a blue square,
but flips the x-component of its velocity;

• A vertical v event where the laser switches from blue to green (or vice-versa)

• A vertical v event where the laser rebounds off a wall, remaining in a red square,
but flips the y-component of its velocity.

The first key observation is that:

Claim — In the first second, the laser will encounter exactly r horizontal events

6
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and s vertical events. In every second after that, the same sequence of r + s events
occurs.

Proof. Bouncing off a wall doesn’t change this as opposed to if the laser had passed
through the wall.

We let the key-word be the sequence w of r + s letters corresponding to the sequence.
For example, the picture above denotes an example with keyword w = hvvhvvhv; so
no matter what, every second, the laser will encounter eight lattice lines, which are
horizontal and vertical in that order.

Claim — Color is periodic every 3 seconds.

Proof. The free group generated by h and v acts on the set {R,G,B} of colors in an
obvious way; consider this right action. First we consider the color of the square after
each second. Note that with respect to color, each letter is an involution; so as far as
color changes are concerned, it’s enough to work with the reduced word w′ obtained
by modding out by h2 = 1 and v2 = 1. (For example, w′ = hv in our example.) In
general, w′ = (hv)k or w′ = (vh)k, for some odd integer k (since k ≡ r ≡ s ≡ 1 (mod 2)).
Now we see that the action of hv on the set of colors is red 7→ blue 7→ green 7→ red, and
similarly for vh (being the inverse). This implies that the color is periodic every three
seconds.

Now in a 3-second period, consider the 3r horizontal events and 3s vertical events
(both are odd). In order for the color to remain the same (as the only color changes are
R ↔ G for h and B ↔ G for v) there must have been an even number of color swaps for
each orientation. Therefore there was an odd number of wall collisions of each orientation.
So, the laser is pointing in the opposite direction at the end of 3 seconds.

Finally, let xt be the fractional part of the x coordinate after t seconds (the y-coordinate
is always zero by our setup at these moments). Note that

xt+1 =

{
xt even number of vertical wall collisions
1− xt odd numbers of vertical wall collisions

Since over the there seconds there were an odd number of vertical collisions; it follows
x3 = 1− x0. Thus at the end of three seconds, the laser is in a symmetric position from
the start; and in 6 seconds it will form a closed loop.

7
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§2 Solutions to Day 2
§2.1 TSTST 2013/4
Available online at https://aops.com/community/p3181482.

Problem statement

Circle ω, centered at X, is internally tangent to circle Ω, centered at Y , at T . Let
P and S be variable points on Ω and ω, respectively, such that line PS is tangent
to ω (at S). Determine the locus of O – the circumcenter of triangle PST .

The answer is a circle centered at Y with radius
√
Y X · Y T , minus the two points on

line XY itself.
We let PS meet Ω again at P ′, and let O′ be the circumcenter of 4TPS′. Note that

O′, X, O are collinear on the perpendicular bisector of line TS Finally, we let M denote
the arc midpoint of PP ′ which lies on line TS (by homothety).

X Y
T

S

P

O

P ′

O′

M

By three applications of Salmon theorem, we have the following spiral similarities all
centered at T :

4TSP
+∼ 4TO′Y

4TP ′S
+∼ 4TY O

4TP ′P
+∼ 4TO′O.

However, the shooting lemma also gives us two similarities:

4TP ′M
+∼ 4TSP

4TMP
+∼ 4TP ′S.

8
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Putting everything together, we find that

TP ′MP
+∼ TO′Y O.

Then by shooting lemma, Y O′2 = Y X · Y T , so O indeed lies on the claimed circle.
As the line O′O may be any line through X other than line XY (one takes S to be

the reflection of T across this line) one concludes the only two non-achievable points are
the diametrically opposite ones on line XY of this circle (because this leads to the only
degenerate situation where S = T ).

9
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§2.2 TSTST 2013/5
Available online at https://aops.com/community/p3181483.

Problem statement

Let p be a prime. Prove that in a complete graph with 1000p vertices whose edges
are labelled with integers, one can find a cycle whose sum of labels is divisible by p.

Select p− 1 disjoint triangles arbitrarily. If any of these triangles have 0 sum modulo p
we are done. Otherwise, we may label the vertices ui, xi, and vi (where 1 ≤ i ≤ p− 1) in
such a way that uixi + xivi 6= uivi.

Let Ai = {uixi + xivi, uivi}. We can show that |A1 +A2 + · · ·+At| ≥ min {p, t+ 1}
for each 1 ≤ t ≤ p − 1, by using induction on t alongside Cauchy-Davenport. So,
A1 +A2 + · · ·+Ap−1 spans all of Zp. All that’s left to do is join the triangles together
to form a cycle, and then delete either uixi, xivi or uivi from each triangle in such a way
that the final sum is 0 mod p.

10
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§2.3 TSTST 2013/6
Available online at https://aops.com/community/p3181484.

Problem statement

Let N be the set of positive integers. Find all functions f : N → N that satisfy the
equation

fabc−a(abc) + fabc−b(abc) + fabc−c(abc) = a+ b+ c

for all a, b, c ≥ 2. (Here fk means f applied k times.)

The answer is f(n) = n− 1 for n ≥ 3 with f(1) and f(2) arbitrary; check these work.

Lemma
We have f t2−t(t2) = t for all t.

Proof. We say 1 ≤ k ≤ 8 is good if f t9−tk(t9) = tk for all t. First, we observe that

f t9−t3(t9) = t3 and f t3−t(t3) = t =⇒ f t9−t(t9) = t.

so k = 1 and k = 3 are good. Then taking (a, b, c) = (t, t4, t4), (a, b, c) = (t2, t3, t4) gives
that k = 4 and k = 2 are good, respectively. The lemma follows from this k = 1 and
k = 2 being good.

Now, letting t = abc we combine

f t−a(a) + f t−b(b) + f t−c(c) = a+ b+ c

f t2−ab(t2) + f t2−t(t2) + f t2−c(t2) = ab+ t+ c

=⇒
[
f t−a(t)− a

]
+
[
f t−b(t)− b

]
=

[
f t−ab(t)− ab

]
by subtracting and applying the lemma repeatedly. In other words, we have proven the
second lemma:

Lemma
Let t be fixed, and define gt(n) = f t−n(t)−n for n < t. If a, b ≥ 2 and ab | t, ab < t,
then gt(a) + gt(b) = gt(ab).

Now let a, b ≥ 2 be arbitrary, and let p > q > max{a, b} be primes. Suppose s = apbq

and t = s2; then

pgt(a) + qgt(b) = gt (a
pbq) = gt(s) = fs2−s(s)− s = 0.

Now
q | gt(a) > −a and p | gt(b) > −b =⇒ gt(a) = gt(b) = 0.

and so we conclude f t−a(t) = a and f t−b(t) = b for a, b ≥ 2.
In particular, if a = n and b = n + 1 then we deduce f(n + 1) = n for all n ≥ 2, as

desired.

11
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Remark. If you let c = (ab)2 after the first lemma, you recover the 2-variable version!

12
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§3 Solutions to Day 3
§3.1 TSTST 2013/7
Available online at https://aops.com/community/p3181485.

Problem statement

A country has n cities, labelled 1, 2, 3, . . . , n. It wants to build exactly n− 1 roads
between certain pairs of cities so that every city is reachable from every other city
via some sequence of roads. However, it is not permitted to put roads between pairs
of cities that have labels differing by exactly 1, and it is also not permitted to put a
road between cities 1 and n. Let Tn be the total number of possible ways to build
these roads.

(a) For all odd n, prove that Tn is divisible by n.

(b) For all even n, prove that Tn is divisible by n/2.

You can just spin the tree!
Fixing n, the group G = Z/nZ acts on the set of trees by rotation (where we imagine

placing 1, 2, . . . , n along a circle).

Claim — For odd n, all trees have trivial stabilizer.

Proof. One way to see this is to look at the degree sequence. Suppose ge fixes a tree T .
Then so does gk, for k = gcd(e, n). Then it follows that n/k divides

∑
v deg v = 2n− 2.

Since gcd(2n− 2, n) = 1 we must then have k = n.

The proof for even n is identical except that gcd(2n− 2, n) = 2 and hence each tree
either has stabilizer with size ≤ 2.

There is also a proof using linear algebra, using Kirchoff’s tree formula. (Overkill.)

13
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§3.2 TSTST 2013/8
Available online at https://aops.com/community/p3181486.

Problem statement

Define a function f : N → N by f(1) = 1, f(n+ 1) = f(n) + 2f(n) for every positive
integer n. Prove that f(1), f(2), . . . , f(32013) leave distinct remainders when divided
by 32013.

I’ll prove by induction on k ≥ 1 that any 3k consecutive values of f produce distinct
residues modulo 3k. The base case k = 1 is easily checked (f is always odd, hence f
cycles 1, 0, 2 mod 3).

For the inductive step, assume it’s true up to k. Since 2• (mod 3k+1) cycles every
2 · 3k, and f is always odd, it follows that

f(n+ 3k)− f(n) = 2f(n) + 2f(n+1) + · · ·+ 2f(n+3k−1) (mod 3k+1)

≡ 21 + 23 + · · ·+ 22·3
k−1 (mod 3k+1)

= 2 · 4
3k − 1

4− 1
.

Hence

f(n+ 3k)− f(n) ≡ C (mod 3k+1) where C = 2 · 4
3k − 1

4− 1

noting that C does not depend on n. Exponent lifting gives ν3(C) = k hence f(n),
f(n+3k), f(n+2 · 3k) differ mod 3k+1 for all n, and the inductive hypothesis now solves
the problem.

14
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§3.3 TSTST 2013/9
Available online at https://aops.com/community/p3181487.

Problem statement

Let r be a rational number in the interval [−1, 1] and let θ = cos−1 r. Call a subset
S of the plane good if S is unchanged upon rotation by θ around any point of S (in
both clockwise and counterclockwise directions). Determine all values of r satisfying
the following property: The midpoint of any two points in a good set also lies in the
set.

The answer is that r has this property if and only if r = 4n−1
4n for some integer n.

Throughout the solution, we will let r = a
b with b > 0 and gcd(a, b) = 1. We also let

ω = eiθ =
a

b
±

√
b2 − a2

b
i.

This means we may work with complex multiplication in the usual way; the rotation of z
through center c is given by z 7→ ω(z − c) + c.

For most of our proof, we start by constructing a good set as follows.

• Start by letting S0 = {0, 1}.

• Let Si consist of Si−1 plus all points that can be obtained by rotating a point of
Si−1 through a different point of Si−1 (with scale factor ω).

• Let S∞ =
⋃

i≥0 Si.

The set S∞ is the (minimal, by inclusion) good set containing 0 and 1. We are going to
show that for most values of r, we have 1

2 /∈ S∞.

Claim — If b is odd, then 1
2 /∈ S∞.

Proof. Idea: denominators that appear are always odd.
Consider the ring

A = Z{b} =
{s

t
| s, t ∈ Z, t | b∞

}
which consists of all rational numbers whose denominators divide b∞. Then, 0, 1, ω ∈
A[

√
b2 − a2] and hence S∞ ⊆ A[

√
b2 − a2] too. (This works even if

√
b2 − a2 ∈ Z, in

which case S∞ ⊆ A = A[
√
b2 − a2].)

But 1
2 /∈ A[

√
b2 − a2].

Claim — If b is even and |b− a| 6= 1, then 1
2 /∈ S∞.

Proof. Idea: take modulo a prime dividing b− a.
Let D = b2 − a2 ≡ 3 (mod 4). Let p be a prime divisor of b− a with odd multiplicity.

Because gcd(a, b) = 1, we have p 6= 2 and p - b.
Consider the ring

A = Z(p) =
{s

t
| s, t ∈ Z, p ⊥ t

}
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which consists of all rational numbers whose denominators are coprime to p. Then,
0, 1, ω ∈ A[

√
−D] and hence S∞ ⊆ A[

√
−D] too.

Now, there is a well-defined “mod-p” ring homomorphism

Ψ: A[
√
−D] → Fp by x+ y

√
−D 7→ x mod p

which commutes with addition and multiplication (as p | D). Under this map,

ω 7→ a

b
mod p = 1.

Consequently, the rotation z 7→ ω(z − c) + c is just the identity map modulo p. In other
words, the pre-image of any point in S∞ under Ψ must be either Ψ(0) = 0 or Ψ(1) = 1.

However, Ψ(1/2) = 1/2 is neither of these. So this point cannot be achieved.

Claim — Suppose a = 2n− 1 and b = 2n for n an odd integer. Then 1
2 /∈ S∞

Proof. Idea: ω is “algebraic integer” sans odd denominators.
This time, we define the ring

B = Z(2) =
{s

t
| s, t ∈ Z, t odd

}
of rational numbers with odd denominator. We carefully consider the ring B[ω] where

ω =
2n− 1±

√
1− 4n

2n
.

So S∞ ⊆ B[ω] as 0, 1, ω ∈ B[ω].
I claim that B[ω] is an integral extension of B; equivalently that ω is integral over B.

Indeed, ω is the root of the monic polynomial

(T − 1)2 +
1

n
(T − 1)− 1

n
= 0

where 1
n ∈ B makes sense as n is odd.

On the other hand, 1
2 is not integral over B so it is not an element of B[ω].

It remains to show that if r = 4n−1
4n , then goods sets satisfy the midpoint property.

Again starting from the points z0 = 0, z1 = 1 construct the sequence

z2 = ω(z1 − z0) + z0

z3 = ω−1(z0 − z2) + z2

z4 = ω−1(z2 − z3) + z3

z5 = ω(z3 − z4) + z4

as shown in the diagram below.

z0 = 0 z1 = 1

z2z3

z4 = 2r − 1z5 = 2r − 2

16
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This construction shows that if we have the length-one segment {0, 1} then we can
construct the length-one segment {2r − 2, 2r − 1}. In other words, we can shift the
segment to the left by

1− (2r − 1) = 2(1− r) =
1

2n
.

Repeating this construction n times gives the desired midpoint 1
2 .

17



Team Selection Test Selection Test 1
June 23, 2014
1:15 – 5:45pm

Problems:

1. Let← denote the left arrow1 key on a standard keyboard. If one opens a text editor and types
the keys “ab←cd←←e←←f”, the result is “faecdb”. We say that a string B is reachable from
a string A if it is possible to insert some amount of←’s into A, such that typing the resulting
characters produces B. So, our example shows that “faecdb” is reachable from “abcdef”.

Prove that for any two strings A and B, A is reachable from B if and only if B is reachable
from A.

2. Consider a convex pentagon circumscribed about a circle. We name the lines that connect
vertices of the pentagon with the opposite points of tangency with the circle gergonnians.

(a) Prove that if four gergonnians are concurrent, then all five of them are concurrent.

(b) Prove that if there is a triple of gergonnians that are concurrent, then you can find
another triple of gergonnians that are concurrent.

3. Find all polynomial functions P (x) with real coefficients that satisfy

P (x
√

2) = P (x +
√

1− x2)

for all real x with |x| ≤ 1.

1Here is a short explanation of how the ← key works. A computer’s text editor always starts with an empty
screen, and a cursor which we denote by “|”. When you type a letter x, the cursor | is replaced by x|. So if the screen
shows “m|th”, and you press the “o” key, the result is “mo|th”.

The ← key moves the cursor one space backwards. That is, “mo|th” becomes “m|oth”, and finally “|moth”. If the
cursor is already at the beginning of the string, the ← key has no effect.

Note that the cursor is not considered to be a part of the final string. In the example above, after typing
“ab←cd←←e←←f”, the screen displays “f|aecdb”, so we take the result to be “faecdb”.



Team Selection Test Selection Test 2
June 25, 2014
1:15 – 5:45pm

Problems:

4. Let P (x) and Q(x) be arbitrary polynomials with real coefficients, and let d be the degree
of P (x). Assume that P (x) is not the zero polynomial. Prove that there exist polynomials
A(x) and B(x) with real coefficients, such that:

(i) both A and B have degree at most d/2, and

(ii) at most one of A and B is the zero polynomial, and

(iii) A(x)+Q(x)B(x)
P (x) is a polynomial with real coefficients. That is, there is some polynomial

C(x) with real coefficients such that A(x) + Q(x)B(x) = P (x)C(x).

5. Find the maximum number E such that the following holds: there is an edge-colored graph
with 60 vertices and E edges, with each edge colored either red or blue, such that in that
coloring, there are no monochromatic cycles of length 3 and no monochromatic cycles of
length 5.

6. Suppose we have distinct positive integers a, b, c, d, and an odd prime p not dividing any of
them, and an integer M such that if one considers the infinite sequence

ca− db

ca2 − db2

ca3 − db3

ca4 − db4

. . .

and looks at the highest power of p that divides each of them, these powers are not all zero,
and are all at most M . Prove that there exists some T (which may depend on a, b, c, d, p,
M) such that whenever p divides an element of this sequence, the maximum power of p that
divides that element is exactly pT .
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§0 Problems
1. Let ← denote the left arrow key on a standard keyboard. If one opens a text editor

and types the keys “ab← cd ←← e ←← f”, the result is “faecdb”. We say that a
string B is reachable from a string A if it is possible to insert some amount of ←’s
in A, such that typing the resulting characters produces B. So, our example shows
that “faecdb” is reachable from “abcdef”.
Prove that for any two strings A and B, A is reachable from B if and only if B is
reachable from A.

2. Consider a convex pentagon circumscribed about a circle. We name the lines that
connect vertices of the pentagon with the opposite points of tangency with the
circle gergonnians.
(a) Prove that if four gergonnians are concurrent, then all five of them are

concurrent.
(b) Prove that if there is a triple of gergonnians that are concurrent, then there is

another triple of gergonnians that are concurrent.

3. Find all polynomials P (x) with real coefficients that satisfy

P (x
√
2) = P (x+

√
1− x2)

for all real numbers x with |x| ≤ 1.

4. Let P (x) and Q(x) be arbitrary polynomials with real coefficients, with P 6= 0, and
let d = degP . Prove that there exist polynomials A(x) and B(x), not both zero,
such that max{degA,degB} ≤ d/2 and P (x) | A(x) +Q(x) ·B(x).

5. Find the maximum number E such that the following holds: there is an edge-colored
graph with 60 vertices and E edges, with each edge colored either red or blue,
such that in that coloring, there is no monochromatic cycles of length 3 and no
monochromatic cycles of length 5.

6. Suppose we have distinct positive integers a, b, c, d and an odd prime p not dividing
any of them, and an integer M such that if one considers the infinite sequence

ca− db

ca2 − db2

ca3 − db3

ca4 − db4

...

and looks at the highest power of p that divides each of them, these powers are
not all zero, and are all at most M . Prove that there exists some T (which may
depend on a, b, c, d, p,M) such that whenever p divides an element of this sequence,
the maximum power of p that divides that element is exactly pT .
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§1 Solutions to Day 1
§1.1 TSTST 2014/1
Available online at https://aops.com/community/p3549404.

Problem statement

Let ← denote the left arrow key on a standard keyboard. If one opens a text editor
and types the keys “ab← cd ←← e ←← f”, the result is “faecdb”. We say that a
string B is reachable from a string A if it is possible to insert some amount of ←’s
in A, such that typing the resulting characters produces B. So, our example shows
that “faecdb” is reachable from “abcdef”.

Prove that for any two strings A and B, A is reachable from B if and only if B is
reachable from A.

Obviously A and B should have the same multiset of characters, and we focus only on
that situation.

Claim — If A = 123 . . . n and B = σ(1)σ(2) . . . σ(n) is a permutation of A, then
B is reachable if and only if it is 213-avoiding, i.e. there are no indices i < j < k
such that σ(j) < σ(i) < σ(k).

Proof. This is clearly necessary. To see its sufficient, one can just type B inductively:
after typing k, the only way to get stuck is if k + 1 is to the right of k and there is some
character in the way; this gives a 213 pattern.

Claim — A permutation σ on {1, . . . , n} is 213-avoiding if and only if the inverse
σ−1 is.

Proof. Suppose i < j < k and σ(j) < σ(i) < σ(k). Let i′ = σ(j), j′ = σ(i), k′ = σ(k);
then i′ < j′ < k′ and σ−1(j′) < σ−1(i′) < σ−1(k′).

This essentially finishes the problem. Suppose B is reachable from A. By using the
typing pattern, we get some permutation σ : {1, . . . , n} such that the ith character of A
is the σ(i)th character of B, and which is 213-avoiding by the claim. (The permutation
is unique if A has all distinct characters, but there could be multiple if A has repeated
ones.) Then σ−1 is 213-avoiding too and gives us a way to change B into A.

3
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§1.2 TSTST 2014/2
Available online at https://aops.com/community/p3549405.

Problem statement

Consider a convex pentagon circumscribed about a circle. We name the lines that
connect vertices of the pentagon with the opposite points of tangency with the circle
gergonnians.

(a) Prove that if four gergonnians are concurrent, then all five of them are concur-
rent.

(b) Prove that if there is a triple of gergonnians that are concurrent, then there is
another triple of gergonnians that are concurrent.

This problem is insta-killed by taking a homography sending the concurrency point (in
either part) to the center of the circle while fixing the incircle. Alternatively, one may
send any four of the tangency points to a rectangle.

Here are the details. Let ABCDE be a pentagon with gergonnians AV , BW , CX,
DY , EZ. We prove the following lemma, which (up to a suitable permutation of point
names) solves both parts (a) and (b).

Lemma
The gergonnians AV , CX, DY are concurrent if and only if the gergonnians AV ,
BW , EZ are concurrent.

Proof. We prove the first set implies the second (the converse direction being identical).
Suppose AV , CX, DY intersect at P and take a homography fixing the circle and moving
P to its center.

Y X

V

Z W

A

B

C D

E

P

Then X and Y are symmetric around APV by hypothesis. Since D = V V ∩ PY ,
C = V V ∩PX, it follows that C and D, and hence Z and W , are also symmetric around
APV . Consequently B and E are symmetric too. So BW and EZ meet on AV .
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§1.3 TSTST 2014/3
Available online at https://aops.com/community/p3549407.

Problem statement

Find all polynomials P (x) with real coefficients that satisfy

P (x
√
2) = P (x+

√
1− x2)

for all real numbers x with |x| ≤ 1.

The answer is any polynomial of the form P (x) = f(U(x/
√
2)), where f ∈ R[x] and U is

the unique polynomial satisfying U(cos θ) = cos(8θ).
Let Q(x) = P (x

√
2), then the condition reads

Q(cos θ) = Q

(
1√
2
(cos θ + sin θ)

)
= Q(cos(θ − 45◦)) ∀ 0 ≤ θ ≤ 180◦.

We call a polynomial good if it satisfies this functional equation.

Lemma
The minimal (by degree) good nonconstant polynomial is U .

Proof. Since U works, it suffices to show that degQ ≥ 8. Note that:

Q(cos 136◦) = Q(cos 91◦) = Q(cos 46◦) = Q(cos 1◦) = Q(cos−44◦)
= Q(cos 44◦) = Q(cos 89◦) = Q(cos 134◦) = Q(cos 179◦).

Hence Q is equal at eight distinct values (not nine since cos−44◦ = cos 44◦ is repeated),
so degQ ≥ 8 (unless Q is constant).

Now, we claim Q(x) ≡ f(U(x)) for some f ∈ R[x]. Indeed, if Q is good, then by
minimality the quotient Q mod U must be constant, so Q(x) = ‹Q(x) · U(x) + c for some
constant c, but then ‹Q(x) is good too and we finish iteratively.

5
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§2 Solutions to Day 2
§2.1 TSTST 2014/4
Available online at https://aops.com/community/p3549409.

Problem statement

Let P (x) and Q(x) be arbitrary polynomials with real coefficients, with P 6= 0, and
let d = degP . Prove that there exist polynomials A(x) and B(x), not both zero,
such that max{degA,degB} ≤ d/2 and P (x) | A(x) +Q(x) ·B(x).

Let V be the vector space of real polynomials with degree at most d/2. Consider maps
of linear spaces

V ⊕2 → R[x]/(P (x))

by (A,B) 7→ A+QB (mod P ).

The domain has dimension
2 (bd/2c+ 1)

while the codomain has dimension d. For dimension reasons it has nontrivial kernel.

6
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§2.2 TSTST 2014/5
Available online at https://aops.com/community/p3549412.

Problem statement

Find the maximum number E such that the following holds: there is an edge-colored
graph with 60 vertices and E edges, with each edge colored either red or blue,
such that in that coloring, there is no monochromatic cycles of length 3 and no
monochromatic cycles of length 5.

The answer is E = 302 + 2 · 152 = 6 · 152 = 1350.
First, we prove E ≤ 1350. Observe that:

Claim — G contains no K5.

Proof. It’s a standard fact that the only triangle-free two-coloring of the edges of K5 is
the union of two monochromatic C5’s.

Hence by Turán theorem we have E ≤
(
4
2

)
· 152 = 1350.

To show this is achievable, take a red K30,30, and on each side draw a blue K15,15. This
graph has no monochromatic odd cycles at all as desired.
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§2.3 TSTST 2014/6
Available online at https://aops.com/community/p3549417.

Problem statement

Suppose we have distinct positive integers a, b, c, d and an odd prime p not dividing
any of them, and an integer M such that if one considers the infinite sequence

ca− db

ca2 − db2

ca3 − db3

ca4 − db4

...

and looks at the highest power of p that divides each of them, these powers are
not all zero, and are all at most M . Prove that there exists some T (which may
depend on a, b, c, d, p,M) such that whenever p divides an element of this sequence,
the maximum power of p that divides that element is exactly pT .

By orders, the indices of terms divisible by p is an arithmetic subsequence of N: say they
are κ, κ+ λ, κ+ 2λ, . . . , where λ is the order of a/b. That means we want

νp

(
caκ+nλ − dbκ+nλ

)
= νp

((
aλ

bλ

)n

− daκ

cbκ

)
to be constant. Thus, we have reduced the problem to the following proposition:

Proposition
Let p be an odd prime. Let x, y ∈ Q>0 such that x ≡ y ≡ 1 (mod p). If the sequence
νp (x

n − y) of positive integers is nonconstant, then it is unbounded.

For this it would be sufficient to prove the following claim.

Claim — Let p be an odd prime. Let x, y ∈ Q>0 such that x ≡ y ≡ 1 (mod p).
Suppose m and n are positive integers such that

d = νp(x
n − y) < νp(x

m − y) = e.

Then there exists ` such that νp(x
` − y) ≥ e+ 1.

Proof. First, note that νp(x
m − xn) = νp ((x

m − y)− (xn − y)) = d and so by exponent
lifting we can find some k such that

νp(x
k − 1) = e

namely k = pe−d|m−n|. (In fact, one could also choose more carefully k = pe−d ·gcd(m−
n, p∞), so that k is a power of p.)

8
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Suppose we set xk = peu+ 1 and xm = pev + y where u, v ∈ Q aren’t divisible by p.
Now for any integer 1 ≤ r ≤ p− 1 we consider

xkr+m − y = (peu+ 1)r · (pev + y)− y

= pe (v + yu · r) + p2e (. . . ) .

By selecting r with r ≡ −v/u (mod p), we ensure pe+1 | xkr+m − y, hence ` = kr +m is
as desired.

Remark. One way to motivate the proof of the claim is as follows. Suppose we are given
νp(x

m− y) = e, and we wish to find ` such that νp(x`− y) > e. Then, it is necessary (albeit
insufficient) that

x`−m ≡ 1 (mod pe) but x`−m 6≡ 1 (mod pe+1).

In particular, we need νp(x
`−m − 1) = e exactly. So the k in the claim must exist if we are

going to succeed.
On the other hand, if k is some integer for which νp(x

k−1) = e, then by choosing `−m to
be some multiple of k with no extra factors of p, we hope that we can get νp(x`− y) = e+1.
That’s why we write ` = kr +m and see what happens when we expand.

9



2015 USA Team Selection Test Selection Test Day 1
Carnegie Mellon University
June 23, 2015
1:15 – 5:45pm

1. Let a1, a2, . . . , an be a sequence of real numbers, and let m be a fixed positive integer less
than n. We say an index k with 1 ≤ k ≤ n is good if there exists some ` with 1 ≤ ` ≤ m such
that

ak + ak+1 + · · ·+ ak+`−1 ≥ 0,

where the indices are taken modulo n. Let T be the set of all good indices. Prove that∑
k∈T

ak ≥ 0.

2. Let ABC be a scalene triangle. Let Ka, La, and Ma be the respective intersections with BC of
the internal angle bisector, external angle bisector, and the median from A. The circumcircle
of AKaLa intersects AMa a second time at a point Xa different from A. Define Xb and Xc

analogously. Prove that the circumcenter of XaXbXc lies on the Euler line of ABC.

(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter
of ABC.)

3. Let P be the set of all primes, and let M be a non-empty subset of P . Suppose that for
any non-empty subset {p1, p2, . . . , pk} of M , all prime factors of p1p2 · · · pk + 1 are also in M .
Prove that M = P .



2015 USA Team Selection Test Selection Test Day 2
Carnegie Mellon University
June 25, 2015
1:15 – 5:45pm

4. Let x, y, and z be real numbers (not necessarily positive) such that x4 + y4 + z4 + xyz = 4.
Show that

x ≤ 2 and
√

2− x ≥ y + z

2
.

5. Let ϕ(n) denote the number of positive integers less than n that are relatively prime to n.
Prove that there exists a positive integer m for which the equation ϕ(n) = m has at least
2015 solutions in n.

6. A Nim-style game is defined as follows. Two positive integers k and n are specified, along
with a finite set S of k-tuples of integers (not necessarily positive). At the start of the game,
the k-tuple (n, 0, 0, . . . , 0) is written on the blackboard.

A legal move consists of erasing the tuple (a1, a2, . . . , ak) which is written on the blackboard
and replacing it with (a1 + b1, a2 + b2, . . . , ak + bk), where (b1, b2, . . . , bk) is an element of the
set S. Two players take turns making legal moves, and the first to write a negative integer
loses. In the event that neither player is ever forced to write a negative integer, the game is
a draw.

Prove that there is a choice of k and S with the following property: the first player has a
winning strategy if n is a power of 2, and otherwise the second player has a winning strategy.
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§0 Problems
1. Let a1, a2, . . ., an be a sequence of real numbers, and let m be a fixed positive

integer less than n. We say an index k with 1 ≤ k ≤ n is good if there exists some
` with 1 ≤ ` ≤ m such that

ak + ak+1 + · · ·+ ak+`−1 ≥ 0,

where the indices are taken modulo n. Let T be the set of all good indices. Prove
that ∑

k∈T
ak ≥ 0.

2. Let ABC be a scalene triangle. Let Ka, La, and Ma be the respective intersections
with BC of the internal angle bisector, external angle bisector, and the median
from A. The circumcircle of AKaLa intersects AMa a second time at a point Xa

different from A. Define Xb and Xc analogously. Prove that the circumcenter of
XaXbXc lies on the Euler line of ABC.

3. Let P be the set of all primes, and let M be a non-empty subset of P . Suppose that
for any non-empty subset {p1, p2, . . . , pk} of M , all prime factors of p1p2 · · · pk + 1
are also in M . Prove that M = P .

4. Let x, y, z be real numbers (not necessarily positive) such that x4+y4+z4+xyz = 4.
Prove that x ≤ 2 and √

2− x ≥ y + z

2
.

5. Let ϕ(n) denote the number of positive integers less than n that are relatively
prime to n. Prove that there exists a positive integer m for which the equation
ϕ(n) = m has at least 2015 solutions in n.

6. A Nim-style game is defined as follows. Two positive integers k and n are specified,
along with a finite set S of k-tuples of integers (not necessarily positive). At the
start of the game, the k-tuple (n, 0, 0, . . . , 0) is written on the blackboard.
A legal move consists of erasing the tuple (a1, a2, . . . , ak) which is written on the
blackboard and replacing it with (a1+ b1, a2+ b2, . . . , ak+ bk), where (b1, b2, . . . , bk)
is an element of the set S. Two players take turns making legal moves, and the
first to write a negative integer loses. In the event that neither player is ever forced
to write a negative integer, the game is a draw.
Prove that there is a choice of k and S with the following property: the first player
has a winning strategy if n is a power of 2, and otherwise the second player has a
winning strategy.
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§1 Solutions to Day 1
§1.1 TSTST 2015/1, proposed by Mark Sellke
Available online at https://aops.com/community/p5017901.

Problem statement

Let a1, a2, . . ., an be a sequence of real numbers, and let m be a fixed positive
integer less than n. We say an index k with 1 ≤ k ≤ n is good if there exists some `
with 1 ≤ ` ≤ m such that

ak + ak+1 + · · ·+ ak+`−1 ≥ 0,

where the indices are taken modulo n. Let T be the set of all good indices. Prove
that ∑

k∈T
ak ≥ 0.

First we prove the result if the indices are not taken modulo n. Call a number `-good if
` is the smallest number such that ak + ak+1 + · · ·+ ak+`−1 ≥ 0, and ` ≤ m. Then if ak
is `-good, the numbers ak+1, . . . , ak+`−1 are good as well.

Then by greedy from left to right, we can group all the good numbers into blocks with
nonnegative sums. Repeatedly take the first good number, if `-good, group it with the
next ` numbers. An example for m = 3:

〈4〉 〈−1 − 2 6〉 − 9 − 7 〈3〉 〈−2 4〉 〈−1.

We can now return to the original problem. Let N be a large integer; applying the
algorithm to N copies of the sequence, we deduce that

N
∑
k∈T

ak + cN ≥ 0

where cN represents some “error” from left-over terms. As |cN | ≤
∑

|ai|, by taking N
large enough we deduce the problem.

Remark. This solution was motivated by looking at the case m = 1, realizing how dumb it
was, then looking at m = 2, and realizing it was equally dumb.
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§1.2 TSTST 2015/2, proposed by Ivan Borsenco
Available online at https://aops.com/community/p5017915.

Problem statement

Let ABC be a scalene triangle. Let Ka, La, and Ma be the respective intersections
with BC of the internal angle bisector, external angle bisector, and the median from
A. The circumcircle of AKaLa intersects AMa a second time at a point Xa different
from A. Define Xb and Xc analogously. Prove that the circumcenter of XaXbXc lies
on the Euler line of ABC.

The main content of the problem:

Claim — ∠HXaG = 90◦.

This implies the result, since then the desired circumcenter is the midpoint of GH. (This
is the main difficulty; the Euler line is a red herring.)

In what follows, we abbreviate Ka La, Ma, Xa to K, L, M , X.

First proof by Brokard. To do this, it suffices to show that M has the same power with
respect to the circle with diameter AH and the circle with diameter KL. In fact I claim
both circles are orthogonal to the circle with diameter BC! The former follows from
Brokard’s theorem, noting that A is on the polar of H, and the latter follows from the
harmonic bundle.

A

B CM

H

G

X

KL

Then AM is the radical axis, so X lies on both circles.

Second proof by orthocenter reflection, Bendit Chan. As before, we know MX ·MA =
MK ·ML = MB ·MC, but X lies inside segment AM . Construct parallelogram ABA′C.
Then MX ·MA′ = MB ·MC, so XBA′C is concyclic.

However, it is well-known the circumcircle of 4BA′C (which is the reflection of (ABC)
across BC) passes through H and in fact has diameter A′H. So this gives ∠HXA′ = 90◦

as needed.

Third proof by barycentric coordinates. Alternatively we may just compute X = (a2 :
2SA : 2SA). Let F = (0 : SC : SB) be the foot from H. Then we check that XHFM is
cyclic, which is power of a point from A.

4
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§1.3 TSTST 2015/3, proposed by Alex Zhai
Available online at https://aops.com/community/p5017928.

Problem statement

Let P be the set of all primes, and let M be a non-empty subset of P . Suppose that
for any non-empty subset {p1, p2, . . . , pk} of M , all prime factors of p1p2 · · · pk + 1
are also in M . Prove that M = P .

The following solution was found by user Aiscrim on AOPS.
Obviously |M | = ∞. Assume for contradiction p /∈ M . We say a prime q ∈ M is sparse

if there are only finitely many elements of M which are q (mod p) (in particular there
are finitely many sparse primes).

Now let C be the product of all sparse primes (note p - C). First, set a0 = 1. For
k ≥ 0, consider then the prime factorization of the number

Cak + 1.

No prime in its factorization is sparse, so consider the number ak+1 obtained by replacing
each prime in its factorization with some arbitrary representative of that
prime’s residue class. In this way we select a number ak+1 such that

• ak+1 ≡ Cak + 1 (mod p), and

• ak+1 is a product of distinct primes in M .

In particular, ak ≡ Ck + Ck−1 + · · ·+ 1 (mod p)
But since C 6≡ 0 (mod p), we can find a k such that ak ≡ 0 (mod p) (namely, k = p−1

if C ≡ 1 and k = p− 2 else) which is clearly impossible since ak is a product of primes in
M !
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§2 Solutions to Day 2
§2.1 TSTST 2015/4, proposed by Alyazeed Basyoni
Available online at https://aops.com/community/p5017801.

Problem statement

Let x, y, z be real numbers (not necessarily positive) such that x4+y4+z4+xyz = 4.
Prove that x ≤ 2 and √

2− x ≥ y + z

2
.

We prove that the condition x4 + y4 + z4 + xyz = 4 implies
√
2− x ≥ y + z

2
.

We first prove the easy part.

Claim — We have x ≤ 2.

Proof. Indeed, AM-GM gives that

5 = x4 + y4 + (z4 + 1) + xyz =
3x4

4
+

(
x4

4
+ y4

)
+ (z4 + 1) + xyz

≥ 3x4

4
+ x2y2 + 2z2 + xyz.

We evidently have that x2y2 +2z2 + xyz ≥ 0 because the quadratic form a2 + ab+2b2 is
positive definite, so x4 ≤ 20

3 =⇒ x ≤ 2.

Now, the desired statement is implied by its square, so it suffices to show that

2− x ≥
(
y + z

2

)2

We are going to proceed by contradiction (it seems that many solutions do this) and
assume that

2− x <

(
y + z

2

)2

⇐⇒ 4x+ y2 + 2yz + z2 > 8.

By AM-GM,

x4 + 3 ≥ 4x

y4+1
2 ≥ y2

z4+1
2 ≥ z2

which yields that

x4 +
y4 + z4

2
+ 2yz + 4 > 8.

If we replace x4 = 4− (y4 + z4 + xyz) now, this gives

−y4 + z4

2
+ (2− x)yz > 0 =⇒ (2− x)yz >

y4 + z4

2
.

6
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Since 2− x and the right-hand side are positive, we have yz ≥ 0. Now

y4 + z4

2yz
< 2− x <

(
y + z

2

)2

=⇒ 2y4 + 2z4 < yz(y + z)2 = y3z + 2y2z2 + yz3.

This is clearly false by AM-GM, so we have a contradiction.

7
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§2.2 TSTST 2015/5
Available online at https://aops.com/community/p5017821.

Problem statement

Let ϕ(n) denote the number of positive integers less than n that are relatively prime
to n. Prove that there exists a positive integer m for which the equation ϕ(n) = m
has at least 2015 solutions in n.

Here are two explicit solutions.

¶ First solution with ad-hoc subsets, by Evan Chen I consider the following eleven
prime numbers:

S = {11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 71} .

This has the property that for any p ∈ S, all prime factors of p− 1 are one digit.
Let N = (210)billion, and consider M = ϕ (N). For any subset T ⊂ S, we have

M = ϕ

 N∏
p∈T (p− 1)

∏
p∈T

p

 .

Since 2|S| > 2015 we’re done.

Remark. This solution is motivated by the deep fact that ϕ(11 · 1000) = ϕ(10 · 1000), for
example.

¶ Second solution with smallest primes, by Yang Liu Let 2 = p1 < p2 < · · · < p2015
be the smallest 2015 primes. Then the 2015 numbers

n1 = (p1 − 1)p2 . . . p2015

n2 = p1(p2 − 1) . . . p2015
...

n2015 = p1p2 . . . (p2015 − 1)

all have the same phi value, namely

ϕ(p1p2 . . . p2015) =

2015∏
i=1

(pi − 1).

8
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§2.3 TSTST 2015/6, proposed by Linus Hamilton
Available online at https://aops.com/community/p5017871.

Problem statement

A Nim-style game is defined as follows. Two positive integers k and n are specified,
along with a finite set S of k-tuples of integers (not necessarily positive). At the
start of the game, the k-tuple (n, 0, 0, . . . , 0) is written on the blackboard.

A legal move consists of erasing the tuple (a1, a2, . . . , ak) which is written on the
blackboard and replacing it with (a1 + b1, a2 + b2, . . . , ak + bk), where (b1, b2, . . . , bk)
is an element of the set S. Two players take turns making legal moves, and the first
to write a negative integer loses. In the event that neither player is ever forced to
write a negative integer, the game is a draw.

Prove that there is a choice of k and S with the following property: the first player
has a winning strategy if n is a power of 2, and otherwise the second player has a
winning strategy.

Here we present a solution with 14 registers and 22 moves. Initially X = n and all other
variables are zero.

X Y Go S0
X SX S′

X S0
Y SY S′

Y Cl A B Die Die’
Init -1 1 1 1 1
Begin 1 -1 1 -1 1
Sleep 1 -1
StartX -1 1 -1 1
WorkX -1 -1 1 -1 1
WorkX’ -1 1 1 -1 -1 1
DoneX -1 1 -1 1
WrongX -1 -1 -1
StartY -1 1 -1 1
WorkY -1 -1 1 -1 1
WorkY’ 1 -1 1 -1 -1 1
DoneY 1 -1 -1 1
WrongY -1 -1 -1
ClaimX -1 -1 1 -1 1
ClaimY -1 -1 1 -1 1
FakeX -1 -1 -1
FakeY -1 -1 -1
Win -1 -1
PunA -2
PunB -1 -1
Kill -1 -2 1
Kill’ -1 1 -2

Now, the “game” is played as follows. The mechanics are controlled by the turn
counters A and B.

Observe the game starts with Alice playing Init. Thereafter, we say that the game is

• In the main part if A+B = 1, and no one has played Init a second time.

• In the death part otherwise.

Observe that in the main state, on Alice’s turn we always have (A,B) = (1, 0) and on
Bob’s turn we always have (A,B) = (0, 1).

Claim — A player who plays Init a second time must lose. In particular, a player
who makes a move when A = B = 0 must lose.

9
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Proof. Situations with A + B ≥ 2 cannot occur during main part, so there are only a
few possibilities.

• Suppose the offending player is in a situation where A = B = 0. Then he/she must
play Init. At this point, the opposing player can respond by playing Kill. Then
the offending player must play Init again. The opposing player now responds with
Kill’. This iteration continues until X reaches a negative number and the offending
player loses.

• Suppose Alice has (A,B) = (1, 0) but plays Init again anyways. Then Bob responds
with PunB to punish her; he then wins as in the first case.

• Suppose Bob has (A,B) = (0, 1) but plays Init again anyways. Alice responds with
PunA in the same way.

Thus we may assume that players avoid the death part at all costs. Hence the second
moves consist of Bob playing Sleep, and then Alice playing Begin (thus restoring the
value of n in X), then Bob playing Sleep.

Now we return to analysis of the main part. We say the game is in state S for S ∈
{S0

X , SX , S′
X , S0

Y , SY , S
′
Y ,Cl} if S = 1 and all other variables are zero. By construction,

this is always the case. From then on the main part is divided into several phases:

• An X-phase: this begins with Alice at S0
X , and ends when the game is in a state

other than SX and S′
X . (She can never return to S0

X during an X-phase.)

• A Y -phase: this begins with Alice at S0
Y , and ends when the game is in a state

other than SY and S′
Y . (She can never return to S0

Y during a Y -phase.)

Claim — Consider an X-phase in which (X,Y ) = (x, 0), x > 1. Then Alice can
complete the phase without losing if and only if x is even; if so she begins a Y -phase
with (X,Y ) = (0, x/2).

Proof. As x > 1, Alice cannot play ClaimX since Bob will respond with FakeX and win.
Now by alternating between WorkX and WorkX’, Alice can repeatedly deduct 2 from X
and add 1 to Y , leading to (x− 2, y + 1), (x− 4, y + 2), and so on. (During this time,
Bob can only play Sleep.) Eventually, she must stop this process by playing DoneX,
which begins a Y -phase.

Now note that unless X = 0, Bob now has a winning move WrongX. Conversely he
may only play Sleep if X = 0.

We have an analogous claim for Y -phases. Thus if n is not a power of 2, we see that
Alice eventually loses.

Now suppose n = 2k; then Alice reaches (X,Y ) = (0, 2k−1), (2k−2, 0), . . . until either
reaching (1, 0) or (0, 1). At this point she can play ClaimX or ClaimY, respectively; the
game is now in state Cl. Bob cannot play either FakeX or FakeY, so he must play Sleep,
and then Alice wins by playing Win. Thus Alice has a winning strategy when n = 2k.

10



58th IMO TST Selection Test

Pittsburgh, PA

Day I 1:15pm – 5:45pm

June 25, 2016

1. Let A = A(x, y) and B = B(x, y) be two-variable polynomials with real coefficients. Suppose
that A(x, y)/B(x, y) is a polynomial in x for infinitely many values of y, and a polynomial in y
for infinitely many values of x. Prove that B divides A, meaning there exists a third polynomial
C with real coefficients such that A = B · C.

2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Denote by M , N the
midpoints of AH, BC. Suppose the circle γ with diameter AH meets the circumcircle of ABC
at G 6= A, and meets line AN at a point Q 6= A. The tangent to γ at G meets line OM at P .
Show that the circumcircles of 4GNQ and 4MBC intersect at a point T on PN .

3. Decide whether or not there exists a nonconstant polynomial Q(x) with integer coefficients
with the following property: for every positive integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

1



58th IMO TST Selection Test

Pittsburgh, PA

Day II 1:15pm – 5:45pm

June 27, 2016

4. Suppose that n and k are positive integers such that

1 = ϕ(ϕ(. . . ϕ(︸ ︷︷ ︸
k times

n) . . . )).

Prove that n ≤ 3k.

Here ϕ(n) denotes Euler’s totient function, i.e. ϕ(n) denotes the number of elements of {1, . . . , n}
which are relatively prime to n. In particular, ϕ(1) = 1.

5. In the coordinate plane are finitely many walls, which are disjoint line segments, none of which
are parallel to either axis. A bulldozer starts at an arbitrary point and moves in the +x
direction. Every time it hits a wall, it turns at a right angle to its path, away from the wall,
and continues moving. (Thus the bulldozer always moves parallel to the axes.)

Prove that it is impossible for the bulldozer to hit both sides of every wall.

6. Let ABC be a triangle with incenter I, and whose incircle is tangent to BC, CA, AB at
D, E, F , respectively. Let K be the foot of the altitude from D to EF . Suppose that the
circumcircle of4AIB meets the incircle at two distinct points C1 and C2, while the circumcircle
of 4AIC meets the incircle at two distinct points B1 and B2. Prove that the radical axis of
the circumcircles of 4BB1B2 and 4CC1C2 passes through the midpoint M of DK.
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§0 Problems
1. Let A = A(x, y) and B = B(x, y) be two-variable polynomials with real coefficients.

Suppose that A(x, y)/B(x, y) is a polynomial in x for infinitely many values of y,
and a polynomial in y for infinitely many values of x. Prove that B divides A,
meaning there exists a third polynomial C with real coefficients such that A = B ·C.

2. Let ABC be a scalene triangle with orthocenter H and circumcenter O and denote
by M , N the midpoints of AH, BC. Suppose the circle γ with diameter AH meets
the circumcircle of ABC at G 6= A, and meets line AN at Q 6= A. The tangent to
γ at G meets line OM at P . Show that the circumcircles of 4GNQ and 4MBC
intersect on PN .

3. Decide whether or not there exists a nonconstant polynomial Q(x) with integer
coefficients with the following property: for every positive integer n > 2, the
numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

4. Prove that if n and k are positive integers satisfying ϕk(n) = 1, then n ≤ 3k. (Here
ϕk denotes k applications of the Euler phi function.)

5. In the coordinate plane are finitely many walls, which are disjoint line segments,
none of which are parallel to either axis. A bulldozer starts at an arbitrary point
and moves in the +x direction. Every time it hits a wall, it turns at a right angle
to its path, away from the wall, and continues moving. (Thus the bulldozer always
moves parallel to the axes.)
Prove that it is impossible for the bulldozer to hit both sides of every wall.

6. Let ABC be a triangle with incenter I, and whose incircle is tangent to BC, CA,
AB at D, E, F , respectively. Let K be the foot of the altitude from D to EF .
Suppose that the circumcircle of 4AIB meets the incircle at two distinct points C1

and C2, while the circumcircle of 4AIC meets the incircle at two distinct points B1

and B2. Prove that the radical axis of the circumcircles of 4BB1B2 and 4CC1C2

passes through the midpoint M of DK.
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§1 Solutions to Day 1
§1.1 TSTST 2016/1, proposed by Victor Wang
Available online at https://aops.com/community/p6575197.

Problem statement

Let A = A(x, y) and B = B(x, y) be two-variable polynomials with real coefficients.
Suppose that A(x, y)/B(x, y) is a polynomial in x for infinitely many values of y,
and a polynomial in y for infinitely many values of x. Prove that B divides A,
meaning there exists a third polynomial C with real coefficients such that A = B ·C.

This is essentially an application of the division algorithm, but the details require
significant care.

First, we claim that A/B can be written as a polynomial in x whose coefficients are
rational functions in y. To see this, use the division algorithm to get

A = Q ·B +R Q,R ∈ (R(y))[x]

where Q and R are polynomials in x whose coefficients are rational functions in y, and
moreover degxB > degxR.

Now, we claim that R ≡ 0. Indeed, we have by hypothesis that for infinitely many
values of y0 that B(x, y0) divides A(x, y0), which means B(x, y0) | R(x, y0) as polynomials
in R[x]. Now, we have degxB(x, y0) > degxR(x, y0) outside of finitely many values of y0
(but not all of them!); this means for infinitely many y0 we have R(x, y0) ≡ 0. So each
coefficient of xi (in R(y)) has infinitely many roots, hence is a zero polynomial.

Consequently, we are able to write A/B = F (x, y)/M(y) where F ∈ R[x, y] and
M ∈ R[y] are each polynomials. Repeating the same argument now gives

A

B
=

F (x, y)

M(y)
=

G(x, y)

N(x)
.

Now, by unique factorization of polynomials in R[x, y], we can discuss GCD’s. So, we
tacitly assume gcd(F,M) = gcd(G,N) = (1). Also, we obviously have gcd(M,N) = (1).
But F ·N = G ·M , so M | F ·N , thus we conclude M is the constant polynomial. This
implies the result.

Remark. This fact does not generalize to arbitrary functions that are separately polynomial:
see e.g. http://aops.com/community/c6h523650p2978180.
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§1.2 TSTST 2016/2, proposed by Evan Chen
Available online at https://aops.com/community/p6575204.

Problem statement

Let ABC be a scalene triangle with orthocenter H and circumcenter O and denote
by M , N the midpoints of AH, BC. Suppose the circle γ with diameter AH meets
the circumcircle of ABC at G 6= A, and meets line AN at Q 6= A. The tangent to
γ at G meets line OM at P . Show that the circumcircles of 4GNQ and 4MBC
intersect on PN .

We present two solutions, one using essentially only power of a point, and the other more
involved.

¶ First solution (found by contestants) Denote by 4DEF the orthic triangle. Observe
PA and PG are tangents to γ, since OM is the perpendicular bisector of AG. Also note
that AG, EF , BC are concurrent at some point R by radical axis on (ABC), γ, (BC).

Now, consider circles (PAGM), (MFDNE), and (MBC). They intersect at M but
have radical center R, so are coaxial; assume they meet again at T ∈ RM , say. Then
∠PTM and ∠MTN are both right angles, hence T lies on PN .

Finally H is the orthocenter of 4ARN , and thus the circle with diameter RN passes
through G, Q, N .

A

B CN

H

M

O

P

T

D

E

F
Q

G

R

¶ Alternate solution (by proposer) Let L be diametrically opposite A on the circum-
circle. Denote by 4DEF the orthic triangle. Let X = AH ∩ EF . Finally, let T be the
second intersection of (MFDNE) and (MBC).

4
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A

B CN

H

M

O

P

X

T

D

E

F

L

K

Q

G

R

We begin with a few easy observations. First, points H, G, N , L are collinear and
∠AGL = 90◦. Also, Q is the foot from H to AN . Consequently, lines AG, EF , HQ,
BC, TM concur at a point R (radical axis). Moreover, we already know ∠MTN = 90◦.
This implies T lies on the circle with diameter RN , which is exactly the circumcircle of
4GQN .

Note by Brokard’s Theorem on AFHE, the point X is the orthocenter of 4MBC.
But ∠MTN = 90◦ already, and N is the midpoint of BC. Consequently, points T , X,
N are collinear.

Finally, we claim P , X, N are collinear, which solves the problem. Note P = GG∩AA.
Set K = HNL ∩AP . Then by noting

−1 = (D,X;A,H)
N
= (∞, NX ∩AK;A,K)

we see that NX bisects segment AK, as desired. (A more projective finish is to show
that PXN is the polar of R to γ).

Remark. The original problem proposal reads as follows:

Let ABC be a triangle with orthocenter H and circumcenter O and denote by
M , N the midpoints of AH, BC. Suppose ray OM meets the line parallel to
BC through A at P . Prove that the line through the circumcenter of 4MBC
and the midpoint of OH is parallel to NP .

The points G and Q were added to the picture later to prevent the problem from being
immediate by coordinates.
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§1.3 TSTST 2016/3, proposed by Yang Liu
Available online at https://aops.com/community/p6575217.

Problem statement

Decide whether or not there exists a nonconstant polynomial Q(x) with integer
coefficients with the following property: for every positive integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

We claim that
Q(x) = 420(x2 − 1)2

works. Clearly, it suffices to prove the result when n = 4 and when n is an odd prime p.
The case n = 4 is trivial, so assume now n = p is an odd prime.

First, we prove the following easy claim.

Claim — For any odd prime p, there are at least 1
2(p − 3) values of a for which(

1−a2

p

)
= +1.

Proof. Note that if k 6= 0, k 6= ±1, k2 6= −1, then a = 2(k + k−1) works. Also a = 0
works.

Let F (x) = (x2 − 1)2. The range of F modulo p is contained within the 1
2(p + 1)

quadratic residues modulo p. On the other hand, if for some t neither of 1 ± t is a
quadratic residue, then t2 is omitted from the range of F as well. Call such a value of t
useful, and let N be the number of useful residues. We aim to show N ≥ 1

4p− 2.
We compute a lower bound on the number N of useful t by writing

N =
1

4

(∑
t

[(
1−

(
1− t

p

))(
1−

(
1 + t

p

))]
−
(
1−

(
2

p

))
−
(
1−

(
−2

p

)))

≥ 1

4

∑
t

[(
1−

(
1− t

p

))(
1−

(
1 + t

p

))]
− 1

=
1

4

(
p+

∑
t

(
1− t2

p

))
− 1

≥ 1

4

(
p+ (+1) · 1

2(p− 3) + 0 · 2 + (−1) · ((p− 2)− 1
2(p− 3))

)
− 1

≥ 1

4
(p− 5) .

Thus, the range of F has size at most

1

2
(p+ 1)− 1

2
N ≤ 3

8
(p+ 3).

This is less than 0.499p for any p ≥ 11.
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Remark. In fact, the computation above is essentially an equality. There are only two
points where terms are dropped: one, when p ≡ 3 (mod 4) there are no k2 = −1 in the
lemma, and secondly, the terms 1− (2/p) and 1− (−2/p) are dropped in the initial estimate
for N . With suitable modifications, one can show that in fact, the range of F is exactly
equal to

1

2
(p+ 1)− 1

2
N =


1
8 (3p+ 5) p ≡ 1 (mod 8)
1
8 (3p+ 7) p ≡ 3 (mod 8)
1
8 (3p+ 9) p ≡ 5 (mod 8)
1
8 (3p+ 3) p ≡ 7 (mod 8).
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§2 Solutions to Day 2
§2.1 TSTST 2016/4, proposed by Linus Hamilton
Available online at https://aops.com/community/p6580534.

Problem statement

Prove that if n and k are positive integers satisfying ϕk(n) = 1, then n ≤ 3k. (Here
ϕk denotes k applications of the Euler phi function.)

The main observation is that the exponent of 2 decreases by at most 1 with each
application of ϕ. This will give us the desired estimate.

Define the weight function w on positive integers as follows: it satisfies

w(ab) = w(a) + w(b);

w(2) = 1; and
w(p) = w(p− 1) for any prime p > 2.

By induction, we see that w(n) counts the powers of 2 that are produced as ϕ is repeatedly
applied to n. In particular, k ≥ w(n).

From w(2) = 1, it suffices to prove that w(p) ≥ log3 p for every p > 2. We use strong
induction and note that

w(p) = w(2) + w

(
p− 1

2

)
≥ 1 + log3(p− 1)− log3 2 ≥ log3 p

for any p > 2. This solves the problem.

Remark. One can motivate this solution through small cases 2x3y like 2x17w, 2x3y7z,
2x11t.

Moreover, the stronger bound
n ≤ 2 · 3k−1

is true and best possible.
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§2.2 TSTST 2016/5, proposed by Linus Hamilton, Cynthia Stoner
Available online at https://aops.com/community/p6580545.

Problem statement

In the coordinate plane are finitely many walls, which are disjoint line segments,
none of which are parallel to either axis. A bulldozer starts at an arbitrary point
and moves in the +x direction. Every time it hits a wall, it turns at a right angle
to its path, away from the wall, and continues moving. (Thus the bulldozer always
moves parallel to the axes.)

Prove that it is impossible for the bulldozer to hit both sides of every wall.

We say a wall v is above another wall w if some point on v is directly above a point on w.
(This relation is anti-symmetric, as walls do not intersect).

The critical claim is as follows:

Claim — There exists a lowest wall, i.e. a wall not above any other walls.

Proof. Assume not. Then we get a directed cycle of some length n ≥ 3: it’s possible to
construct a series of points Pi, Qi, for i = 1, . . . , n (indices modulo n), such that the
point Qi is directly above Pi+1 for each i, the segment QiPi+1 does not intersect any
wall in its interior, and finally each segment PiQi is contained inside a wall. This gives
us a broken line on 2n vertices which is not self-intersecting.

Now consider the leftmost vertical segment QiPi+1 and the rightmost vertical segment
QjPj+1. The broken line gives a path from Pi+1 to Qj , as well as a path from Pj+1 to
Qi. These clearly must intersect, contradiction.

Remark. This claim is Iran TST 2010.

Thus if the bulldozer eventually moves upwards indefinitely, it may never hit the
bottom side of the lowest wall. Similarly, if the bulldozer eventually moves downwards
indefinitely, it may never hit the upper side of the highest wall.
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§2.3 TSTST 2016/6, proposed by Danielle Wang
Available online at https://aops.com/community/p6580553.

Problem statement

Let ABC be a triangle with incenter I, and whose incircle is tangent to BC, CA,
AB at D, E, F , respectively. Let K be the foot of the altitude from D to EF .
Suppose that the circumcircle of 4AIB meets the incircle at two distinct points C1

and C2, while the circumcircle of 4AIC meets the incircle at two distinct points B1

and B2. Prove that the radical axis of the circumcircles of 4BB1B2 and 4CC1C2

passes through the midpoint M of DK.

¶ First solution (Allen Liu) Let X, Y , Z be midpoints of EF , FD, DE, and let G
be the Gergonne point. By radical axis on (AEIF ), (DEF ), (AIC) we see that B1,
X, B2 are collinear. Likewise, B1, Z, B2 are collinear, so lines B1B2 and XZ coincide.
Similarly, lines C1C2 and XY coincide. In particular lines B1B2 and C1C2 meet at X.

A

B CD

E

F

G

X

Y

Z

B1

B2

C1

C2

V

W
T

Note G is the symmedian point of DEF , so it is well-known that XG passes through
the midpoint of DK. So we just have to prove G lies on the radical axis.

First, note that 4DEF is the cevian triangle of the Gergonne point G. Set V =
XY ∩AB, W = XZ ∩AC, and T = BW ∩ CV .

We begin with the following completely projective claim.

10
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Claim — The points X, G, T are collinear.

Proof. It suffices to view 4XY Z as any cevian triangle of 4DEF (which is likewise any
cevian triangle of 4ABC). Then

• By Cevian Nest on 4ABC, it follows that AX, BY , CZ are concurrent.

• Hence 4BY V and 4CZW are perspective.

• Hence 4BZW and 4CY V are perspective too.

• Hence we deduce by Desargues theorem that T , X, and BZ ∩ CY are collinear.

• Finally, the Cevian Nest theorem applied on 4GBC (which has cevian triangles
4DFE, 4XZY ) we deduce G, X, and BZ ∩ CY , proving the claim.

One could also proceed by using barycentric coordinates on 4DEF .

Remark (Eric Shen). The first four bullets can be replaced by non-projective means: one
can check that BZ ∩ CY is the radical center of (BIC), (BB1B2), (CC1C2) and therefore
it lies on line XT .

Now, we contend point V is the radical center (CC1C2), (ABC) and (DEF ). To see
this, let V ′ = ED ∩ AB; then (FV ′;AB) is harmonic, and V is the midpoint of FV ′,
and thus V A · V B = V F 2 = V C1 · V C2.

So in fact CV is the radical axis of (ABC) and (CC1C2).
Similarly, BW is the radical axis of (ABC) and (BB1B2). Thus T is the radical center

of (ABC), (BB1B2), (CC1C2).
This completes the proof, as now XT is the desired radical axis.

¶ Second solution (Evan Chen) Let X, Y , Z be midpoints of EF , FD, DE, and let
G be the Gergonne point. By radical axis on (AEIF ), (DEF ), (AIC) we see that B1,
X, B2 are collinear. Likewise, B1, Z, B2 are collinear, so lines B1B2 and XZ coincide.
Similarly, lines C1C2 and XY coincide. In particular lines B1B2 and C1C2 meet at X.

Note G is the symmedian point of DEF , so it is well-known that XG passes through
the midpoint of DK. So we just have to prove G lies on the radical axis.
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A

B C

I

D

E

F

G

P

T

Q
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U

X

Y

Z

P ′

Q′

R′ S′

T ′

U ′

V

W

B1

B2

C1

C2

K

M

Construct parallelograms GPFQ, GRDS, GTUE such that P,R ∈ DF , S, T ∈ DE,
Q,U ∈ EF . As FG bisects PQ and is isogonal to FZ, we find PQED, hence PQRU , is
cyclic. Repeating the same logic and noticing PR, ST , QU not concurrent, all six points
PQRSTU are cyclic. Moreover, since PQ bisects GF , we see that a dilation with factor
2 at G sends PQ to P ′, Q′ ∈ AB, say, with F the midpoint of P ′Q′. Define R′, S′ ∈ BC
similarly now and T ′, U ′ ∈ CA.

Note that EQPDS′ is in cyclic too, as ]DS′Q = ]DRS = ]DEF . By homothety
through B, points B, P , X are collinear; assume they meet (EQPDS′) again at V . Thus
EV QPDS′ is cyclic, and now

]BV S′ = ]PV S′ = ]PQS = ]PTS = ]FED = ]XEZ = ]XV Z

hence V lies on (BQ′S′).
Since FB ‖ QP , we get EV FB is cyclic too, so XV ·XB = XE ·XF now; thus X

lies on the radical axis of (BS′Q′) and (DEF ). By the same argument with W ∈ BZ,
we get Z lies on the radical axis too. Thus the radical axis of (BS′Q′) and (DEF ) must
be line XZ, which coincides with B1B2; so (BB1B2) = (BS′Q′).

Analogously, (CC1C2) = (CR′U ′). Since G = Q′S′ ∩ R′U ′, we need only prove that
Q′R′S′U ′ is cyclic. But QRSU is cyclic, so we are done.

The circle (PQRSTU) is called the Lemoine circle of ABC.
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Saturday, June 24, 2017

Problem 1. Let ABC be a triangle with circumcircle Γ, circumcenter O, and orthocenter
H. Assume that AB 6= AC and ∠A 6= 90◦. Let M and N be the midpoints of AB and
AC, respectively, and let E and F be the feet of the altitudes from B and C in 4ABC,
respectively. Let P be the intersection point of line MN with the tangent line to Γ at A.
Let Q be the intersection point, other than A, of Γ with the circumcircle of 4AEF . Let
R be the intersection point of lines AQ and EF . Prove that PR ⊥ OH.

Problem 2. Ana and Banana are playing a game. First Ana picks a word, which is
defined to be a nonempty sequence of capital English letters. Then Banana picks a
nonnegative integer k and challenges Ana to supply a word with exactly k subsequences
which are equal to Ana’s word. Ana wins if she is able to supply such a word, otherwise
she loses. For example, if Ana picks the word “TST”, and Banana chooses k = 4, then
Ana can supply the word “TSTST” which has 4 subsequences which are equal to Ana’s
word. Which words can Ana pick so that she can win no matter what value of k Banana
chooses?

Problem 3. Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For each c > 0,
determine the minimum possible degree of f , or show that no such f , g exist.
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Day II 1:15pm – 5:45pm

Monday, June 26, 2017

Problem 4. Find all nonnegative integer solutions to 2a + 3b + 5c = n!.

Problem 5. Let ABC be a triangle with incenter I. Let D be a point on side BC
and let ωB and ωC be the incircles of 4ABD and 4ACD, respectively. Suppose that
ωB and ωC are tangent to segment BC at points E and F , respectively. Let P be the
intersection of segment AD with the line joining the centers of ωB and ωC . Let X be
the intersection point of lines BI and CP and let Y be the intersection point of lines CI
and BP . Prove that lines EX and FY meet on the incircle of 4ABC.

Problem 6. A sequence of positive integers (an)n≥1 is of Fibonacci type if it satisfies
the recursive relation an+2 = an+1 + an for all n ≥ 1. Is it possible to partition the set of
positive integers into an infinite number of Fibonacci type sequences?
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§0 Problems
1. Let ABC be a triangle with circumcircle Γ, circumcenter O, and orthocenter H.

Assume that AB 6= AC and ∠A 6= 90◦. Let M and N be the midpoints of AB
and AC, respectively, and let E and F be the feet of the altitudes from B and
C in 4ABC, respectively. Let P be the intersection point of line MN with the
tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with
the circumcircle of 4AEF . Let R be the intersection point of lines AQ and EF .
Prove that PR ⊥ OH.

2. Ana and Banana are playing a game. First Ana picks a word, which is defined to be
a nonempty sequence of capital English letters. Then Banana picks a nonnegative
integer k and challenges Ana to supply a word with exactly k subsequences which
are equal to Ana’s word. Ana wins if she is able to supply such a word, otherwise
she loses. For example, if Ana picks the word “TST”, and Banana chooses k = 4,
then Ana can supply the word “TSTST” which has 4 subsequences which are equal
to Ana’s word. Which words can Ana pick so that she can win no matter what
value of k Banana chooses?

3. Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For each
c > 0, determine the minimum possible degree of f , or show that no such f , g exist.

4. Find all nonnegative integer solutions to

2a + 3b + 5c = n!.

5. Let ABC be a triangle with incenter I. Let D be a point on side BC and let ωB

and ωC be the incircles of 4ABD and 4ACD, respectively. Suppose that ωB and
ωC are tangent to segment BC at points E and F , respectively. Let P be the
intersection of segment AD with the line joining the centers of ωB and ωC . Let X
be the intersection point of lines BI and CP and let Y be the intersection point of
lines CI and BP . Prove that lines EX and FY meet on the incircle of 4ABC.

6. A sequence of positive integers (an)n≥1 is of Fibonacci type if it satisfies the recursive
relation an+2 = an+1+an for all n ≥ 1. Is it possible to partition the set of positive
integers into an infinite number of Fibonacci type sequences?
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§1 Solutions to Day 1
§1.1 TSTST 2017/1, proposed by Ray Li
Available online at https://aops.com/community/p8526098.

Problem statement

Let ABC be a triangle with circumcircle Γ, circumcenter O, and orthocenter H.
Assume that AB 6= AC and ∠A 6= 90◦. Let M and N be the midpoints of AB
and AC, respectively, and let E and F be the feet of the altitudes from B and
C in 4ABC, respectively. Let P be the intersection point of line MN with the
tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with the
circumcircle of 4AEF . Let R be the intersection point of lines AQ and EF . Prove
that PR ⊥ OH.

¶ First solution (power of a point) Let γ denote the nine-point circle of ABC.

A

B C

M N

O
H

E

F

R

Q
P

Note that

• PA2 = PM · PN , so P lies on the radical axis of Γ and γ.

• RA ·RQ = RE ·RF , so R lies on the radical axis of Γ and γ.

Thus PR is the radical axis of Γ and γ, which is evidently perpendicular to OH.

Remark. In fact, by power of a point one may also observe that R lies on BC, since it is
on the radical axis of (AQFHE), (BFEC), (ABC). Ironically, this fact is not used in the
solution.

¶ Second solution (barycentric coordinates) Again note first R ∈ BC (although this
can be avoided too). We compute the points in much the same way as before. Since
AP ∩BC = (0 : b2 : −c2) we have

P =
(
b2 − c2 : b2 : −c2

)
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(since x = y + z is the equation of line MN). Now in Conway notation we have

R = EF ∩BC = (0 : SC : −SB) =
(
0 : a2 + b2 − c2 : −a2 + b2 − c2

)
.

Hence
−→
PR =

1

2(b2 − c2)

(
b2 − c2, c2 − a2, a2 − b2

)
.

On the other hand, we have
−−→
OH = ~A+ ~B + ~C. So it suffices to check that∑

cyc
a2

(
(a2 − b2) + (c2 − a2)

)
= 0

which is immediate.

¶ Third solution (complex numbers) Let ABC be the unit circle. We first compute P
as the midpoint of A and AA ∩BC:

p =
1

2

(
a+

a2(b+ c)− bc · 2a
a2 − bc

)
=

a(a2 − bc) + a2(b+ c)− 2abc

2(a2 − bc)
.

Using the remark above, R is the inverse of D with respect to the circle with diameter
BC, which has radius

∣∣1
2(b− c)

∣∣. Thus

r − b+ c

2
=

1
4(b− c)

(
1
b −

1
c

)
1
2

(
a− bc

a

)
r =

b+ c

2
+

−1
2
(b−c)2

bc
1
a − a

bc

=
b+ c

2
+

a(b− c)2

2(a2 − bc)

=
a(b− c)2 + (b+ c)(a2 − bc)

2(a2 − bc)
.

Expanding and subtracting gives

p− r =
a3 − abc− ab2 − ac2 + b2c+ bc2

2(a2 − bc)
=

(a+ b+ c)(a− b)(a− c)

2(a2 − bc)

which is visibly equal to the negation of its conjugate once the factor of a + b + c is
deleted.

(Actually, one can guess this factorization ahead of time by noting that if A = B, then
P = B = R, so a− b must be a factor; analogously a− c must be as well.)
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§1.2 TSTST 2017/2, proposed by Kevin Sun
Available online at https://aops.com/community/p8526115.

Problem statement

Ana and Banana are playing a game. First Ana picks a word, which is defined to be
a nonempty sequence of capital English letters. Then Banana picks a nonnegative
integer k and challenges Ana to supply a word with exactly k subsequences which
are equal to Ana’s word. Ana wins if she is able to supply such a word, otherwise
she loses. For example, if Ana picks the word “TST”, and Banana chooses k = 4,
then Ana can supply the word “TSTST” which has 4 subsequences which are equal
to Ana’s word. Which words can Ana pick so that she can win no matter what value
of k Banana chooses?

First we introduce some notation. Define a block of letters to be a maximal contiguous
subsequence of consecutive letters. Throughout the solution, we fix the word A that Ana
picks, and introduce the following notation for its m blocks:

A = A1A2 . . . Am = a1 . . . a1︸ ︷︷ ︸
x1

a2 . . . a2︸ ︷︷ ︸
x2

. . . am . . . am︸ ︷︷ ︸
xm

.

A rainbow will be a subsequence equal to Ana’s initial word A (meaning Ana seeks words
with exactly k rainbows). Finally, for brevity, let Ai = ai . . . ai︸ ︷︷ ︸

xi

, so A = A1 . . . Am.

We prove two claims that resolve the problem.

Claim — If xi = 1 for some i, then for any k ≥ 1, the word

W = A1 . . . Ai−1 ai . . . ai︸ ︷︷ ︸
k

Ai+1 . . . Am

obtained by repeating the ith letter k times has exactly k rainbows.

Proof. Obviously there are at least
(

k
k−1

)
= k rainbows, obtained by deleting k−1 choices

of the letter ai in the repeated block. We show they are the only ones.
Given a rainbow, consider the location of this singleton block in W . It cannot occur

within the first |A1|+· · ·+|Ai−1| letters, nor can it occur within the final |Ai+1|+· · ·+|Am|
letters. So it must appear in the ith block of W . That implies that all the other ai’s in
the ith block of W must be deleted, as desired. (This last argument is actually nontrivial,
and has some substance; many students failed to realize that the upper bound requires
care.)

Claim — If xi ≥ 2 for all i, then no word W has exactly two rainbows.

Proof. We prove if there are two rainbows of W , then we can construct at least three
rainbows.

Let W = w1 . . . wn and consider the two rainbows of W . Since they are not the same,
there must be a block Ap of the rainbow, of length ` ≥ 2, which do not occupy the same
locations in W .
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Assume the first rainbow uses wi1 , . . . , wi` for this block and the second rainbow uses
wj1 , . . . , wj` for this block. Then among the letters wq for min(i1, j1) ≤ q ≤ max(i`, j`),
there must be at least `+ 1 copies of the letter ap. Moreover, given a choice of ` copies
of the letter ap in this range, one can complete the subsequence to a rainbow. So the
number of rainbows is at least

(
`+1
`

)
≥ `+ 1.

Since ` ≥ 2, this proves W has at least three rainbows.

In summary, Ana wins if and only if xi = 1 for some i, since she can duplicate the
isolated letter k times; but if xi ≥ 2 for all i then Banana only needs to supply k = 2.
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§1.3 TSTST 2017/3, proposed by Calvin Deng, Linus Hamilton
Available online at https://aops.com/community/p8526130.

Problem statement

Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For each
c > 0, determine the minimum possible degree of f , or show that no such f , g exist.

First, if c ≥ 2 then we claim no such f and g exist. Indeed, one simply takes x = 1 to
get f(1)/g(1) ≤ 0, impossible.

For c < 2, let c = 2 cos θ, where 0 < θ < π. We claim that f exists and has minimum
degree equal to n, where n is defined as the smallest integer satisfying sinnθ ≤ 0. In
other words

n =

⌈
π

arccos(c/2)

⌉
.

First we show that this is necessary. To see it, write explicitly

g(x) = a0 + a1x+ a2x
2 + · · ·+ an−2x

n−2

with each ai ≥ 0, and an−2 6= 0. Assume that n is such that sin(kθ) ≥ 0 for k = 1, . . . , n−1.
Then, we have the following system of inequalities:

a1 ≥ 2 cos θ · a0
a0 + a2 ≥ 2 cos θ · a1
a1 + a3 ≥ 2 cos θ · a2

...
an−5 + an−3 ≥ 2 cos θ · an−4

an−4 + an−2 ≥ 2 cos θ · an−3

an−3 ≥ 2 cos θ · an−2.

Now, multiply the first equation by sin θ, the second equation by sin 2θ, et cetera, up to
sin ((n− 1)θ). This choice of weights is selected since we have

sin (kθ) + sin ((k + 2)θ) = 2 sin ((k + 1)θ) cos θ

so that summing the entire expression cancels nearly all terms and leaves only

sin ((n− 2)θ) an−2 ≥ sin ((n− 1)θ) · 2 cos θ · an−2

and so by dividing by an−2 and using the same identity gives us sin(nθ) ≤ 0, as claimed.
This bound is best possible, because the example

ak = sin ((k + 1)θ) ≥ 0

makes all inequalities above sharp, hence giving a working pair (f, g).
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Remark. Calvin Deng points out that a cleaner proof of the lower bound is to take
α = cos θ+ i sin θ. Then f(α) = 0, but by condition the imaginary part of f(α) is apparently
strictly positive, contradiction.

Remark. Guessing that c < 2 works at all (and realizing c ≥ 2 fails) is the first part of the
problem.

The introduction of trigonometry into the solution may seem magical, but is motivated
in one of two ways:

• Calvin Deng points out that it’s possible to guess the answer from small cases: For
c ≤ 1 we have n = 3, tight at x3+1

x+1 = x2 − x+ 1, and essentially the “sharpest n = 3

example”. A similar example exists at n = 4 with x4+1
x2+

√
2x+1

= x2 −
√
2x+ 1 by the

Sophie-Germain identity. In general, one can do long division to extract an optimal
value of c for any given n, although c will be the root of some polynomial.
The thresholds c ≤ 1 for n = 3, c ≤

√
2 for n = 4, c ≤ 1+

√
5

2 for n = 5, and c ≤ 2 for
n < ∞ suggest the unusual form of the answer via trigonometry.

• One may imagine trying to construct a polynomial recursively / greedily by making all
inequalities above hold (again the “sharpest situation” in which f has few coefficients).
If one sets c = 2t, then we have

a0 = 1, a1 = 2t, a2 = 4t2 − 1, a3 = 8t3 − 4t, . . .

which are the Chebyshev polynomials of the second type. This means that trigonometry
is essentially mandatory. (One may also run into this when by using standard linear
recursion techniques, and noting that the characteristic polynomial has two conjugate
complex roots.)

Remark. Mitchell Lee notes that an IMO longlist problem from 1997 shows that if P (x) is
any polynomial satisfying P (x) > 0 for x > 0, then (x+1)nP (x) has nonnegative coefficients
for large enough n. This show that f and g at least exist for c ≤ 2, but provides no way of
finding the best possible deg f .

Meghal Gupta also points out that showing f and g exist is possible in the following way:(
x2 − 1.99x+ 1

) (
x2 + 1.99x+ 1

)
=

(
x4 − 1.9601x2 + 1

)
and so on, repeatedly multiplying by the “conjugate” until all coefficients become positive.
To my best knowledge, this also does not give any way of actually minimizing deg f , although
Ankan Bhattacharya points out that this construction is actually optimal in the case where
n is a power of 2.

Remark. It’s pointed out that Matematicheskoe Prosveshchenie, issue 1, 1997, page 194
contains a nearly analogous result, available at https://mccme.ru/free-books/matpros/
pdf/mp-01.pdf with solutions presented in https://mccme.ru/free-books/matpros/pdf/
mp-05.pdf, pages 221–223; and https://mccme.ru/free-books/matpros/pdf/mp-10.pdf,
page 274.
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§2 Solutions to Day 2
§2.1 TSTST 2017/4, proposed by Mark Sellke
Available online at https://aops.com/community/p8526131.

Problem statement

Find all nonnegative integer solutions to

2a + 3b + 5c = n!.

For n ≤ 4, one can check the only solutions are:

22 + 30 + 50 = 3!

21 + 31 + 50 = 3!

24 + 31 + 51 = 4!.

Now we prove there are no solutions for n ≥ 5.
A tricky way to do this is to take modulo 120, since

2a (mod 120) ∈ {1, 2, 4, 8, 16, 32, 64}
3b (mod 120) ∈ {1, 3, 9, 27, 81}
5c (mod 120) ∈ {1, 5, 25}

and by inspection one notes that no three elements have vanishing sum modulo 120.
I expect most solutions to instead use casework. Here is one possible approach with

cases (with n ≥ 5). First, we analyze the cases where a < 3:

• a = 0: No solutions for parity reasons.

• a = 1: since 3b + 5c ≡ 6 (mod 8), we find b even and c odd (hence c 6= 0). Now
looking modulo 5 gives that 3b + 5c ≡ 3 (mod 5),

• a = 2: From 3b + 5c ≡ 4 (mod 8), we find b is odd and c is even. Now looking
modulo 5 gives a contradiction, even if c = 0, since 3b ∈ {2, 3 (mod 5)} but
3b + 5c ≡ 1 (mod 5).

Henceforth assume a ≥ 3. Next, by taking modulo 8 we have 3b +5c ≡ 0 (mod 8), which
forces both b and c to be odd (in particular, b, c > 0). We now have

2a + 5c ≡ 0 (mod 3)

2a + 3b ≡ 0 (mod 5).

The first equation implies a is even, but the second equation requires a to be odd,
contradiction. Hence no solutions with n ≥ 5.

9
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§2.2 TSTST 2017/5, proposed by Ray Li
Available online at https://aops.com/community/p8526136.

Problem statement

Let ABC be a triangle with incenter I. Let D be a point on side BC and let ωB

and ωC be the incircles of 4ABD and 4ACD, respectively. Suppose that ωB and
ωC are tangent to segment BC at points E and F , respectively. Let P be the
intersection of segment AD with the line joining the centers of ωB and ωC . Let X
be the intersection point of lines BI and CP and let Y be the intersection point of
lines CI and BP . Prove that lines EX and FY meet on the incircle of 4ABC.

¶ First solution (homothety) Let Z be the diametrically opposite point on the incircle.
We claim this is the desired intersection.

A

B CD

IB
IC

E F

I

P

X

Y

Z

TW

Note that:

• P is the insimilicenter of ωB and ωC

• C is the exsimilicenter of ω and ωC .

Thus by Monge theorem, the insimilicenter of ωB and ω lies on line CP .
This insimilicenter should also lie on the line joining the centers of ω and ωB, which is

BI, hence it coincides with the point X. So X ∈ EZ as desired.

¶ Second solution (harmonic) Let T = IBIC ∩ BC, and W the foot from I to BC.
Define Z = FY ∩ IW . Because ∠IBDIC = 90◦, we have

−1 = (IBIC ;PT )
B
= (IIC ;Y C)

F
= (I∞;ZW )

So I is the midpoint of ZW as desired.

¶ Third solution (outline, barycentric, Andrew Gu) Let AD = t, BD = x, CD = y,
so a = x+ y and by Stewart’s theorem we have

(x+ y)(xy + t2) = b2x+ c2y. (1)
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We then have D = (0 : y : x) and so

AIB ∩BC =

(
0 : y +

tx

c+ t
:

cx

c+ t

)
hence intersection with BI gives

IB = (ax : cy + at : cx).

Similarly,

IC = (ay : by : bx+ at).

Then, we can compute

P = (2axy : y(at+ bx+ cy) : x(at+ bx+ cy))

since P ∈ IBIC , and clearly P ∈ AD. Intersection now gives

X = (2ax : at+ bx+ cy : 2cx)

Y = (2ay : 2by : at+ bx+ cy) .

Finally, we have BE = 1
2(c + x − t), and similarly for CF . Now if we reflect D =

(0, s−c
a , s−b

a ) over I = ( a
2s ,

b
2s ,

c
2s), we get the antipode

Q :=
(
4a2 : −a2 + 2ab− b2 + c2 : −a2 + 2ac− c2 + b2

)
.

We may then check Q lies on each of lines EX and FY (by checking det(Q,E,X) = 0
using the equation (1)).
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§2.3 TSTST 2017/6, proposed by Ivan Borsenco
Available online at https://aops.com/community/p8526142.

Problem statement

A sequence of positive integers (an)n≥1 is of Fibonacci type if it satisfies the recursive
relation an+2 = an+1 + an for all n ≥ 1. Is it possible to partition the set of positive
integers into an infinite number of Fibonacci type sequences?

Yes, it is possible. The following solutions were written for me by Kevin Sun and Mark
Sellke. We let F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . .denote the Fibonacci numbers.

¶ First solution (Kevin Sun) We are going to appeal to the so-called Zeckendorf
theorem:

Theorem (Zeckendorf)
Every positive integer can be uniquely expressed as the sum of nonconsecutive
Fibonacci numbers.

This means every positive integer has a Zeckendorf (“Fibonacci-binary”) representation
where we put 1 in the ith digit from the right if Fi+1 is used. The idea is then to take
the following so-called Wythoff array:

• Row 1: 1, 2, 3, 5, . . .

• Row 101: 1 + 3, 2 + 5, 3 + 8, . . .

• Row 1001: 1 + 5, 2 + 8, 3 + 13, . . .

• Row 10001: 1 + 8, 2 + 13, 3 + 21, . . .

• Row 10101: 1 + 3 + 8, 2 + 5 + 13, 3 + 8 + 21, . . .

• . . .et cetera.

More concretely, the array has the following rows to start:

1 2 3 5 8 13 21 · · ·
4 7 11 18 29 47 76 · · ·
6 10 16 26 42 68 110 · · ·
9 15 24 39 63 102 165 · · ·
12 20 32 52 84 136 220 · · ·
14 23 37 60 97 157 254 · · ·
17 28 45 73 118 191 309 · · ·
...

...
...

...
...

...
... . . .

.

Here are the full details.
We begin by outlining a proof of Zeckendorf’s theorem, which implies the representation

above is unique. Note that if Fk is the greatest Fibonacci number at most n, then

n− Fk < Fk+1 − Fk = Fk−1.
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In particular, repeatedly subtracting off the largest Fk from n will produce one such
representation with no two consecutive Fibonacci numbers. On the other hand, this Fk

must be used, as
n ≥ Fk > Fk−1 + Fk−3 + Fk−5 + · · ·

This shows, by a simple inductive argument, that such a representation exists and unique.
We write n = ak · · · a1Fib for the Zeckendorf representation as we described (where

ai = 1 if Fi+1 is used). Now for each ak · · · a1Fib with a1 = 1, consider the sequence

ak · · · a1Fib, ak · · · a10Fib, ak · · · a100Fib, . . .

These sequences are Fibonacci-type by definition, and partition the positive integers since
each positive integer has exactly one Fibonacci base representation.

¶ Second solution Call an infinite set of integers S sandwiched if there exist increasing
sequences {ai}∞i=0, {bi}∞i=0 such that the following are true:

• ai + ai+1 = ai+2 and bi + bi+1 = bi+2.

• The intervals [ai + 1, bi − 1] are disjoint and are nondecreasing in length.

• S =

∞⋃
i=0

[ai + 1, bi − 1].

We claim that if S is any nonempty sandwiched set, then S can be partitioned
into a Fibonacci-type sequence (involving the smallest element of S) and two smaller
sandwiched sets. If this claim is proven, then we can start with N \ {1, 2, 3, 5, . . .}, which
is a sandwiched set, and repeatedly perform this partition, which will eventually sort
each natural number into a Fibonacci-type sequence.

Let S be a sandwiched set given by {ai}∞i=0, {bi}∞i=0, so the smallest element in S is
x = a0 + 1. Note that y = a1 + 1 is also in S and x < y. Then consider the Fibonacci-
type sequence given by f0 = x, f1 = y, and fk+2 = fk+1 + fk. We can then see that
fi ∈ [ai+1, bi−1], as the sum of numbers in the intervals [ak+1, bk−1], [ak+1+1, bk+1−1]
lies in the interval

[ak + ak+1 + 2, bk + bk+1 − 2] = [ak+2 + 2, bk+2 − 2] ⊂ [ak+2 + 1, bk+2 − 1].

Therefore, this gives a natural partition of S into this sequence and two sets:

S1 =
∞⋃
i=0

[ai + 1, fi − 1]

and S2 =
∞⋃
i=0

[fi + 1, bi − 1].

(For convenience, [x, x− 1] will be treated as the empty set.)
We now show that S1 and S2 are sandwiched. Since {ai}, {fi}, and {bi} satisfy the

Fibonacci recurrence, it is enough to check that the intervals have nondecreasing lengths.
For S1, that is equivalent to fk+1 − ak+1 ≥ fk − ak for each k. Fortunately, for k ≥ 1,
the difference is fk−1 − ak−1 ≥ 0, and for k = 0, f1 − a1 = 1 = f0 − a0. Similarly for S2,
checking bk+1 − fk+1 ≥ bk − fk is easy for k ≥ 1 as bk−1 − fk−1 ≥ 0, and

(b1 − f1)− (b0 − f0) = (b1 − a1)− (b0 − a0),
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which is nonnegative since the lengths of intervals in S are nondecreasing.
Therefore we have shown that S1 and S2 are sandwiched. (Note that some of the

[ai + 1, fi − 1] may be empty, which would shift some indices back.) Since this gives us
a procedure to take a set S and produce a Fibonacci-type sequence with its smallest
element, along which two other sandwiched types, we can partition N into an infinite
number of Fibonacci-type sequences.

¶ Third solution We add Fibonacci-type sequences one-by-one. At each step, let x be
the smallest number that has not been used in any previous sequence. We generate a
new Fibonacci-type sequence as follows. Set a0 = x and for i ≥ 1, set

ai =

⌊
ϕai−1 +

1

2

⌋
.

Equivalently, ai is the closest integer to ϕai−1.
It suffices to show that this sequence is Fibonacci-type and that no two sequences
generated in this way overlap. We first show that for a positive integer n,⌊

ϕ

⌊
ϕn+

1

2

⌋
+

1

2

⌋
= n+

⌊
ϕn+

1

2

⌋
.

Indeed, ⌊
ϕ

⌊
ϕn+

1

2

⌋
+

1

2

⌋
=

⌊
(1 + ϕ−1)

⌊
ϕn+

1

2

⌋
+

1

2

⌋
=

⌊
ϕn+

1

2

⌋
+

⌊
ϕ−1

⌊
ϕn+

1

2

⌋
+

1

2

⌋
.

Note that
⌊
ϕn+ 1

2

⌋
= ϕn+ c for some |c| ≤ 1

2 ; this implies that ϕ−1
⌊
ϕn+ 1

2

⌋
is within

ϕ−1 · 1
2 < 1

2 of n, so its closest integer is n, proving the claim.
Therefore these sequences are Fibonacci-type. Additionally, if a 6= b, then |ϕa− ϕb| ≥

ϕ > 1. Then

a 6= b =⇒
⌊
ϕa+

1

2

⌋
6=

⌊
ϕb+

1

2

⌋
,

and since the first term of each sequence is chosen to not overlap with any previous
sequences, these sequences are disjoint.

Remark. Ankan Bhattacharya points out that the same sequence essentially appears in
IMO 1993, Problem 5 — in other words, a strictly increasing function f : Z>0 → Z>0 with
f(1) = 2, and f(f(n)) = f(n) + n.

Nikolai Beluhov sent us an older reference from March 1977, where Martin Gardner wrote
in his column about Wythoff’s Nim. The relevant excerpt goes:

“Imagine that we go through the infinite sequence of safe pairs (in the manner
of Eratosthenes’ sieve for sifting out primes) and cross out the infinite set of all
safe pairs that are pairs in the Fibonacci sequence. The smallest pair that is
not crossed out is 4/7. We can now cross out a second infinite set of safe pairs,
starting with 4/7, that are pairs in the Lucas sequence. An infinite number
of safe pairs, of which the lowest is now 6/10, remain. This pair too begins
another infinite Fibonacci sequence, all of whose pairs are safe. The process
continues forever. Robert Silber, a mathematician at North Carolina State
University, calls a safe pair “primitive” if it is the first safe pair that generates
a Fibonacci sequence.”
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The relevant article by Robert Silber is A Fibonacci Property of Wythoff Pairs, from The
Fibonacci Quarterly 11/1976.

¶ Fourth solution (Mark Sellke) For later reference let

f1 = 0, f2 = 1, f3 = 1, . . .

denote the ordinary Fibonacci numbers. We will denote the Fibonacci-like sequences by
F i and the elements with subscripts; hence F 2

1 is the first element of the second sequence.
Our construction amounts to just iteratively add new sequences; hence the following
claim is the whole problem.

Lemma
For any disjoint collection of Fibonacci-like sequences F 1, . . . , F k and any integer m
contained in none of them, there is a new Fibonacci-like sequence F k+1 beginning
with F k+1

1 = m which is disjoint from the previous sequences.

Observe first that for each sequence F j there is cj ∈ Rn such that

F j
n = cjφn + o(1)

where
φ =

1 +
√
5

2
.

Collapse the group (R+,×) into the half-open interval J = {x | 1 ≤ x < φ} by defining
T (x) = y for the unique y ∈ J with x = yφn for some integer n.

Fix an interval I = [a, b] ⊆ [1.2, 1.3] (the last condition is to avoid wrap-around issues)
which contains none of the cj , and take ε < 0.001 to be small enough that in fact each cj

has distance at least 10ε from I; this means any cj and element of I differ by at least a
(1 + 10ε) factor. The idea will be to take F k+1

1 = m and F k+1
2 to be a large such that

the induced values of F k+1
j grow like kφj for j ∈ T−1(I), so that F k+1

n is separated from
the cj after applying T . What’s left to check is the convergence.

Now let
c = lim

n→∞

fn
φn

and take M large enough that for n > M we have∣∣∣∣ fncφn
− 1

∣∣∣∣ < ε.

Now T−1(I)
c contains arbitrarily large integers, so there are infinitely many N with

cN ∈ T−1(I) with N > 10m
ε . We claim that for any such N , the sequence F (N) defined

by
F

(N)
1 = m,F

(N)
2 = N

will be very multiplicatively similar to the normal Fibonacci numbers up to rescaling;
indeed for j = 2, j = 3 we have F

(N)
2
f2

= N,
F

(N)
3
f3

= N +m and so by induction we will
have

F
(N)
j

fj
∈ [N,N +m] ⊆ [N,N(1 + ε)]
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for j ≥ 2. Therefore, up to small multiplicative errors, we have

F
(N)
j ≈ Nfj ≈ cNφj .

From this we see that for j > M we have

T (F
(N)
j ) ∈ T (cN) · [1− 2ε, 1 + 2ε].

In particular, since T (cN) ∈ I and I is separated from each cj by a factor of (1 + 10ε),
we get that F

(N)
j is not in any of F 1, F 2, . . . , F k.

Finishing is easy, since we now have a uniform estimate on how many terms we need
to check for a new element before the exponential growth takes over. We will just use
pigeonhole to argue that there are few possible collisions among those early terms, so we
can easily pick a value of N which avoids them all. We write it out below.

For large L, the set
SL = (I · φL) ∩ Z

contains at least kIφ
L elements. As N ranges over SL, for each fixed j, the value of F (N)

j

varies by at most a factor of 1.1 because we imposed I ⊆ [1.2, 1.3] and so this is true for
the first two terms, hence for all subsequent terms by induction. Now suppose L is very
large, and consider a fixed pair (i, j) with i ≤ k and j ≤ M . We claim there is at most 1

possible value k such that the term F i
k could equal F (N)

j for some N ∈ SL; indeed, the
terms of F i are growing at exponential rate with factor φ > 1.1, so at most one will be
in a given interval of multiplicative width at most 1.1.

Hence, of these kIφ
L values of N , at most kM could cause problems, one for each pair

(i, j). However by monotonicity of F (N)
j in N , at most 1 value of N causes a collision for

each pair (i, j). Hence for large L so that kIφ
L > 10kM we can find a suitable N ∈ SL

by pigeonhole and the sequence F (N) defined by (m,N,N +m, . . . ) works.
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USA TST Selection Test for 60th IMO and 8th EGMO

Pittsburgh, PA

Day I 1:15pm – 5:45pm

Tuesday, June 19, 2018

Problem 1. As usual, let Z[x] denote the set of single-variable polynomials in x with
integer coefficients. Find all functions θ : Z[x] → Z such that for any polynomials
p, q ∈ Z[x],

• θ(p+ 1) = θ(p) + 1, and

• if θ(p) 6= 0 then θ(p) divides θ(p · q).

Problem 2. In the nation of Onewaynia, certain pairs of cities are connected by one-way
roads. Every road connects exactly two cities (roads are allowed to cross each other, e.g.,
via bridges), and each pair of cities has at most one road between them. Moreover, every
city has exactly two roads leaving it and exactly two roads entering it.

We wish to close half the roads of Onewaynia in such a way that every city has exactly
one road leaving it and exactly one road entering it. Show that the number of ways to
do so is a power of 2 greater than 1 (i.e. of the form 2n for some integer n ≥ 1).

Problem 3. Let ABC be an acute triangle with incenter I, circumcenter O, and
circumcircle Γ. Let M be the midpoint of AB. Ray AI meets BC at D. Denote by
ω and γ the circumcircles of 4BIC and 4BAD, respectively. Line MO meets ω at
X and Y , while line CO meets ω at C and Q. Assume that Q lies inside 4ABC and
∠AQM = ∠ACB.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that
∠BAC 6= 60◦, prove that these four lines are concurrent on Γ.

1



USA TST Selection Test for 60th IMO and 8th EGMO

Pittsburgh, PA

Day II 1:15pm – 5:45pm

Thursday, June 21, 2018

Problem 4. For an integer n > 0, denote by F(n) the set of integers m > 0 for which
the polynomial p(x) = x2 +mx+ n has an integer root.

(a) Let S denote the set of integers n > 0 for which F(n) contains two consecutive
integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n) contains
three consecutive integers.

Problem 5. Let ABC be an acute triangle with circumcircle ω, and let H be the foot
of the altitude from A to BC. Let P and Q be the points on ω with PA = PH and
QA = QH. The tangent to ω at P intersects lines AC and AB at E1 and F1 respectively;
the tangent to ω at Q intersects lines AC and AB at E2 and F2 respectively. Show that
the circumcircles of 4AE1F1 and 4AE2F2 are congruent, and the line through their
centers is parallel to the tangent to ω at A.

Problem 6. Let S = {1, . . . , 100}, and for every positive integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements of S red,
then at least half of the n-tuples in Tn have an even number of coordinates with red
elements.
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USA TST Selection Test for 60th IMO and 8th EGMO

Pittsburgh, PA

Day III 1:15pm – 5:45pm

Saturday, June 23, 2018

Problem 7. Let n be a positive integer. A frog starts on the number line at 0. Suppose
it makes a finite sequence of hops, subject to two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.

• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either direction,
left or right.)

Let S be the sum of the (positive) lengths of all hops in the sequence. What is the
maximum possible value of S?

Problem 8. For which positive integers b > 2 do there exist infinitely many positive
integers n such that n2 divides bn + 1?

Problem 9. Show that there is an absolute constant c < 1 with the following property:
whenever P is a polygon with area 1 in the plane, one can translate it by a distance of
1

100 in some direction to obtain a polygon Q, for which the intersection of the interiors of
P and Q has total area at most c.
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§0 Problems
1. As usual, let Z[x] denote the set of single-variable polynomials in x with integer

coefficients. Find all functions θ : Z[x] → Z such that for any polynomials p, q ∈
Z[x],

• θ(p+ 1) = θ(p) + 1, and
• if θ(p) 6= 0 then θ(p) divides θ(p · q).

2. In the nation of Onewaynia, certain pairs of cities are connected by one-way roads.
Every road connects exactly two cities (roads are allowed to cross each other, e.g.,
via bridges), and each pair of cities has at most one road between them. Moreover,
every city has exactly two roads leaving it and exactly two roads entering it.
We wish to close half the roads of Onewaynia in such a way that every city has
exactly one road leaving it and exactly one road entering it. Show that the number
of ways to do so is a power of 2 greater than 1 (i.e. of the form 2n for some integer
n ≥ 1).

3. Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle
Γ. Let M be the midpoint of AB. Ray AI meets BC at D. Denote by ω and
γ the circumcircles of 4BIC and 4BAD, respectively. Line MO meets ω at X
and Y , while line CO meets ω at C and Q. Assume that Q lies inside 4ABC and
∠AQM = ∠ACB.
Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given
that ∠BAC 6= 60◦, prove that these four lines are concurrent on Γ.

4. For an integer n > 0, denote by F(n) the set of integers m > 0 for which the
polynomial p(x) = x2 +mx+ n has an integer root.
(a) Let S denote the set of integers n > 0 for which F(n) contains two consecutive

integers. Show that S is infinite but∑
n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n) contains
three consecutive integers.

5. Let ABC be an acute triangle with circumcircle ω, and let H be the foot of the
altitude from A to BC. Let P and Q be the points on ω with PA = PH and
QA = QH. The tangent to ω at P intersects lines AC and AB at E1 and F1

respectively; the tangent to ω at Q intersects lines AC and AB at E2 and F2

respectively. Show that the circumcircles of 4AE1F1 and 4AE2F2 are congruent,
and the line through their centers is parallel to the tangent to ω at A.

6. Let S = {1, . . . , 100}, and for every positive integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements of S
red, then at least half of the n-tuples in Tn have an even number of coordinates
with red elements.
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7. Let n be a positive integer. A frog starts on the number line at 0. Suppose it makes
a finite sequence of hops, subject to two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.
• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either direction,

left or right.)
Let S be the sum of the (positive) lengths of all hops in the sequence. What is the
maximum possible value of S?

8. For which positive integers b > 2 do there exist infinitely many positive integers n
such that n2 divides bn + 1?

9. Show that there is an absolute constant c < 1 with the following property: whenever
P is a polygon with area 1 in the plane, one can translate it by a distance of 1

100 in
some direction to obtain a polygon Q, for which the intersection of the interiors of
P and Q has total area at most c.
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§1 Solutions to Day 1
§1.1 TSTST 2018/1, proposed by Evan Chen, Yang Liu
Available online at https://aops.com/community/p10570981.

Problem statement

As usual, let Z[x] denote the set of single-variable polynomials in x with integer
coefficients. Find all functions θ : Z[x] → Z such that for any polynomials p, q ∈ Z[x],

• θ(p+ 1) = θ(p) + 1, and

• if θ(p) 6= 0 then θ(p) divides θ(p · q).

The answer is θ : p 7→ p(c), for each choice of c ∈ Z. Obviously these work, so we
prove these are the only ones. In what follows, x ∈ Z[x] is the identity polynomial, and
c = θ(x).

¶ First solution (Merlijn Staps) Consider an integer n 6= c. Because x−n | p(x)−p(n),
we have

θ(x− n) | θ(p(x)− p(n)) =⇒ c− n | θ(p(x))− p(n).

On the other hand, c − n | p(c) − p(n). Combining the previous two gives c − n |
θ(p(x))− p(c), and by letting n large we conclude θ(p(x))− p(c) = 0, so θ(p(x)) = p(c).

¶ Second solution First, we settle the case deg p = 0. In that case, from the second
property, θ(m) = m+ θ(0) for every integer m ∈ Z (viewed as a constant polynomial).
Thus m+ θ(0) | 2m+ θ(0), hence m+ θ(0) | −θ(0), so θ(0) = 0 by taking m large. Thus
θ(m) = m for m ∈ Z.

Next, we address the case of deg p = 1. We know θ(x+ b) = c+ b for b ∈ Z. Now for
each particular a ∈ Z, we have

c+ k | θ(x+ k) | θ(ax+ ak) = θ(ax) + ak =⇒ c+ k | θ(ax)− ac.

for any k 6= −c. Since this is true for large enough k, we conclude θ(ax) = ac. Thus
θ(ax+ b) = ac+ b.

We now proceed by induction on deg p. Fix a polynomial p and assume it’s true for
all p of smaller degree. Choose a large integer n (to be determined later) for which
p(n) 6= p(c). We then have

p(c)− p(n)

c− n
= θ

(
p− p(n)

x− n

)
| θ (p− p(n)) = θ(p)− p(n).

Subtracting off c− n times the left-hand side gives

p(c)− p(n)

c− n
| θ(p)− p(c).

The left-hand side can be made arbitrarily large by letting n → ∞, since deg p ≥ 2. Thus
θ(p) = p(c), concluding the proof.
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¶ Authorship comments I will tell you a story about the creation of this problem.
Yang Liu and I were looking over the drafts of December and January TST in October
2017, and both of us had the impression that the test was too difficult. This sparked a
non-serious suggestion that we should try to come up with a problem now that would be
easy enough to use. While we ended up just joking about changing the TST, we did get
this problem out of it.

Our idea was to come up with a functional equation that was different from the usual
fare: at first we tried Z[x] → Z[x], but then I suggested the idea of using Z[x] → Z, with
the answer being the “evaluation” map. Well, what properties does that satisfy? One
answer was a− b | p(a)− p(b); this didn’t immediately lead to anything, but eventually
we hit on the form of the problem above off this idea. At first we didn’t require θ(p) 6= 0
in the bullet, but without the condition the problem was too easy, since 0 divides only
itself; and so the condition was added and we got the functional equation.

I proposed the problem to USAMO 2018, but it was rejected (unsurprisingly; I think
the problem may be too abstract for novice contestants). Instead it was used for TSTST,
which I thought fit better.
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§1.2 TSTST 2018/2, proposed by Victor Wang
Available online at https://aops.com/community/p10570985.

Problem statement

In the nation of Onewaynia, certain pairs of cities are connected by one-way roads.
Every road connects exactly two cities (roads are allowed to cross each other, e.g.,
via bridges), and each pair of cities has at most one road between them. Moreover,
every city has exactly two roads leaving it and exactly two roads entering it.

We wish to close half the roads of Onewaynia in such a way that every city has
exactly one road leaving it and exactly one road entering it. Show that the number
of ways to do so is a power of 2 greater than 1 (i.e. of the form 2n for some integer
n ≥ 1).

In the language of graph theory, we have a simple digraph G which is 2-regular and we
seek the number of sub-digraphs which are 1-regular. We now present two solution paths.

¶ First solution, combinatorial We construct a simple undirected bipartite graph Γ as
follows:

• the vertex set consists of two copies of V (G), say Vout and Vin; and

• for v ∈ Vout and w ∈ Vin we have an undirected edge vw ∈ E(Γ) if and only if the
directed edge v → w is in G.

Moreover, the desired sub-digraphs of H correspond exactly to perfect matchings of Γ.
However the graph Γ is 2-regular and hence consists of several disjoint (simple) cycles

of even length. If there are n such cycles, the number of perfect matchings is 2n, as
desired.

Remark. The construction of Γ is not as magical as it may first seem.
Suppose we pick a road v1 → v2 to use. Then, the other road v3 → v2 is certainly not

used; hence some other road v3 → v4 must be used, etc. We thus get a cycle of forced
decisions until we eventually return to the vertex v1.

These cycles in the original graph G (where the arrows alternate directions) correspond
to the cycles we found in Γ. It’s merely that phrasing the solution in terms of Γ makes it
cleaner in a linguistic sense, but not really in a mathematical sense.

¶ Second solution by linear algebra over F2 (Brian Lawrence) This is actually not
that different from the first solution. For each edge e, we create an indicator variable xe.
We then require for each vertex v that:

• If e1 and e2 are the two edges leaving v, then we require xe1 + xe2 ≡ 1 (mod 2).

• If e3 and e4 are the two edges entering v, then we require xe3 + xe4 ≡ 1 (mod 2).

We thus get a large system of equations. Moreover, the solutions come in natural pairs ~x
and ~x+~1 and therefore the number of solutions is either zero, or a power of two. So we
just have to prove there is at least one solution.

For linear algebra reasons, there can only be zero solutions if some nontrivial linear
combination of the equations gives the sum 0 ≡ 1. So suppose we added up some subset S
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of the equations for which every variable appeared on the left-hand side an even number
of times. Then every variable that did appear appeared exactly twice; and accordingly
we see that the edges corresponding to these variables form one or more even cycles as in
the previous solution. Of course, this means |S| is even, so we really have 0 ≡ 0 (mod 2)
as needed.

Remark. The author’s original proposal contained a second part asking to show that it was
not always possible for the resulting H to be connected, even if G was strongly connected.
This problem is related to IMO Shortlist 2002 C6, which gives an example of a strongly
connected graph which does have a full directed Hamiltonian cycle.
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§1.3 TSTST 2018/3, proposed by Yannick Yao, Evan Chen
Available online at https://aops.com/community/p10570988.

Problem statement

Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle
Γ. Let M be the midpoint of AB. Ray AI meets BC at D. Denote by ω and
γ the circumcircles of 4BIC and 4BAD, respectively. Line MO meets ω at X
and Y , while line CO meets ω at C and Q. Assume that Q lies inside 4ABC and
∠AQM = ∠ACB.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given
that ∠BAC 6= 60◦, prove that these four lines are concurrent on Γ.

Henceforth assume ∠A 6= 60◦; we prove the concurrence. Let L denote the center of ω,
which is the midpoint of minor arc BC.

Claim — Let K be the point on ω such that KL ‖ AB and KC ‖ AL. Then KA
is tangent to γ, and we may put

x = KA = LB = LC = LX = LY = KX = KY.

Proof. By construction, KA = LB = LC. Also, MO is the perpendicular bisector of
KL (since the chords KL, AB of ω are parallel) and so KXLY is a rhombus as well.

Moreover, KA is tangent to γ as well since

]KAD = ]KAL = ]KAC + ]CAL = ]KBC + ]ABK = ]ABC.

L

B C

A

M N

O

E

K

X

Y

D

Q

Up to now we have not used the existence of Q; we henceforth do so.
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Note that Q 6= O, since ∠A 6= 60◦ =⇒ O /∈ ω. Moreover, we have ∠AOM = ∠ACB
too. Since O and Q both lie inside 4ABC, this implies that A, M , O, Q are concyclic.
As Q 6= O we conclude ∠CQA = 90◦.

The main claim is now:

Claim — Assuming Q exists, the rhombus LXKY is a square. In particular, KX
and KY are tangent to ω.

First proof of Claim, communicated by Milan Haiman. Observe that 4QLC ∼ 4LOC
since both triangles are isosceles and share a base angle. Hence, CL2 = CO · CQ.

Let N be the midpoint of AC, which lies on (AMOQ). Then,

x2 = CL2 = CO · CQ = CN · CA =
1

2
CA2 =

1

2
LK2

where we have also used the fact AQON is cyclic. Thus LK =
√
2x and so the rhombus

LXKY is actually a square.

Second proof of Claim, Evan Chen. Observe that Q lies on the circle with diameter AC,
centered at N , say. This means that O lies on the radical axis of ω and (N), hence
NL ⊥ CO implying

NO2 + CL2 = NC2 + LO2 = NC2 +OC2 = NC2 +NO2 +NC2

=⇒ x2 = 2NC2

=⇒ x =
√
2NC =

1√
2
AC =

1√
2
LK.

So LXKY is a rhombus with LK =
√
2x. Hence it is a square.

Third proof of Claim. A solution by trig is also possible. As in the previous claims, it
suffices to show that AC =

√
2x.

First, we compute the length CQ in two ways; by angle chasing one can show ∠CBQ =
180◦ − (∠BQC + ∠QCB) = 1

2∠A, and so

AC sinB = CQ =
BC

sin(90◦ + 1
2∠A)

· sin 1

2
∠A

⇐⇒ sin2B =
sinA · sin 1

2∠A

cos 1
2∠A

⇐⇒ sin2B = 2 sin2 1

2
∠A

⇐⇒ sinB =
√
2 sin 1

2
∠A

⇐⇒ 2R sinB =
√
2

(
2R sin 1

2
∠A

)
⇐⇒ AC =

√
2x

as desired (we have here used the fact 4ABC is acute to take square roots).
It is interesting to note that sin2B = 2 sin2 1

2∠A can be rewritten as

cosA = cos2B

since cos2B = 1− sin2B = 1− 2 sin2 1
2∠A = cosA; this is the condition for the existence

of the point Q.
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We finish by proving that
KD = KA

and hence line KD is tangent to γ. Let E = BC ∩KL. Then

LE · LK = LC2 = LX2 =
1

2
LK2

and so E is the midpoint of LK. Thus MXOY , BC, KL are concurrent at E. As
DL ‖ KC, we find that DLCK is a parallelogram, so KD = CL = KA as well. Thus
KD and KA are tangent to γ.

Remark. The condition ∠A 6= 60◦ cannot be dropped, since if Q = O the problem is not
true.

On the other hand, nearly all solutions begin by observing Q 6= O and then obtaining
∠AQO = 90◦. This gives a way to construct the diagram by hand with ruler and compass.
One draws an arbitrary chord BC of a circle ω centered at L, and constructs O as the
circumcenter of 4BLC (hence obtaining Γ). Then Q is defined as the intersection of ray
CO with ω, and A is defined by taking the perpendicular line through Q on the circle Γ. In
this way we can draw a triangle ABC satisfying the problem conditions.

¶ Authorship comments In the notation of the present points, the question originally
sent to me by Yannick Yao read:

Circles (L) and (O) are drawn, meeting at B and C, with L on (O). Ray CO
meets (L) at Q, and A is on (O) such that ∠CQA = 90◦. The angle bisector
of ∠AOB meets (L) at X and Y . Show that ∠XLY = 90◦.

Notice the points M and K are absent from the problem. I am told this was found as
part of the computer game “Euclidea”. Using this as the starting point, I constructed the
TSTST problem by recognizing the significance of that special point K, which became
the center of attention.
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§2 Solutions to Day 2
§2.1 TSTST 2018/4, proposed by Ivan Borsenco
Available online at https://aops.com/community/p10570991.

Problem statement

For an integer n > 0, denote by F(n) the set of integers m > 0 for which the
polynomial p(x) = x2 +mx+ n has an integer root.

(a) Let S denote the set of integers n > 0 for which F(n) contains two consecutive
integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n) contains
three consecutive integers.

We prove the following.

Claim — The set S is given explicitly by S = {x(x+ 1)y(y + 1) | x, y > 0}.

Proof. Note that m,m+ 1 ∈ F(n) if and only if there exist integers q > p ≥ 0 such that

m2 − 4n = p2

(m+ 1)2 − 4n = q2.

Subtraction gives 2m + 1 = q2 − p2, so p and q are different parities. We can thus let
q − p = 2x+ 1, q + p = 2y + 1, where y ≥ x ≥ 0 are integers. It follows that

4n = m2 − p2

=

(
q2 − p2 − 1

2

)2

− p2 =

(
q2 − p2 − 1

2
− p

)(
q2 − p2 − 1

2
+ p

)
=

q2 − (p2 + 2p+ 1)

2
· q

2 − (p2 − 2p+ 1)

2

=
1

4
(q − p− 1)(q − p+ 1)(q + p− 1)(q + p+ 1) =

1

4
(2x)(2x+ 2)(2y)(2y + 2)

=⇒ n = x(x+ 1)y(y + 1).

Since n > 0 we require x, y > 0. Conversely, if n = x(x + 1)y(y + 1) for positive x
and y then m =

√
p2 + 4n =

√
(y − x)2 + 4n = 2xy + x+ y = x(y + 1) + (x+ 1)y and

m+ 1 = 2xy + x+ y + 1 = xy + (x+ 1)(y + 1). Thus we conclude the main claim.

From this, part (a) follows as

∑
n∈S

n−1 ≤

∑
x≥1

1

x(x+ 1)

∑
y≥1

1

y(y + 1)

 = 1 · 1 = 1.
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As for (b), retain the notation in the proof of the claim. Now m+ 2 ∈ S if and only if
(m+ 2)2 − 4n is a square, say r2. Writing in terms of p and q as parameters we find

r2 = (m+ 2)2 − 4n = m2 − 4n+ 4m+ 4 = p2 + 2 + 2(2m+ 1)

= p2 + 2(q2 − p2) + 2 = 2q2 − p2 + 2

⇐⇒ 2q2 + 2 = p2 + r2 (†)

with q > p of different parity and n = 1
16(q − p− 1)(q − p+ 1)(q + p− 1)(q + p+ 1).

Note that (by taking modulo 8) we have q 6≡ p ≡ r (mod 2), and so there are no parity
issues and we will always assume p < q < r in (†). Now, for every q, the equation (†) has
a canonical solution (p, r) = (q − 1, q + 1), but this leaves n = 0. Thus we want to show
for infinitely many q there is a third way to write 2q2 + 2 as a sum of squares, which will
give the desired p.

To do this, choose large integers q such that q2+1 is divisible by at least three distinct
1 mod 4 primes. Since each such prime can be written as a sum of two squares, using
Lagrange identity, we can deduce that 2q2 + 2 can be written as a sum of two squares in
at least three different ways, as desired.

Remark. We can see that n = 144 is the smallest integer such that F(n) contains three
consecutive integers and n = 15120 is the smallest integer such that F(n) contains four
consecutive integers. It would be interesting to determine whether the number of consecutive
elements in F(n) can be arbitrarily large or is bounded.
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§2.2 TSTST 2018/5, proposed by Ankan Bhattacharya, Evan Chen
Available online at https://aops.com/community/p10571000.

Problem statement

Let ABC be an acute triangle with circumcircle ω, and let H be the foot of the
altitude from A to BC. Let P and Q be the points on ω with PA = PH and
QA = QH. The tangent to ω at P intersects lines AC and AB at E1 and F1

respectively; the tangent to ω at Q intersects lines AC and AB at E2 and F2

respectively. Show that the circumcircles of 4AE1F1 and 4AE2F2 are congruent,
and the line through their centers is parallel to the tangent to ω at A.

Let O be the center of ω, and let M = PQ ∩AB and N = PQ ∩AC be the midpoints
of AB and AC respectively. Refer to the diagram below.

A

B C

O

M NP Q

E1

F1

E2

F2

The main idea is to prove two key claims involving O, which imply the result:

(i) quadrilaterals AOE1F1 and AOE2F2 are cyclic (giving the radical axis is AO),

(ii) 4OE1F1
∼= 4OE2F2 (giving the congruence of the circles).

We first note that (i) and (ii) are equivalent. Indeed, because OP = OQ, (ii) is equivalent
to just the similarity 4OE1F1 ∼ 4OE2F2, and then by the spiral similarity lemma (or
even just angle chasing) we have (i) ⇐⇒ (ii).

We now present five proofs, two of (i) and three of (ii). Thus, we are essentially
presenting five different solutions.

¶ Proof of (i) by angle chasing Note that

]F2E2O = ]QE2O = ]QNO = ]MNO = ]MAO = ]F2AO

and hence E2OAF2 is cyclic. Similarly, E1OAF1 is cyclic.
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¶ Proof of (i) by Simson lines Since P , M , N are collinear, we see that PMN is the
Simson line of O with respect to 4AE1F1.

¶ Proof of (ii) by butterfly theorem By butterfly theorem on the three chords
AC, PQ, PQ, it follows that E1N = NE2. Thus

E1P =
√

E1A · E1C =
√

E2A · E2C = E2P.

But also OP = OQ and hence 4OPE1
∼= 4OQE2. Similarly for the other pair.

¶ Proof of (ii) by projective geometry Let T = PP ∩ QQ. Let S be on PQ with
ST ‖ AC; then TS ⊥ ON , and it follows ST is the polar of N (it passes through T by
La Hire).

Now,
−1 = (PQ;NS)

T
= (E1E2;N∞)

with ∞ = AC ∩ ST the point at infinity. Hence E1N = NE2 and we can proceed as in
the previous solution.

Remark. The assumption that 4ABC is acute is not necessary; it is only present to
ensure that P lies on segment E1F1 and Q lies on segment E2F2, which may be helpful for
contestants. The argument presented above is valid in all configurations. When one of ∠B
and ∠C is a right angle, some of the points E1, F1, E2, F2 lie at infinity; when one of them
is obtuse, both P and Q lie outside segments E1F1 and E2F2 respectively.

¶ Proof of (ii) by complex numbers We will give using complex numbers on 4ABC a
proof that |E1P | = |E2Q|.

We place APBCQ on the unit circle. Since PQ ‖ BC, we have pq = bc. Also, the
midpoint of AB lies on PQ, so

p+ q =
a+ b

2
+

(
a+ b

2

)
· pq

=
a+ b

2
+

a+ b

2ab
· bc

=
a(a+ b)

2a
+

c(a+ b)

2a

=
(a+ b)(a+ c)

2a
.

Now,

p− e1 = p− pp(a+ c)− ac(p+ p)

pp− ac

=
p(p2 − p(a+ c) + ac)

pp− ac
=

(p− a)(p− c)

p2 − ac
.

|PE1|2 = (p− e1) · p− e1 =
(p− a)(p− c)

p2 − ac
·
(1p − 1

a)(
1
p − 1

c )
1
p2

− 1
ac

= −(p− a)2(p− c)2

(p2 − ac)2
.

14
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Similarly,

|QE2|2 = −(q − a)2(q − c)2

(q2 − ac)2
.

But actually, we claim that

(p− a)(p− c)

p2 − ac
=

(q − a)(q − c)

q2 − ac
.

One calculates

(p− a)(p− c)(q2 − ac) = p2q2 − pq2a− pq2c+ q2ac− p2ac+ pa2c+ pac2 − (ac)2

Thus (p− a)(p− c)(q2 − ac)− (q − a)(q − c)(p2 − ac) is equal to

−(a+ c)(pq)(q − p) + (q2 − p2)ac− (p2 − q2)ac+ ac(a+ c)(p− q)

= (p− q) [(a+ c)pq − 2(p+ q)ac+ ac(a+ c)]

= (p− q)

[
(a+ c)bc− 2 · (a+ b)(a+ c)

2a
· ac+ ac(a+ c)

]
= (p− q)(a+ c) [bc− c(a+ b) + ac] = 0.

This proves |E1P | = |E2Q|. Together with the similar |F1P | = |F2Q|, we have proved
(ii).

¶ Authorship comments Ankan provides an extensive dialogue at https://aops.com/
community/c6h1664170p10571644 of how he came up with this problem, which at first
was intended just to be an AMC-level question about an equilateral triangle. Here, we
provide just the change-log of the versions of this problem.

0. (Original version) Let ABC be an equilateral triangle with side 2 inscribed in circle
ω, and let P be a point on small arc AB of its circumcircle. The tangent line to ω
at P intersects lines AC and AB at E and F . If PE = PF , find EF . (Answer: 4.)

1. (Generalize to isosceles triangle) Let ABC be an isosceles triangle with AB = AC,
and let M be the midpoint of BC. Let P be a point on the circumcircle with
PA = PM . The tangent to the circumcircle at P intersects lines AC and AB at
E and F , respectively. Show that PE = PF .

2. (Block coordinate bashes) Let ABC be an isosceles triangle with AB = AC and
circumcircle ω, and let M be the midpoint of BC. Let P be a point on ω with
PA = PM . The tangent to ω at P intersects lines AC and AB at E and F ,
respectively. Show that the circumcircle of 4AEF passes through the center of ω.

3. (Delete isosceles condition) Let ABC be a triangle with circumcircle ω, and let H
be the foot of the altitude from A to BC. Let P be a point on ω with PA = PH.
The tangent to ω at P intersects lines AC and AB at E and F , respectively. Show
that the circumcircle of 4AEF passes through the center of ω.

4. (Add in both tangents) Let ABC be an acute triangle with circumcircle ω, and let
H be the foot of the altitude from A to BC. Let P and Q be the points on ω with
PA = PH and QA = QH. The tangent to ω at P intersects lines AC and AB at
E1 and F1 respectively; the tangent to ω at Q intersects lines AC and AB at E2

and F2 respectively. Show that E1F1 = E2F2.
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5. (Merge v3 and v4) Let ABC be an acute triangle with circumcircle ω, and let H
be the foot of the altitude from A to BC. Let P and Q be the points on ω with
PA = PH and QA = QH. The tangent to ω at P intersects lines AC and AB
at E1 and F1 respectively; the tangent to ω at Q intersects lines AC and AB at
E2 and F2 respectively. Show that the circumcircles of 4AE1F1 and 4AE2F2 are
congruent, and the line through their centers is parallel to the tangent to ω at A.

The problem bears Evan’s name only because he suggested the changes v2 and v5.
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§2.3 TSTST 2018/6, proposed by Ray Li
Available online at https://aops.com/community/p10570994.

Problem statement

Let S = {1, . . . , 100}, and for every positive integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements of S
red, then at least half of the n-tuples in Tn have an even number of coordinates with
red elements.

We claim this holds exactly for n even.

¶ First solution by generating functions Define

R(x) =
∑
s red

xs, B(x) =
∑
s blue

xs.

(Here “blue” means “not-red”, as always.) Then, the number of tuples in Tn with exactly
k red coordinates is exactly equal to(

n

k

)
· 1

100

∑
ω

R(ω)kB(ω)n−k

where the sum is over all 100th roots of unity. So, we conclude the number of tuples in
Tn with an even (resp odd) number of red elements is exactly

X =
1

100

∑
ω

∑
k even

(
n

k

)
R(ω)kB(ω)n−k

Y =
1

100

∑
ω

∑
k odd

(
n

k

)
R(ω)kB(ω)n−k

=⇒ X − Y =
1

100

∑
ω

(B(ω)−R(ω))n

=
1

100

(B(1)−R(1))n +
∑
ω 6=1

(2B(ω))n


=

1

100

[
(B(1)−R(1))n − (2B(1))n + 2n

∑
ω

B(ω)n

]
=

1

100
[(B(1)−R(1))n − (2B(1))n] + 2nZ

=
1

100
[(−50)n − 50n] + 2nZ.

where
Z :=

1

100

∑
ω

B(ω)n ≥ 0

counts the number of tuples in Tn which are all blue. Here we have used the fact that
B(ω) +R(ω) = 0 for ω 6= 1.
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We wish to show X −Y ≥ 0 holds for n even, but may fail when n is odd. This follows
from two remarks:

• If n is even, then X − Y = 2nZ ≥ 0.

• If n is odd, then if we choose the coloring for which s is red if and only if s 6≡ 2
(mod 4); we thus get Z = 0. Then X − Y = − 2

100 · 50n < 0.

¶ Second solution by strengthened induction and random coloring We again prove
that n even work. Let us define

Tn(a) = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ a (mod 100)} .

Also, call an n-tuple good if it has an even number of red elements. We claim that Tn(a)
also has at least 50% good tuples, by induction.

This follows by induction on n ≥ 2. Indeed, the base case n = 2 can be checked by
hand, since T2(a) = {(x, a−x) | x ∈ S}. With the stronger claim, one can check the case
n = 2 manually and proceed by induction to go from n− 2 to n, noting that

Tn(a) =
⊔

b+c=a

Tn−2(b)⊕ T2(c)

where ⊕ denotes concatenation of tuples, applied set-wise. The concatenation of an
(n − 2)-tuple and 2-tuple is good if and only if both or neither are good. Thus for
each b and c, if the proportion of Tn−2(b) which is good is p ≥ 1

2 and the proportion of
T2(c) which is good is q ≥ 1

2 , then the proportion of Tn−2(b) ⊕ T2(c) which is good is
pq + (1 − p)(1− q) ≥ 1

2 , as desired. Since each term in the union has at least half the
tuples good, all of Tn(a) has at least half the tuples good, as desired.

It remains to fail all odd n. We proceed by a suggestion of Yang Liu and Ankan
Bhattacharya by showing that if we pick the 75 elements randomly, then any particular
tuple in Sn has strictly less than 50% chance of being good. This will imply (by linearity
of expectation) that Tn (or indeed any subset of Sn) will, for some coloring, have less
than half good tuples.

Let (a1, . . . , an) be such an n-tuple. If any element appears in the tuple more than
once, keep discarding pairs of that element until there are zero or one; this has no effect
on the good-ness of the tuple. If we do this, we obtain an m-tuple (b1, . . . , bm) with no
duplicated elements where m ≡ n ≡ 1 (mod 2). Now, the probability that any element
is red is 3

4 , so the probability of being good is
m∑

k even

(
m

k

)(
3

4

)k (
−1

4

)m−k

=
1

2

[(
3

4
+

1

4

)m

−
(
3

4
− 1

4

)m]
=

1

2

[
1−

(
1

2

)m]
<

1

2
.

Remark (Adam Hesterberg). Here is yet another proof that n even works. Group elements
of Tn into equivalence classes according to the n/2 sums of pairs of consecutive elements
(first and second, third and fourth, . . .). For each such pair sum, there are at least as many
monochrome pairs with that sum as nonmonochrome ones, since every nonmonochrome pair
uses one of the 25 non-reds. The monochromaticity of the pairs is independent.

If pi ≤ 1
2 is the probability that the ith pair is nonmonochrome, then the probability

that k pairs are nonmonochrome is the coefficient of xk in f(x) =
∏

i(xpi + (1 − pi)).
Then the probability that evenly many pairs are nonmonochrome (and hence that evenly
many coordinates are red) is the sum of the coefficients of even powers of x in f , which is

18



USA TSTST 2018 Solutions Evan Chen《陳誼廷》

(f(1) + f(−1))/2 = (1 +
∏

i(1− 2pi))/2 ≥ 1
2 , as desired.
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§3 Solutions to Day 3
§3.1 TSTST 2018/7, proposed by Ashwin Sah
Available online at https://aops.com/community/p10570996.

Problem statement

Let n be a positive integer. A frog starts on the number line at 0. Suppose it makes
a finite sequence of hops, subject to two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.

• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either direction,
left or right.)

Let S be the sum of the (positive) lengths of all hops in the sequence. What is the
maximum possible value of S?

We claim the answer is 4n−1
3 .

We first prove the bound. First notice that the hop sizes are in {20, 21, . . . , 2n−1}, since
the frog must stay within bounds the whole time. Let ai be the number of hops of size
2i the frog makes, for 0 ≤ i ≤ n− 1.

Claim — For any k = 1, . . . , n we have

an−1 + · · ·+ an−k ≤ 2n − 2n−k.

Proof. Let m = n− k and look modulo 2m. Call a jump small if its length is at most
2m−1, and large if it is at least 2m; the former changes the residue class of the frog modulo
2m while the latter does not.

Within each fixed residue modulo 2m, the frog can make at most 2n

2m − 1 large jumps.
So the total number of large jumps is at most 2m

(
2n

2m − 1
)
= 2n − 2m.

(As an example, when n = 3 this means there are at most four hops of length 4, at most
six hops of length 2 or 4, and at most seven hops total. Of course, if we want to max the
length of the hops, we see that we want a2 = 4, a1 = 2, a0 = 1, and in general equality is
achieved when am = 2m for any m.)

Now, the total distance the frog travels is

S = a0 + 2a1 + 4a2 + · · ·+ 2n−1an−1.

We rewrite using the so-called “summation by parts”:

S = a0 + a1 + a2 + a3 + . . .+ an−1

+ a1 + a2 + a3 + . . .+ an−1

+ 2a2 + 2a3 + . . .+ 2an−1

+ 4a3 + . . .+ 4an−1

... . . . ...
+ 2n−2an−1.
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Hence

S ≤ (2n − 20) + (2n − 21) + 2(2n − 22) + · · ·+ 2n−2(2n − 2n−1)

=
4n − 1

3
.

It remains to show that equality can hold. There are many such constructions but most
are inductive. Here is one approach. We will construct two family of paths such that
there are 2k hops of size 2k, for every 0 ≤ k ≤ n− 1, and we visit each of {0, . . . , 2n − 1}
once, starting on 0 and ending on x, for the two values x ∈ {1, 2n − 1}.

The base case n = 1 is clear. To take a path from 0 to 2n+1 − 1.

• Take a path on {0, 2, 4, . . . , 2n+1− 2} starting from 0 and ending on 2 (by inductive
hypothesis).

• Take a path on {1, 3, 5, . . . , 2n+1 − 1} starting from 1 and ending on 2n+1 − 1 (by
inductive hypothesis).

• Link them together by adding a single jump 2 → 1.

The other case is similar, but we route 0 → (2n+1 − 2) → (2n+1 − 1) → 1 instead. (This
can also be visualized as hopping along a hypercube of binary strings; each inductive
step takes two copies of the hypercube and links them together by a single edge.)

Remark (Ashwin Sah). The problem can also be altered to ask for the minimum value
of the sum of the reciprocals of the hop sizes, where further we stipulate that the frog
must hit every point precisely once (to avoid triviality). With a nearly identical proof that
also exploits the added condition a0 + · · ·+ an−1 = 2n − 1, the answer is n. This yields a
nicer form for the generalization. The natural generalization changes the above problem by
replacing 2k with ak where ak | ak+1, so that the interval covered by hops is of size an and
the hop sizes are restricted to the ai, where a0 = 1. In this case, similar bounding yields

2n−1∑
i=1

1

bk
≥

n−1∑
i=0

(
ak+1

ak
− 1

)
.

Bounds for the total distance traveled happen in the same way as the solution above, and
equality for both can be constructed in an analogous fashion.
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§3.2 TSTST 2018/8, proposed by Ankan Bhattacharya, Evan Chen
Available online at https://aops.com/community/p10570998.

Problem statement

For which positive integers b > 2 do there exist infinitely many positive integers n
such that n2 divides bn + 1?

This problem is sort of the union of IMO 1990/3 and IMO 2000/5.
The answer is any b such that b+ 1 is not a power of 2. In the forwards direction, we

first prove more carefully the following claim.

Claim — If b+ 1 is a power of 2, then the only n which is valid is n = 1.

Proof. Assume n > 1 and let p be the smallest prime dividing n. We cannot have p = 2,
since then 4 | bn + 1 ≡ 2 (mod 4). Thus,

b2n ≡ 1 (mod p)

so the order of b (mod p) divides gcd(2n, p− 1) = 2. Hence p | b2 − 1 = (b− 1)(b+ 1).
But since b+ 1 was a power of 2, this forces p | b− 1. Then 0 ≡ bn + 1 ≡ 2 (mod p),

contradiction.

On the other hand, suppose that b+ 1 is not a power of 2 (and that b > 2). We will
inductively construct an infinite sequence of distinct primes p0, p1, . . . , such that the
following two properties hold for each k ≥ 0:

• p20 . . . p
2
k−1pk | bp0...pk−1 + 1,

• and hence p20 . . . p
2
k−1p

2
k | bp0...pk−1pk + 1 by exponent lifting lemma.

This will solve the problem.
Initially, let p0 be any odd prime dividing b+ 1. For the inductive step, we contend

there exists an odd prime q /∈ {p0, . . . , pk} such that q | bp0...pk + 1. Indeed, this
follows immediately by Zsigmondy theorem since p0 . . . pk divides bp0...pk−1 + 1. Since
(bp0...pk)q ≡ bp0...pk (mod q), it follows we can then take pk+1 = q. This finishes the
induction.

To avoid the use of Zsigmondy, one can instead argue as follows: let p = pk for brevity,
and let c = bp0...pk−1 . Then cp+1

c+1 = cp−1 − cp−2 + · · ·+ 1 has GCD exactly p with c+ 1.
Moreover, this quotient is always odd. Thus as long as cp + 1 > p · (c+ 1), there will be
some new prime dividing cp + 1 but not c+ 1. This is true unless p = 3 and c = 2, but
we assumed b > 2 so this case does not appear.

Remark (On new primes). In going from n2 | bn + 1 to (nq)2 | bnq + 1, one does not
necessarily need to pick a q such that q - n, as long as νq(n

2) < νq(b
n + 1). In other words

it suffices to just check that bn+1
n2 is not a power of 2 in this process.

However, this calculation is a little more involved with this approach. One proceeds by
noting that n is odd, hence ν2(b

n + 1) = ν2(b+ 1), and thus bn+1
n2 = 2ν2(b+1) ≤ b+ 1, which

is a little harder to bound than the analogous cp + 1 > p · (c+ 1) from the previous solution.
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¶ Authorship comments I came up with this problem by simply mixing together the
main ideas of IMO 1990/3 and IMO 2000/5, late one night after a class. On the other
hand, I do not consider it very original; it is an extremely “routine” number theory
problem for experienced contestants, using highly standard methods. Thus it may not
be that interesting, but is a good discriminator of understanding of fundamentals.

IMO 1990/3 shows that if b = 2, then the only n which work are n = 1 and n = 3.
Thus b = 2 is a special case and for this reason the problem explicitly requires b > 2.

An alternate formulation of the problem is worth mentioning. Originally, the problem
statement asked whether there existed n with at least 3 (or 2018, etc.) prime divisors, thus
preventing the approach in which one takes a prime q dividing bn+1

n2 . Ankan Bhattacharya
suggested changing it to “infinitely many n”, which is more natural.

These formulations are actually not so different though. Explicitly, suppose k2 | bk + 1
and p | bk + 1. Consider any k | n with n2 | bn + 1, and let p be an odd prime dividing
bk + 1. Then 2νp(n) ≤ νp(b

n + 1) = νp(n/k) + νp(b
k + 1) and thus

νp(n/k) ≤ νp

(
bk + 1

k2

)
.

Effectively, this means we can only add each prime a certain number of times.
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§3.3 TSTST 2018/9, proposed by Linus Hamilton
Available online at https://aops.com/community/p10571003.

Problem statement

Show that there is an absolute constant c < 1 with the following property: whenever
P is a polygon with area 1 in the plane, one can translate it by a distance of 1

100 in
some direction to obtain a polygon Q, for which the intersection of the interiors of
P and Q has total area at most c.

The following solution is due to Brian Lawrence. We will prove the result with the
generality of any measurable set P (rather than a polygon). For a vector v in the plane,
write P + v for the translate of P by v.

Suppose P is a polygon of area 1, and ε > 0 is a constant, such that for any translate
Q = P + v, where v has length exactly 1

100 , the intersection of P and Q has area at least
1− ε. The problem asks us to prove a lower bound on ε.

Lemma
Fix a sequence of n vectors v1, v2, . . . , vn, each of length 1

100 . A grasshopper starts
at a random point x of P , and makes n jumps to x+ v1 + · · ·+ vn. Then it remains
in P with probability at least 1− nε.

Proof. In order for the grasshopper to leave P at step i, the grasshopper’s position before
step i must be inside the difference set P\(P − vi). Since this difference set has area at
most ε, the probability the grasshopper leaves P at step i is at most ε. Summing over the
n steps, the probability that the grasshopper ever manages to leave P is at most nε.

Corollary
Fix a vector w of length at most 8. A grasshopper starts at a random point x of P,
and jumps to x+ w. Then it remains in P with probability at least 1− 800ε.

Proof. Apply the previous lemma with 800 jumps. Any vector w of length at most 8 can
be written as w = v1 + v2 + · · ·+ v800, where each vi has length exactly 1

100 .

Now consider the process where we select a random starting point x ∈ P for our
grasshopper, and a random vector w of length at most 8 (sampled uniformly from the
closed disk of radius 8). Let q denote the probability of staying inside P we will bound q
from above and below.

• On the one hand, suppose we pick w first. By the previous corollary, q ≥ 1− 800ε
(irrespective of the chosen w).

• On the other hand, suppose we pick x first. Then the possible landing points x+w
are uniformly distributed over a closed disk of radius 8, which has area 64π. The
probability of landing in P is certainly at most [P]

64π .
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Consequently, we deduce

1− 800ε ≤ q ≤ [P]

64π
=⇒ ε >

1− [P]
64π

800
> 0.001

as desired.

Remark. The choice of 800 jumps is only for concreteness; any constant n for which
π(n/100)2 > 1 works. I think n = 98 gives the best bound following this approach.

25



TSTST 2018 Statistics
Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
June 25, 2018

§1 Summary of scores for TSTST 2018
N 90
µ 28.24
σ 16.08

1st Q 16
Median 25

3rd Q 38

Max 62
Top 3 57

Top 12 54

§2 Problem statistics for TSTST 2018

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 22 48 58 4 38 59 3 51 80

1 6 2 3 0 2 7 9 3 0

2 4 2 0 0 0 0 38 2 1

3 0 0 3 1 1 5 0 4 1

4 0 0 0 14 0 0 2 0 0

5 1 0 0 3 0 0 9 1 0

6 0 3 15 1 1 1 1 1 1

7 57 35 11 67 48 18 28 28 7

Avg 4.64 2.99 1.99 6.10 3.86 1.71 3.78 2.51 0.67

QM 5.62 4.51 3.51 6.35 5.16 3.28 4.50 4.06 2.09
#5+ 58 38 26 71 49 19 38 30 8
%5+ %64.4 %42.2 %28.9 %78.9 %54.4 %21.1 %42.2 %33.3 %8.9
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§3 Rankings for TSTST 2018
Sc Num Cu Per
63 0 0 0.00%
62 1 1 1.11%
61 0 1 1.11%
60 0 1 1.11%
59 0 1 1.11%
58 1 2 2.22%
57 1 3 3.33%
56 5 8 8.89%
55 3 11 12.22%
54 3 14 15.56%
53 0 14 15.56%
52 0 14 15.56%
51 1 15 16.67%
50 0 15 16.67%
49 1 16 17.78%
48 0 16 17.78%
47 0 16 17.78%
46 2 18 20.00%
45 0 18 20.00%
44 0 18 20.00%
43 1 19 21.11%

Sc Num Cu Per
42 2 21 23.33%
41 0 21 23.33%
40 1 22 24.44%
39 0 22 24.44%
38 1 23 25.56%
37 2 25 27.78%
36 2 27 30.00%
35 0 27 30.00%
34 3 30 33.33%
33 1 31 34.44%
32 2 33 36.67%
31 1 34 37.78%
30 3 37 41.11%
29 1 38 42.22%
28 1 39 43.33%
27 1 40 44.44%
26 4 44 48.89%
25 3 47 52.22%
24 3 50 55.56%
23 3 53 58.89%
22 2 55 61.11%

Sc Num Cu Per
21 2 57 63.33%
20 0 57 63.33%
19 3 60 66.67%
18 2 62 68.89%
17 0 62 68.89%
16 7 69 76.67%
15 3 72 80.00%
14 2 74 82.22%
13 2 76 84.44%
12 1 77 85.56%
11 0 77 85.56%
10 3 80 88.89%
9 0 80 88.89%
8 3 83 92.22%
7 1 84 93.33%
6 4 88 97.78%
5 0 88 97.78%
4 0 88 97.78%
3 1 89 98.89%
2 0 89 98.89%
1 1 90 100.00%
0 0 90 100.00%

§4 Histogram for TSTST 2018
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USA TST Selection Test for 61st IMO and 9th EGMO

Pittsburgh, PA

Day I 1:15pm – 5:45pm

Tuesday, June 18, 2019

Problem 1. Find all binary operations ♦ : R>0×R>0 → R>0 (meaning ♦ takes pairs of
positive real numbers to positive real numbers) such that for any real numbers a, b, c > 0,

• the equation a♦ (b♦ c) = (a♦ b) · c holds; and

• if a ≥ 1 then a♦ a ≥ 1.

Problem 2. Let ABC be an acute triangle with circumcircle Ω and orthocenter H.
Points D and E lie on segments AB and AC respectively, such that AD = AE. The
lines through B and C parallel to DE intersect Ω again at P and Q, respectively. Denote
by ω the circumcircle of 4ADE.

(a) Show that lines PE and QD meet on ω.

(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

Problem 3. On an infinite square grid we place finitely many cars, which each occupy
a single cell and face in one of the four cardinal directions. Cars may never occupy the
same cell. It is given that the cell immediately in front of each car is empty, and moreover
no two cars face towards each other (no right-facing car is to the left of a left-facing car
within a row, etc.). In a move, one chooses a car and shifts it one cell forward to a vacant
cell. Prove that there exists an infinite sequence of valid moves using each car infinitely
many times.

1
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Pittsburgh, PA

Day II 1:15pm – 5:45pm

Thursday, June 20, 2019

Problem 4. Consider coins with positive real denominations not exceeding 1. Find the
smallest C > 0 such that the following holds: if we are given any 100 such coins with
total value 50, then we can always split them into two stacks of 50 coins each such that
the absolute difference between the total values of the two stacks is at most C.

Problem 5. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A
line through H intersects segments AB and AC at E and F , respectively. Let K be the
circumcenter of 4AEF , and suppose line AK intersects Γ again at a point D. Prove
that line HK and the line through D perpendicular to BC meet on Γ.

Problem 6. Suppose P is a polynomial with integer coefficients such that for every
positive integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number.
Must P be constant?

(A Fibonacci number is an element of the sequence F0, F1, . . . defined recursively by
F0 = 0, F1 = 1, and Fk+2 = Fk+1 + Fk for k ≥ 0.)
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USA TST Selection Test for 61st IMO and 9th EGMO

Pittsburgh, PA

Day III 1:15pm – 5:45pm

Saturday, June 22, 2019

Problem 7. Let f : Z→ {1, 2, . . . , 10100} be a function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that
f(x) = gcd(m+ x, n) for all integers x.

Problem 8. Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote
the number of ways to draw 8 line segments with endpoints in S, such that no two drawn
segments intersect, even at endpoints. Find the smallest possible value of χ(S) across all
such S.

Problem 9. Let ABC be a triangle with incenter I. Points K and L are chosen on
segment BC such that the incircles of 4ABK and 4ABL are tangent at P , and the
incircles of 4ACK and 4ACL are tangent at Q. Prove that IP = IQ.

3
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§0 Problems
1. Find all binary operations ♦ : R>0×R>0 → R>0 (meaning ♦ takes pairs of positive

real numbers to positive real numbers) such that for any real numbers a, b, c > 0,
• the equation a♦ (b♦ c) = (a♦ b) · c holds; and
• if a ≥ 1 then a♦ a ≥ 1.

2. Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D
and E lie on segments AB and AC respectively, such that AD = AE. The lines
through B and C parallel to DE intersect Ω again at P and Q, respectively. Denote
by ω the circumcircle of 4ADE.
(a) Show that lines PE and QD meet on ω.
(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

3. On an infinite square grid we place finitely many cars, which each occupy a single
cell and face in one of the four cardinal directions. Cars may never occupy the
same cell. It is given that the cell immediately in front of each car is empty, and
moreover no two cars face towards each other (no right-facing car is to the left of a
left-facing car within a row, etc.). In a move, one chooses a car and shifts it one
cell forward to a vacant cell. Prove that there exists an infinite sequence of valid
moves using each car infinitely many times.

4. Consider coins with positive real denominations not exceeding 1. Find the smallest
C > 0 such that the following holds: if we are given any 100 such coins with total
value 50, then we can always split them into two stacks of 50 coins each such that
the absolute difference between the total values of the two stacks is at most C.

5. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line
through H intersects segments AB and AC at E and F , respectively. Let K be
the circumcenter of 4AEF , and suppose line AK intersects Γ again at a point D.
Prove that line HK and the line through D perpendicular to BC meet on Γ.

6. Suppose P is a polynomial with integer coefficients such that for every positive
integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must
P be constant?

7. Let f : Z → {1, 2, . . . , 10100} be a function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that
f(x) = gcd(m+ x, n) for all integers x.

8. Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the
number of ways to draw 8 line segments with endpoints in S, such that no two
drawn segments intersect, even at endpoints. Find the smallest possible value of
χ(S) across all such S.

9. Let ABC be a triangle with incenter I. Points K and L are chosen on segment BC
such that the incircles of 4ABK and 4ABL are tangent at P , and the incircles
of 4ACK and 4ACL are tangent at Q. Prove that IP = IQ.
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§1 Solutions to Day 1
§1.1 TSTST 2019/1, proposed by Evan Chen
Available online at https://aops.com/community/p12608849.

Problem statement

Find all binary operations ♦ : R>0 × R>0 → R>0 (meaning ♦ takes pairs of positive
real numbers to positive real numbers) such that for any real numbers a, b, c > 0,

• the equation a♦ (b♦ c) = (a♦ b) · c holds; and

• if a ≥ 1 then a♦ a ≥ 1.

The answer is only multiplication and division, which both obviously work.
We present two approaches, one appealing to theorems on Cauchy’s functional equation,

and one which avoids it.

¶ First solution using Cauchy FE We prove:

Claim — We have a♦b = af(b) where f is some involutive and totally multiplicative
function. (In fact, this classifies all functions satisfying the first condition completely.)

Proof. Let P (a, b, c) denote the assertion a♦ (b♦ c) = (a♦ b) · c.

• Note that for any x, the function y 7→ x♦ y is injective, because if x♦ y1 = x♦ y2
then take P (1, x, yi) to get y1 = y2.

• Take P (1, x, 1) and injectivity to get x♦ 1 = x.

• Take P (1, 1, y) to get 1♦ (1♦ y) = y.

• Take P (x, 1, 1♦ y) to get
x♦ y = x · (1♦ y).

Henceforth let us define f(y) = 1♦ y, so f(1) = 1, f is involutive and

x♦ y = xf(y).

Plugging this into the original condition now gives f(bf(c)) = f(b)c, which (since f is
an involution) gives f completely multiplicative.

In particular, f(1) = 1. We are now interested only in the second condition, which
reads f(x) ≥ 1/x for x ≥ 1.

Define the function
g(t) = log f(et)

so that g is additive, and also g(t) ≥ −t for all t ≥ 0. We appeal to the following
theorem:

3

https://aops.com/community/p12608849


USA TSTST 2019 Solutions Ankan Bhattacharya and Evan Chen

Lemma
If h : R → R is an additive function which is not linear, then it is dense in the
plane: for any point (x0, y0) and ε > 0 there exists (x, y) such that h(x) = y and√
(x− x0)2 + (y − y0)2 < ε.

Applying this lemma with the fact that g(t) ≥ −t implies readily that g is linear. In
other words, f is of the form f(x) = xr for some fixed real number r. It is easy to check
r = ±1 which finishes.

¶ Second solution manually As before we arrive at a♦ b = af(b), with f an involutive
and totally multiplicative function.

We prove that:

Claim — For any a > 0, we have f(a) ∈ {1/a, a}.

Proof. WLOG b > 1, and suppose f(b) = a ≥ 1/b hence f(a) = b.
Assume that ab > 1; we show a = b. Note that for integers m and n with anbm ≥ 1,

we must have

ambn = f(b)mf(a)n = f(anbm) ≥ 1

anbm
=⇒ (ab)m+n ≥ 1

and thus we have arrived at the proposition

m+ n < 0 =⇒ n logb a+m < 0

for all integers m and n. Due to the density of Q in the real numbers, this can only
happen if logb a = 1 or a = b.

Claim — The function f is continuous.

Proof. Indeed, it’s equivalent to show g(t) = log f(et) is continuous, and we have that

|g(t)− g(s)| =
∣∣log f(et−s)

∣∣ = |t− s|

since f(et−s) = e±|t−s|. Therefore g is Lipschitz. Hence g continuous, and f is too.

Finally, we have from f multiplicative that

f(2q) = f(2)q

for every rational number q, say. As f is continuous this implies f(x) ≡ x or f(x) ≡ 1/x
identically (depending on whether f(2) = 2 or f(2) = 1/2, respectively).

Therefore, a♦ b = ab or a♦ b = a÷ b, as needed.

Remark. The Lipschitz condition is one of several other ways to proceed. The point is
that if f(2) = 2 (say), and x/2q is close to 1, then f(x)/2q = f(x/2q) is close to 1, which is
enough to force f(x) = x rather than f(x) = 1/x.
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Remark. Compare to AMC 10A 2016 #23, where the second condition is a♦ a = 1.
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§1.2 TSTST 2019/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p12608478.

Problem statement

Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D
and E lie on segments AB and AC respectively, such that AD = AE. The lines
through B and C parallel to DE intersect Ω again at P and Q, respectively. Denote
by ω the circumcircle of 4ADE.

(a) Show that lines PE and QD meet on ω.

(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

We will give one solution to (a), then several solutions to (b).

¶ Solution to (a) Note that ]AQP = ]ABP = ]ADE and ]APQ = ]ACQ =
]AED, so we have a spiral similarity 4ADE ∼ 4AQP . Therefore, lines PE and QD
meet at the second intersection of ω and Ω other than A. Call this point X.

¶ Solution to (b) using angle chasing Let L be the reflection of H across AB, which
lies on Ω.

Claim — Points L, D, P are collinear.

Proof. This is just angle chasing:

]CLD = ]DHL = ]DHA+ ]AHL = ]DEA+ ]AHC

= ]ADE + ]CBA = ]ABP + ]CBA = ]CBP = ]CLP.

A

B C

H

D

E

P

Q

L K

X

ω

Ω

Now let K ∈ ω such that DHKE is an isosceles trapezoid, i.e. ]BAH = ]KAE.

Claim — Points D, K, P are collinear.

6
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Proof. Using the previous claim,

]KDE = ]KAE = ]BAH = ]LAB = ]LPB = ]DPB = ]PDE.

By symmetry, QE will then pass through the same K, as needed.

Remark. These two claims imply each other, so guessing one of them allows one to realize
the other. It is likely the latter is easiest to guess from the diagram, since it does not need
any additional points.

¶ Solution to (b) by orthogonal circles (found by contestants) We define K as in
the previous solution, but do not claim that K is the desired intersection. Instead, we
note that:

Claim — Point K is the orthocenter of isosceles triangle APQ.

Proof. Notice that AH = AK and BC = PQ. Moreover from AH ⊥ BC we deduce
AK ⊥ PQ by reflection across the angle bisector.

In light of the formula “AH2 = 4R2 − a2”, this implies the conclusion.

Let M be the midpoint of PQ. Since 4APQ is isosceles,

AKM ⊥ PQ =⇒ MK ·MA = MP 2

by orthocenter properties.
So to summarize

• The circle with diameter PQ is orthogonal to ω.

• The point X = QD ∩ PE is on ω.

Combined with (a), this implies the result by Brokard theorem.

¶ Solution to (b) by complex numbers (Yang Liu and Michael Ma) Let M be the
arc midpoint of B̂C. We use the standard arc midpoint configuration. We have that

A = a2, B = b2, C = c2, M = −bc, H = a2 + b2 + c2, P =
a2c

b
, Q =

a2b

c
,

where M is the arc midpoint of B̂C. By direct angle chasing we can verify that MB ‖ DH .
Also, D ∈ AB. Therefore, we can compute D as follows.

d+ a2b2d̄ = a2 + b2 and d− h

d̄− h̄
= −mb2 = b3c =⇒ d =

a2(a2c+ b2c+ c3 − b3)

c(bc+ a2)
.

By symmetry, we have that

e =
a2(a2b+ bc2 + b3 − c3)

b(bc+ a2)
.

To finish, we want to show that the angle between DP and EQ is angle A. To show this,
we compute d−p

e−q

/
d−p
e−q . First, we compute

d− p =
a2(a2c+ b2c+ c3 − b3)

c(bc+ a2)
− a2c

b

7
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= a2
(
a2c+ b2c+ c3 − b3

c(bc+ a2)
− c

b

)
=

a2(a2c− b3)(b− c)

bc(bc+ a2)
.

By symmetry,

d− p

e− q
= −a2c− b3

a2b− c3
=⇒ d− p

e− q

/d− p

e− q
=

a2b3c

a2bc3
=

b2

c2

as desired.

¶ Solution to (b) using untethered moving points (Zack Chroman) We work in the
real projective plane RP2, and animate C linearly on a fixed line through A.

Recall:

Lemma (Zack’s lemma)
Suppose points A, B have degree d1, d2, and there are k values of t for which A = B.
Then line AB has degree at most d1 + d2 − k. Similarly, if lines `1, `2 have degrees
d1, d2, and there are k values of t for which `1 = `2, then the intersection `1 ∩ `2 has
degree at most d1 + d2 − k.

Now, note that H moves linearly in C on line BH. Furthermore, angles ∠AHE,
∠AHF are fixed, we get that D and E have degree 2. One way to see this is using the
lemma; D lies on line AB, which is fixed, and line HD passes through a point at infinity
which is a constant rotation of the point at infinity on line AH, and therefore has degree
1. Then D, E have degree at most 1 + 1− 0 = 2.

Now, note that P,Q move linearly in C. Both of these are because the circumcenter
O moves linearly in C, and P , Q are reflections of B, C in a line through O with fixed
direction, which also moves linearly.

So by the lemma, the lines PD, QE have degree at most 3. I claim they actually have
degree 2; to show this it suffices to give an example of a choice of C for which P = D
and one for which Q = E. But an easy angle chase shows that in the unique case when
P = B, we get D = B as well and thus P = D. Similarly when Q = C, E = C. It
follows from the lemma that lines PD, QE have degree at most 2.

Let `∞ denote the line at infinity. I claim that the points P1 = PD∩`∞, P2 = QE∩`∞
are projective in C. Since `∞ is fixed, it suffices to show by the lemma that there exists
some value of C for which QE = `∞ and PD = `∞. But note that as C → ∞, all four
points P,D,Q,E go to infinity. It follows that P1, P2 are projective in C.

Then to finish, recall that we want to show that ∠(PD,QE) is constant. It suffices then
to show that there’s a constant rotation sending P1 to P2. Since P1, P2 are projective, it
suffices to verify this for 3 values of C.

We can take C such that ∠ABC = 90, ∠ACB = 90, or AB = AC, and all three cases
are easy to check.

8



USA TSTST 2019 Solutions Ankan Bhattacharya and Evan Chen

§1.3 TSTST 2019/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p12608769.

Problem statement

On an infinite square grid we place finitely many cars, which each occupy a single
cell and face in one of the four cardinal directions. Cars may never occupy the same
cell. It is given that the cell immediately in front of each car is empty, and moreover
no two cars face towards each other (no right-facing car is to the left of a left-facing
car within a row, etc.). In a move, one chooses a car and shifts it one cell forward to
a vacant cell. Prove that there exists an infinite sequence of valid moves using each
car infinitely many times.

Let S be any rectangle containing all the cars. Partition S into horizontal strips of height
1, and color them red and green in an alternating fashion. It is enough to prove all the
cars may exit S.

▶ ▽
▶ ▽ ▽ △

▶ ▶△
△ ◀ ◀ ▶

◀

Step 1

▶ ▽
▶

▽ ▽

△

▶ ▶△△
◀ ◀ ▶

◀

Step 2

▶ ▽ △

▽ ▽▶ ▶△△

◀

Step 3

▶

▽

▽ ▽
▶ ▶

△△

◀

Step 4

To do so, we outline a five-stage plan for the cars.

1. All vertical cars in a green cell may advance one cell into a red cell (or exit S
altogether), by the given condition. (This is the only place where the hypothesis
about empty space is used!)

2. All horizontal cars on green cells may exit S, as no vertical cars occupy green cells.

3. All vertical cars in a red cell may advance one cell into a green cell (or exit S
altogether), as all green cells are empty.

4. All horizontal cars within red cells may exit S, as no vertical car occupy red cells.

5. The remaining cars exit S, as they are all vertical. The solution is complete.
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Remark (Author’s comments). The solution I’ve given for this problem is so short and
simple that it might appear at first to be about IMO 1 difficulty. I don’t believe that’s true!
There are very many approaches that look perfectly plausible at first, and then fall apart in
this or that twisted special case.

Remark (Higher-dimensional generalization by author). The natural higher-dimensional
generalization is true, and can be proved in largely the same fashion. For example, in three
dimensions, one may let S be a rectangular prism and partition S into horizontal slabs and
color them red and green in an alternating fashion. Stages 1, 3, and 5 generalize immediately,
and stages 2 and 4 reduce to an application of the two-dimensional problem. In the same
way, the general problem is handled by induction on the dimension.

Remark (Historical comments). For k > 1, we could consider a variant of the problem
where cars are 1× k rectangles (moving parallel to the longer edge) instead of occupying
single cells. In that case, if there are 2k − 1 empty spaces in front of each car, the above
proof works (with the red and green strips having height k instead). On the other hand, at
least k empty spaces are necessary. We don’t know the best constant in this case.

10
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§2 Solutions to Day 2
§2.1 TSTST 2019/4, proposed by Merlijn Staps
Available online at https://aops.com/community/p12608513.

Problem statement

Consider coins with positive real denominations not exceeding 1. Find the smallest
C > 0 such that the following holds: if we are given any 100 such coins with total
value 50, then we can always split them into two stacks of 50 coins each such that
the absolute difference between the total values of the two stacks is at most C.

The answer is C = 50
51 . The lower bound is obtained if we have 51 coins of value 1

51 and
49 coins of value 1. (Alternatively, 51 coins of value 1− ε

51 and 49 coins of value ε
49 works

fine for ε > 0.) We now present two (similar) proofs that this C = 50
51 suffices.

¶ First proof (original) Let a1 ≤ · · · ≤ a100 denote the values of the coins in ascending
order. Since the 51 coins a50, . . . , a100 are worth at least 51a50, it follows that a50 ≤ 50

51 ;
likewise a51 ≥ 1

51 .
We claim that choosing the stacks with coin values

a1, a3, . . . , a49, a52, a54, . . . , a100

and
a2, a4, . . . , a50, a51, a53, . . . , a99

works. Let D denote the (possibly negative) difference between the two total values.
Then

D = (a1 − a2) + · · ·+ (a49 − a50)− a51 + (a52 − a53) + · · ·+ (a98 − a99) + a100

≤ 25 · 0− 1

51
+ 24 · 0 + 1 =

50

51
.

Similarly, we have

D = a1 + (a3 − a2) + · · ·+ (a49 − a48)− a50 + (a52 − a51) + · · ·+ (a100 − a99)

≥ 0 + 24 · 0− 50

51
+ 25 · 0 = −50

51
.

It follows that |D| ≤ 50
51 , as required.

¶ Second proof (Evan Chen) Again we sort the coins in increasing order 0 < a1 ≤
a2 ≤ · · · ≤ a100 ≤ 1. A large gap is an index i ≥ 2 such that ai > ai−1 +

50
51 ; obviously

there is at most one such large gap.

Claim — If there is a large gap, it must be a51 > a50 +
50
51 .

Proof. If i < 50 then we get a50, . . . , a100 > 50
51 and the sum

∑100
1 ai > 50 is too large.

Conversely if i > 50 then we get a1, . . . , ai−1 <
1
51 and the sum

∑100
1 ai < 1/51 · 51 + 49

is too small.

11
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Now imagine starting with the coins a1, a3, . . . , a99, which have total value S ≤ 25.
We replace a1 by a2, then a3 by a4, and so on, until we replace a99 by a100. At the end
of the process we have S ≥ 25. Moreover, since we did not cross a large gap at any point,
the quantity S changed by at most C = 50

51 at each step. So at some point in the process
we need to have 25− C/2 ≤ S ≤ 25 + C/2, which proves C works.

12
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§2.2 TSTST 2019/5, proposed by Gunmay Handa
Available online at https://aops.com/community/p12608496.

Problem statement

Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line
through H intersects segments AB and AC at E and F , respectively. Let K be
the circumcenter of 4AEF , and suppose line AK intersects Γ again at a point D.
Prove that line HK and the line through D perpendicular to BC meet on Γ.

We present several solutions. (There are more in the official packet; some are omitted
here, which explains the numbering.)

¶ First solution (Andrew Gu) We begin with the following two observations.

Claim — Point K lies on the radical axis of (BEH) and (CFH).

Proof. Actually we claim KE and KF are tangents. Indeed,

]HEK = 90◦ − ]EAF = 90◦ − ]BAC = ]HBE

implying the result. Since KE = KF , this implies the result.

Claim — The second intersection M of (BEH) and (CFH) lies on Γ.

Proof. By Miquel’s theorem on 4AEF with H ∈ EF , B ∈ AE, C ∈ AF .

A

B C

H

D

X

E

F

M

K

In particular, M , H, K are collinear. Let X be on Γ with DX ⊥ BC; we then wish to
show X lies on the line MHK we found. This is angle chasing: compute

]XMB = ]XDB = 90◦ − ]DBC = 90◦ − ]DAC
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= 90◦ − ]KAF = ]FEA = ]HEB = ]HMB

as needed.

¶ Second solution (Ankan Bhattacharya) We let D′ be the second intersection of EF
with (BHC) and redefine D as the reflection of D′ across BC. We will first prove that
this point D coincides with the point D given in the problem statement. The idea is
that:

Claim — A is the D-excenter of 4DEF .

Proof. We contend BED′D is cyclic. This follows by angle chasing:

]D′DB = ]BD′D = ]D′BC + 90◦ = ]D′HC + 90◦

= ]D′HC + ](HC,AB) = ](D′H,AB) = ]D′EB.

Now as BD = BD′, we obtain BEA externally bisects ∠DED′ ∼= ∠DEF . Likewise FA
externally bisects ∠DFE, so A is the D-excenter of 4DEF .

Hence, by the so-called “Fact 5”, point K lies on DA, so this point D is the one given in
the problem statement.

A

B C

D

D′
H

E

F

K

X

Now choose point X on (ABC) satisfying DX ⊥ BC.

Claim — Point K lies on line HX.

Proof. Clearly AHD′X is a parallelogram. By Ptolemy on DEKF ,

KD

KA
=

KD

KE
=

DE +DF

EF
.

On the other hand, if we let rD denote the D-exradius of 4DEF then

XD

XD′ =
[DEX] + [DFX]

[XEF ]
=

[DEX] + [DFX]

[AEF ]
=

DE · rD +DF · rD
EF · rD

=
DE +DF

EF
.

14
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Thus
[AKX] =

KA

KD
· [DKX] =

KA

KD
· XD

XD′ · [KD′X] = [D′KX].

This is sufficient to prove K lies on HX.

The solution is complete: X is the desired concurrency point.

¶ Fourth solution, complex numbers with spiral similarity (Evan Chen) First if
AD ⊥ BC there is nothing to prove, so we assume this is not the case. Let W be the
antipode of D. Let S denote the second intersection of (AEF ) and (ABC). Consider
the spiral similarity sending 4SEF to 4SBC:

• It maps H to a point G on line BC,

• It maps K to O.

• It maps the A-antipode of 4AEF to D.

• Hence (by previous two observations) it maps A to W .

• Also, the image of line AD is line WO, which does not coincide with line BC (as
O does not lie on line BC).

Therefore, K is the unique point on line AD for one can get a direct similarity

4AKH ∼ 4WOG (♥)

for some point G lying on line BC.

A

B C

D

H

X

K

O

E

F

S

W

G

On the other hand, let us re-define K as XH∩AD. We will show that the corresponding
G making (♥) true lies on line BC.

We apply complex numbers with Γ the unit circle, with a, b, c, d taking their usual
meanings, H = a+ b+ c, X = −bc/d, and W = −d. Then point K is supposed to satisfy

k + adk = a+ d

15
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k + bc
d

a+ b+ c+ bc
d

=
k + d

bc
1
a + 1

b +
1
c +

d
bc

⇐⇒
1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

(
k +

bc

d

)
= k +

d

bc

Adding ad times the last line to the first line and cancelling adk now gives(
ad ·

1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

+ 1

)
k = a+ d+

ad2

bc
− abc ·

1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

or (
ad

(
1

a
+

1

b
+

1

c
+

d

bc

)
+ a+ b+ c+

bc

d

)
k =

(
a+ b+ c+

bc

d

)(
a+ d+

ad2

bc

)
− abc ·

(
1

a
+

1

b
+

1

c
+

d

bc

)
.

We begin by simplifying the coefficient of k:

ad

(
1

a
+

1

b
+

1

c
+

d

bc

)
+ a+ b+ c+

bc

d
= a+ b+ c+ d+

bc

d
+

ad

b
+

ad

c
+

ad2

bc

= a+
bc

d
+

(
1 +

ad

bc

)
(b+ c+ d)

=
ad+ bc

bcd
[bc+ d(b+ c+ d)]

=
(ad+ bc)(d+ b)(d+ c)

bcd
.

Meanwhile, the right-hand side expands to

RHS =

(
a+ b+ c+

bc

d

)(
a+ d+

ad2

bc

)
− abc ·

(
1

a
+

1

b
+

1

c
+

d

bc

)
=

(
a2 + ab+ ac+

abc

d

)
+ (da+ db+ dc+ bc)

+

(
a2d2

bc
+

ad2

c
+

ad2

b
+ ad

)
− (ab+ bc+ ca+ ad)

= a2 + d(a+ b+ c) +
abc

d
+

a2d2

bc
+

ad2

b
+

ad2

c

= a2 +
abc

d
+ d(a+ b+ c) · ad+ bc

bc

=
ad+ bc

bcd

[
abc+ d2(a+ b+ c)

]
.

Therefore, we get

k =
abc+ d2(a+ b+ c)

(d+ b)(d+ c)
.

In particular,

k − a =
abc+ d2(a+ b+ c)− a(d+ b)(d+ c)

(d+ b)(d+ c)

=
d2(b+ c)− da(b+ c)

(d+ b)(d+ c)
=

d(b+ c)(d− a)

(d+ b)(d+ c)
.
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Now the corresponding point G obeying (♥) satisfies

g − (−d)

0− (−d)
=

(a+ b+ c)− a

k − a

=⇒ g = −d+
d(b+ c)

k − a

= −d+
(d+ b)(d+ c)

d− a
=

db+ dc+ bc+ ad

d− a
.

=⇒ bcg =
bc · ac+ab+ad+bc

abcd
a−d
ad

= −ab+ ac+ ad+ bc

d− a
.

=⇒ g + bcg =
(d− a)(b+ c)

d− a
= b+ c.

Hence G lies on BC and this completes the proof.

¶ Seventh solution using moving points (Zack Chroman) We state the converse of
the problem as follows:

Take a point D on Γ, and let G ∈ Γ such that DG ⊥ BC. Then define K to
lie on GH,AD, and take L ∈ AD such that K is the midpoint of AL. Then
if we define E and F as the projections of L onto AB and AC we want to
show that E, H, F are collinear.

It’s clear that solving this problem will solve the original. In fact we will show later
that each line EF through H corresponds bijectively to the point D.

We animate D projectively on Γ (hence degD = 2). Since D 7→ G is a projective
map Γ → Γ, it follows degG = 2. By Zack’s lemma, deg(AD) ≤ 0 + 2 − 1 = 1 (since
D can coincide with A), and deg(HG) ≤ 0 + 2 − 0 = 2. So again by Zack’s lemma,
degK ≤ 1 + 2− 1 = 2, since lines AD and GH can coincide once if D is the reflection
of H over BC. It follows degL = 2, since it is obtained by dilating K by a factor of 2
across the fixed point A.

Let ∞C be the point at infinity on the line perpendicular to AC, and similarly ∞B.
Then

F = AC ∩∞CL, E = AB ∩∞BL.

We want to use Zack’s lemma again on line ∞BL. Consider the case G = B; we get
HG ‖ AD, so ADGH is a parallelogram, and then K = L = ∞B. Thus there is at least
one t where L = ∞B and by Zack’s lemma we get deg

(
∞BL

)
≤ 0+ 2− 1 = 1. Again by

Zack’s lemma, we conclude degE ≤ 0 + 1− 0 = 1. Similarly, degF ≤ 1.
We were aiming to show E, F , H collinear which is a condition of degree at most

1 + 1 + 0 = 2. So it suffices to verify the problem for three distinct choices of D.

• If D = A, then line GH is line AH, and L = AD ∩AH = A. So E = F = A and
the statement is true.

• If D = B, G is the antipode of C on Γ. Then K = HG ∩ AD is the midpoint of
AB, so L = B. Then E = B and F is the projection of B onto AC, so E, H, F
collinear.

• We finish similarly when D = C.

This completes the proof.
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Remark. Less careful approaches are possible which give a worse bound on the degrees,
requiring to check (say) five choices of D instead. We present the most careful one showing
degD = 2 for instructional reasons, but the others may be easier to find.
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§2.3 TSTST 2019/6, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p12608536.

Problem statement

Suppose P is a polynomial with integer coefficients such that for every positive
integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must
P be constant?

The answer is yes, P must be constant. By S(n) we mean the sum of the decimal digits
of |n|.

We need two claims.

Claim — If P (x) ∈ Z[x] is nonconstant with positive leading coefficient, then there
exists an integer polynomial F (x) such that all coefficients of P ◦ F are positive
except for the second one, which is negative.

Proof. We will actually construct a cubic F . We call a polynomial good if it has the
property.

First, consider T0(x) = x3 + x+ 1. Observe that in T degP
0 , every coefficient is strictly

positive, except for the second one, which is zero.
Then, let T1(x) = x3 − 1

Dx2 + x + 1. Using continuity as D → ∞, it follows that if
D is large enough (in terms of degP ), then T degP

1 is good, with − 3
Dx3 degP−1 being the

only negative coefficient.
Finally, we can let F (x) = CT1(x) where C is a sufficiently large multiple of D (in

terms of the coefficients of P ); thus the coefficients of (CT1(x))
degP dominate (and are

integers), as needed.

Claim — There are infinitely many Fibonacci numbers in each residue class modulo
9.

Proof. Note the Fibonacci sequence is periodic modulo 9 (indeed it is periodic modulo
any integer). Moreover (allowing negative indices),

F0 = 0 ≡ 0 (mod 9)

F1 = 1 ≡ 1 (mod 9)

F3 = 2 ≡ 2 (mod 9)

F4 = 3 ≡ 3 (mod 9)

F7 = 13 ≡ 4 (mod 9)

F5 = 5 ≡ 5 (mod 9)

F−4 = −3 ≡ 6 (mod 9)

F9 = 34 ≡ 7 (mod 9)

F6 = 8 ≡ 8 (mod 9).

We now show how to solve the problem with the two claims. WLOG P satisfies the
conditions of the first claim, and choose F as above. Let

P (F (x)) = cNxN − cN−1x
N−1 + cN−2x

N−2 + · · ·+ c0
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where ci > 0 (and N = 3 degP ). Then if we select x = 10e for e large enough (say
x > 10maxi ci), the decimal representation P (F (10e)) consists of the concatenation of

• the decimal representation of cN − 1,

• the decimal representation of 10e − cN−1

• the decimal representation of cN−2, with several leading zeros,

• the decimal representation of cN−3, with several leading zeros,

• . . .

• the decimal representation of c0, with several leading zeros.

(For example, if P (F (x)) = 15x3 − 7x2 + 4x+ 19, then P (F (1000)) = 14,993,004,019.)
Thus, the sum of the digits of this expression is equal to

S(P (F (10e))) = 9e+ k

for some constant k depending only on P and F , independent of e. But this will eventually
hit a Fibonacci number by the second claim, contradiction.

Remark. It is important to control the number of negative coefficients in the created
polynomial. If one tries to use this approach on a polynomial P with m > 0 negative
coefficients, then one would require that the Fibonacci sequence is surjective modulo 9m
for any m > 1, which is not true: for example the Fibonacci sequence avoids all numbers
congruent to 4 mod 11 (and thus 4 mod 99).

In bases b for which surjectivity modulo b − 1 fails, the problem is false. For example,
P (x) = 11x+ 4 will avoid all Fibonacci numbers if we take sum of digits in base 12, since
that base-12 sum is necessarily 4 (mod 11), hence not a Fibonacci number.
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§3 Solutions to Day 3
§3.1 TSTST 2019/7, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608512.

Problem statement

Let f : Z → {1, 2, . . . , 10100} be a function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that
f(x) = gcd(m+ x, n) for all integers x.

Let P be the set of primes not exceeding 10100. For each p ∈ P, let ep = maxx νp(f(x))
and let cp ∈ argmaxx νp(f(x)).

We show that this is good enough to compute all values of x, by looking at the exponent
at each individual prime.

Claim — For any p ∈ P, we have

νp(f(x)) = min(νp(x− cp), ep).

Proof. Note that for any x, we have

gcd(f(cp), f(x)) = gcd(f(cp), x− cp).

We then take νp of both sides and recall νp(f(x)) ≤ νp(f(cp)) = ep; this implies the
result.

This essentially determines f , and so now we just follow through. Choose n and m
such that

n =
∏
p∈P

pep

m ≡ −cp (mod pep) ∀p ∈ P

the latter being possible by Chinese remainder theorem. Then, from the claim we have

f(x) =
∏
p∈P

pνp(f(x)) =
∏
p|n

pmin(νp(x−cp),ep)

=
∏
p|n

pmin(νp(x+m),νp(n)) = gcd (x+m,n)

for every x ∈ Z, as desired.

Remark. The functions f(x) = x and f(x) = |2x − 1| are examples satisfying the gcd
equation (the latter always being strictly positive). Hence the hypothesis f bounded cannot
be dropped.
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Remark. The pair (m,n) is essentially unique: every other pair is obtained by shifting m
by a multiple of n. Hence there is not really any choice in choosing m and n.
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§3.2 TSTST 2019/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608780.

Problem statement

Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the
number of ways to draw 8 line segments with endpoints in S, such that no two
drawn segments intersect, even at endpoints. Find the smallest possible value of
χ(S) across all such S.

The answer is 1430. In general, we prove that with 2n points the answer is the nth

Catalan number Cn = 1
n+1

(
2n
n

)
.

First of all, it is well-known that if S is a convex 2n-gon, then χ(S) = Cn.
It remains to prove the lower bound. We proceed by (strong) induction on n, with

the base case n = 0 and n = 1 clear. Suppose the statement is proven for 0, 1, . . . , n and
consider a set S with 2(n+ 1) points.

Let P be a point on the convex hull of S, and label the other 2n+1 points A1, . . . , A2n+1

in order of angle from P .
Consider drawing a segment PA2k+1. This splits the 2n remaining points into two

halves U and V, with 2k and 2(n− k) points respectively.

P

A1

A2

A3

A4 A5

A6 A7

A8
A9

A10

A11

Note that by choice of P , no segment in U can intersect a segment in V. By the
inductive hypothesis,

χ(U) ≥ Ck and χ(V) ≥ Cn−k.

Thus, drawing PA2k+1, we have at least CkCn−k ways to complete the drawing. Over all
choices of k, we obtain

χ(S) ≥ C0Cn + · · ·+ CnC0 = Cn+1

as desired.

Remark. It is possible to show directly from the lower bound proof that convex 2n-gons
achieve the minimum: indeed, every inequality is sharp, and no segment PA2k can be drawn
(since this splits the rest of the points into two halves with an odd number of points, and no
crossing segment can be drawn).
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Bobby Shen points out that in the case of 6 points, a regular pentagon with its center
also achieves equality, so this is not the only equality case.

Remark. The result that χ(S) ≥ 1 for all S is known (consider the choice of 8 segments
with smallest sum), and appeared on Putnam 1979. However, it does not seem that knowing
this gives an advantage for this problem, since the answer is much larger than 1.
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§3.3 TSTST 2019/9, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608472.

Problem statement

Let ABC be a triangle with incenter I. Points K and L are chosen on segment BC
such that the incircles of 4ABK and 4ABL are tangent at P , and the incircles of
4ACK and 4ACL are tangent at Q. Prove that IP = IQ.

We present two solutions.

¶ First solution, mostly elementary (original) Let IB, JB, IC , JC be the incenters of
4ABK, 4ABL, 4ACK, 4ACL respectively.

A

B C

I

K L

P
Q

R

IB

ICJB

JC

We begin with the following claim which does not depend on the existence of tangency
points P and Q.

Claim — Lines BC, IBJC , JBIC meet at a point R (possibly at infinity).

Proof. By rotating by 1
2∠A we have the equality

A(BI; IBJB) = A(IC; ICJC).

It follows (BI; IBJB) = (IC; ICJC) = (CI; JCIC). (One could also check directly that
both cross ratios equal sin∠BAK/2

sin∠CAK/2 ÷ sin∠BAL/2
sin∠CAL/2 , rather than using rotation.)

Therefore, the concurrence follows from the so-called prism lemma on IBIBJB and
ICJCIC .

Remark (Nikolai Beluhov). This result is known; it appears as 4.5.32 in Akopyan’s Geometry
in Figures. The cross ratio is not necessary to prove this claim: it can be proven by length
chasing with circumscribed quadrilaterals. (The generalization mentioned later also admits
a trig-free proof for the analogous step.)

We now bring P and Q into the problem.

Claim — Line PQ also passes through R.
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Proof. Note (BP ; IBJB) = −1 = (CQ; JCIC), so the conclusion again follows by prism
lemma.

We are now ready to complete the proof. Point R is the exsimilicenter of the incircles
of 4ABK and 4ACL, so PIB

RIB
= QJC

RJC
. Now by Menelaus,

IBP

PI
· IQ

QJC
· JCR
RIB

= −1 =⇒ IP = IQ.

Remark (Author’s comments on drawing the diagram). Drawing the diagram directly is
quite difficult. If one draws 4ABC first, they must locate both K and L, which likely
involves some trial and error due to the complex interplay between the two points.

There are alternative simpler ways. For example, one may draw 4AKL first; then the
remaining points B and C are not related and the task is much simpler (though some trial
and error is still required).

In fact, by breaking symmetry, we may only require one application of guesswork. Start
by drawing 4ABK and its incircle; then the incircle of 4ABL may be constructed, and so
point L may be drawn. Thus only the location of point C needs to be guessed. I would be
interested in a method to create a general diagram without any trial and error.

¶ Second solution, inversion (Nikolai Beluhov) As above, the lines BC, IBJC , JBIC
meet at some point R (possibly at infinity). Let ω1, ω2, ω3, ω4 be the incircles of 4ABK,
4ACL, 4ABL, and 4ACK.

Claim — There exists an inversion ι at R swapping {ω1, ω2} and {ω3, ω4}.

Proof. Consider the inversion at R swapping ω1 and ω2. Since ω1 and ω3 are tangent,
the image of ω3 is tangent to ω2 and is also tangent to BC. The circle ω4 is on the
correct side of ω3 to be this image.

Claim — Circles ω1, ω2, ω3, ω4 share a common radical center.

Proof. Let Ω be the circle with center R fixed under ι, and let k be the circle through P
centered at the radical center of Ω, ω1, ω3.

Then k is actually orthogonal to Ω, ω1, ω3, so k is fixed under ι and k is also orthogonal
to ω2 and ω4. Thus the center of k is the desired radical center.

The desired statement immediately follows. Indeed, letting S be the radical center, it
follows that SP and SQ are the common internal tangents to {ω1, ω3} and {ω2, ω4}.

Since S is the radical center, SP = SQ. In light of ∠SPI = ∠SQI = 90◦, it follows
that IP = IQ, as desired.

Remark (Nikolai Beluhov). There exists a circle tangent to all four incircles, because circle
k is orthogonal to all four, and line BC is tangent to all four; thus the inverse of line BC in
k is a circle tangent to all four incircles.

The amusing thing here is that Casey’s theorem is completely unhelpful for proving this
fact: all it can tell us is that there is a line or circle tangent to these incircles, and line BC
already satisfies this property.
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Remark (Generalization by Nikolai Beluhov). The following generalization holds:

Let ABCD be a quadrilateral circumscribed about a circle with center I. A
line through A meets

−−→
BC and

−−→
DC at K and L; another line through A meets−−→

BC and
−−→
DC at M and N . Suppose that the incircles of 4ABK and 4ABM

are tangent at P , and the incircles of 4ACL and 4ACN are tangent at Q.
Prove that IP = IQ.

The first approach can be modified to the generalization. There is an extra initial step
required: by Monge, the exsimilicenter of the incircles of 4ABK and 4ADN lies on line
BD; likewise for the incircles of 4ABL and 4ADM . Now one may prove using the same
trig approach that these pairs of incircles have a common exsimilicenter, and the rest of the
solution plays out similarly. The second approach can also be modified in the same way,
once we obtain that a common exsimilicenter exists. (Thus in the generalization, it seems
we also get there exists a circle tangent to all four incircles.)
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TSTST 2019 Statistics
Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
June 23, 2019

§1 Summary of scores for TSTST 2019
N 75
µ 25.79
σ 14.81

1st Q 16
Median 26

3rd Q 36

Max 56
Top 3 50

Top 12 42

§2 Problem statistics for TSTST 2019

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 11 14 68 17 41 67 20 24 61

1 10 29 1 12 5 6 1 0 3

2 1 5 0 0 0 1 0 0 0

3 7 0 0 1 0 0 0 1 0

4 8 0 0 0 1 0 2 2 0

5 1 1 0 2 1 0 1 0 0

6 4 1 0 1 0 0 0 0 0

7 33 25 6 42 27 1 51 48 11

Avg 4.33 3.00 0.57 4.33 2.71 0.20 4.95 4.63 1.07

QM 5.15 4.22 1.98 5.37 4.27 0.89 5.84 5.65 2.69
#5+ 38 27 6 45 28 1 52 48 11
%5+ %50.7 %36.0 %8.0 %60.0 %37.3 %1.3 %69.3 %64.0 %14.7
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§3 Rankings for TSTST 2019
Sc Num Cu Per
63 0 0 0.00%
62 0 0 0.00%
61 0 0 0.00%
60 0 0 0.00%
59 0 0 0.00%
58 0 0 0.00%
57 0 0 0.00%
56 2 2 2.67%
55 0 2 2.67%
54 0 2 2.67%
53 0 2 2.67%
52 0 2 2.67%
51 0 2 2.67%
50 3 5 6.67%
49 3 8 10.67%
48 0 8 10.67%
47 0 8 10.67%
46 0 8 10.67%
45 0 8 10.67%
44 0 8 10.67%
43 3 11 14.67%

Sc Num Cu Per
42 3 14 18.67%
41 1 15 20.00%
40 0 15 20.00%
39 0 15 20.00%
38 2 17 22.67%
37 1 18 24.00%
36 4 22 29.33%
35 2 24 32.00%
34 0 24 32.00%
33 1 25 33.33%
32 0 25 33.33%
31 1 26 34.67%
30 2 28 37.33%
29 3 31 41.33%
28 4 35 46.67%
27 2 37 49.33%
26 2 39 52.00%
25 1 40 53.33%
24 1 41 54.67%
23 3 44 58.67%
22 3 47 62.67%

Sc Num Cu Per
21 2 49 65.33%
20 1 50 66.67%
19 1 51 68.00%
18 1 52 69.33%
17 2 54 72.00%
16 3 57 76.00%
15 1 58 77.33%
14 1 59 78.67%
13 2 61 81.33%
12 0 61 81.33%
11 0 61 81.33%
10 0 61 81.33%
9 0 61 81.33%
8 2 63 84.00%
7 2 65 86.67%
6 0 65 86.67%
5 2 67 89.33%
4 1 68 90.67%
3 1 69 92.00%
2 2 71 94.67%
1 2 73 97.33%
0 2 75 100.00%

§4 Histogram for TSTST 2019
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USA Team Selection Test for 62nd IMO and 10th EGMO

United States of America

Day I

November 12, 2020

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 1. Let a, b, c be fixed positive integers. There are a+ b+ c ducks sitting in a
circle, one behind the other. Each duck picks either rock, paper, or scissors, with a ducks
picking rock, b ducks picking paper, and c ducks picking scissors.

A move consists of an operation of one of the following three forms:

• If a duck picking rock sits behind a duck picking scissors, they switch places.

• If a duck picking paper sits behind a duck picking rock, they switch places.

• If a duck picking scissors sits behind a duck picking paper, they switch places.

Determine, in terms of a, b, and c, the maximum number of moves which could take
place, over all possible initial configurations.

Problem 2. Let ABC be a scalene triangle with incenter I. The incircle of ABC
touches BC, CA, AB at points D, E, F , respectively. Let P be the foot of the altitude
from D to EF , and let M be the midpoint of BC. The rays AP and IP intersect the
circumcircle of triangle ABC again at points G and Q, respectively. Show that the
incenter of triangle GQM coincides with D.

Problem 3. We say a nondegenerate triangle whose angles have measures θ1, θ2, θ3 is
quirky if there exist integers r1, r2, r3, not all zero, such that

r1θ1 + r2θ2 + r3θ3 = 0.

Find all integers n ≥ 3 for which a triangle with side lengths n− 1, n, n+ 1 is quirky.
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USA Team Selection Test for 62nd IMO and 10th EGMO

United States of America

Day II

December 10, 2020

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 4. Find all pairs of positive integers (a, b) satisfying the following conditions:

(i) a divides b4 + 1,

(ii) b divides a4 + 1,

(iii) b
√
ac = b

√
bc.

Problem 5. Let N2 denote the set of ordered pairs of positive integers. A finite subset
S of N2 is stable if whenever (x, y) is in S, then so are all points (x′, y′) of N2 with both
x′ ≤ x and y′ ≤ y.

Prove that if S is a stable set, then among all stable subsets of S (including the empty
set and S itself), at least half of them have an even number of elements.

Problem 6. Let A, B, C, D be four points such that no three are collinear and D
is not the orthocenter of triangle ABC. Let P , Q, R be the orthocenters of 4BCD,
4CAD, 4ABD, respectively. Suppose that lines AP , BQ, CR are pairwise distinct and
are concurrent. Show that the four points A, B, C, D lie on a circle.
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USA Team Selection Test for 62nd IMO and 10th EGMO

United States of America

Day III

January 21, 2021

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 7. Find all nonconstant polynomials P (z) with complex coefficients for which
all complex roots of the polynomials P (z) and P (z)− 1 have absolute value 1.

Problem 8. For every positive integer N , let σ(N) denote the sum of the positive
integer divisors of N . Find all integers m ≥ n ≥ 2 satisfying

σ(m)− 1

m− 1
=
σ(n)− 1

n− 1
=
σ(mn)− 1

mn− 1
.

Problem 9. Ten million fireflies are glowing in R3 at midnight. Some of the fireflies
are friends, and friendship is always mutual. Every second, one firefly moves to a new
position so that its distance from each one of its friends is the same as it was before
moving. This is the only way that the fireflies ever change their positions. No two fireflies
may ever occupy the same point.

Initially, no two fireflies, friends or not, are more than a meter away. Following some
finite number of seconds, all fireflies find themselves at least ten million meters away
from their original positions. Given this information, find the greatest possible number
of friendships between the fireflies.
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§0 Problems
1. Let a, b, c be fixed positive integers. There are a+ b+ c ducks sitting in a circle,

one behind the other. Each duck picks either rock, paper, or scissors, with a ducks
picking rock, b ducks picking paper, and c ducks picking scissors.
A move consists of an operation of one of the following three forms:

• If a duck picking rock sits behind a duck picking scissors, they switch places.
• If a duck picking paper sits behind a duck picking rock, they switch places.
• If a duck picking scissors sits behind a duck picking paper, they switch places.

Determine, in terms of a, b, and c, the maximum number of moves which could
take place, over all possible initial configurations.

2. Let ABC be a scalene triangle with incenter I. The incircle of ABC touches BC,
CA, AB at points D, E, F , respectively. Let P be the foot of the altitude from
D to EF , and let M be the midpoint of BC. The rays AP and IP intersect the
circumcircle of triangle ABC again at points G and Q, respectively. Show that the
incenter of triangle GQM coincides with D.

3. We say a nondegenerate triangle whose angles have measures θ1, θ2, θ3 is quirky if
there exists integers r1, r2, r3, not all zero, such that

r1θ1 + r2θ2 + r3θ3 = 0.

Find all integers n ≥ 3 for which a triangle with side lengths n − 1, n, n + 1 is
quirky.

4. Find all pairs of positive integers (a, b) satisfying the following conditions:
(i) a divides b4 + 1,
(ii) b divides a4 + 1,
(iii) b

√
ac = b

√
bc.

5. Let N2 denote the set of ordered pairs of positive integers. A finite subset S of N2

is stable if whenever (x, y) is in S, then so are all points (x′, y′) of N2 with both
x′ ≤ x and y′ ≤ y.
Prove that if S is a stable set, then among all stable subsets of S (including the
empty set and S itself), at least half of them have an even number of elements.

6. Let A, B, C, D be four points such that no three are collinear and D is not the
orthocenter of triangle ABC. Let P , Q, R be the orthocenters of 4BCD, 4CAD,
4ABD, respectively. Suppose that lines AP , BQ, CR are pairwise distinct and
are concurrent. Show that the four points A, B, C, D lie on a circle.

7. Find all nonconstant polynomials P (z) with complex coefficients for which all
complex roots of the polynomials P (z) and P (z)− 1 have absolute value 1.

8. For every positive integer N , let σ(N) denote the sum of the positive integer divisors
of N . Find all integers m ≥ n ≥ 2 satisfying

σ(m)− 1

m− 1
=

σ(n)− 1

n− 1
=

σ(mn)− 1

mn− 1
.
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9. Ten million fireflies are glowing in R3 at midnight. Some of the fireflies are friends,
and friendship is always mutual. Every second, one firefly moves to a new position
so that its distance from each one of its friends is the same as it was before moving.
This is the only way that the fireflies ever change their positions. No two fireflies
may ever occupy the same point.
Initially, no two fireflies, friends or not, are more than a meter away. Following
some finite number of seconds, all fireflies find themselves at least ten million meters
away from their original positions. Given this information, find the greatest possible
number of friendships between the fireflies.
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§1 Solutions to Day 1
§1.1 TSTST 2020/1, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p18933796.

Problem statement

Let a, b, c be fixed positive integers. There are a+ b+ c ducks sitting in a circle,
one behind the other. Each duck picks either rock, paper, or scissors, with a ducks
picking rock, b ducks picking paper, and c ducks picking scissors.

A move consists of an operation of one of the following three forms:

• If a duck picking rock sits behind a duck picking scissors, they switch places.

• If a duck picking paper sits behind a duck picking rock, they switch places.

• If a duck picking scissors sits behind a duck picking paper, they switch places.

Determine, in terms of a, b, and c, the maximum number of moves which could take
place, over all possible initial configurations.

The maximum possible number of moves is max(ab, ac, bc).
First, we prove this is best possible. We define a feisty triplet to be an unordered triple

of ducks, one of each of rock, paper, scissors, such that the paper duck is between the
rock and scissors duck and facing the rock duck, as shown. (There may be other ducks
not pictured, but the orders are irrelevant.)

quack

Rock

qu
ac
k

Paper

quack

Scissors
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Claim — The number of feisty triplets decreases by c if a paper duck swaps places
with a rock duck, and so on.

Proof. Clear.

Obviously the number of feisty triples is at most abc to start. Thus at most max(ab, bc, ca)
moves may occur, since the number of feisty triplets should always be nonnegative, at
which point no moves are possible at all.

To see that this many moves is possible, assume WLOG a = min(a, b, c) and suppose
we have a rocks, b papers, and c scissors in that clockwise order.

quack

quack

Rocks

q
u
ac
k

qu
ac
k

qu
ac
k

Papers

quack

quack

quack

q
u
ack

Scissors

Then, allow the scissors to filter through the papers while the rocks stay put. Each of
the b papers swaps with c scissors, for a total of bc = max(ab, ac, bc) swaps.

Remark (Common errors). One small possible mistake: it is not quite kösher to say that
“WLOG a ≤ b ≤ c” because the condition is not symmetric, only cyclic. Therefore in this
solution we only assume a = min(a, b, c).

It is true here that every pair of ducks swaps at most once, and some solutions make use
of this fact. However, this fact implicitly uses the fact that a, b, c > 0 and is false without
this hypothesis.
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§1.2 TSTST 2020/2, proposed by Zack Chroman, Daniel Liu
Available online at https://aops.com/community/p18933557.

Problem statement

Let ABC be a scalene triangle with incenter I. The incircle of ABC touches BC,
CA, AB at points D, E, F , respectively. Let P be the foot of the altitude from
D to EF , and let M be the midpoint of BC. The rays AP and IP intersect the
circumcircle of triangle ABC again at points G and Q, respectively. Show that the
incenter of triangle GQM coincides with D.

Refer to the figure below.

A

B C

I

D

E

F

P

Q

M

G

Claim — The point Q is the Miquel point of BFEC. Also, QD bisects ∠BQC.

Proof. Inversion around the incircle maps line EF to (AIEF ) and the nine-point circle
of 4DEF to the circumcircle of 4ABC (as the midpoint of EF maps to A, etc.). This
implies P maps to Q; that is, Q coincides with the second intersection of (AFIE) with
(ABC). This is the claimed Miquel point.

The spiral similarity mentioned then gives QB
BF = QC

CE , so QD bisects ∠BQC.

Remark. The point Q and its properties mentioned in the first claim have appeared in
other references. See for example Canada 2007/5, ELMO 2010/6, HMMT 2016 T-10, USA
TST 2017/2, USA TST 2019/6 for a few examples.

Claim — We have (QG;BC) = −1, so in particular GD bisects ∠BGC.

Proof. Note that

−1 = (AI;EF )
Q
= (AQ ∩ EF,P ;E,F )

A
= (QG;BC).
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The last statement follows from Apollonian circle, or more bluntly GB
GC = QB

QC = BD
DC .

Hence QD and GD are angle bisectors of ∠BQC and ∠BGC. However, QM and QG
are isogonal in ∠BQC (as median and symmedian), and similarly for ∠BGC, as desired.
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§1.3 TSTST 2020/3, proposed by Evan Chen, Danielle Wang
Available online at https://aops.com/community/p18933954.

Problem statement

We say a nondegenerate triangle whose angles have measures θ1, θ2, θ3 is quirky if
there exists integers r1, r2, r3, not all zero, such that

r1θ1 + r2θ2 + r3θ3 = 0.

Find all integers n ≥ 3 for which a triangle with side lengths n− 1, n, n+1 is quirky.

The answer is n = 3, 4, 5, 7.
We first introduce a variant of the kth Chebyshev polynomials in the following lemma

(which is standard, and easily shown by induction).

Lemma
For each k ≥ 0 there exists Pk(X) ∈ Z[X], monic for k ≥ 1 and with degree k, such
that

Pk(X +X−1) ≡ Xk +X−k.

The first few are P0(X) ≡ 2, P1(X) ≡ X, P2(X) ≡ X2 − 2, P3(X) ≡ X3 − 3X.

Suppose the angles of the triangle are α < β < γ, so the law of cosines implies that

2 cosα =
n+ 4

n+ 1
and 2 cos γ =

n− 4

n− 1
.

Claim — The triangle is quirky iff there exists r, s ∈ Z≥0 not both zero such that

cos(rα) = ± cos(sγ) or equivalently Pr

(
n+ 4

n+ 1

)
= ±Ps

(
n− 4

n− 1

)
.

Proof. If there are integers x, y, z for which xα + yβ + zγ = 0, then we have that
(x− y)α = (y − z)γ − πy, whence it follows that we may take r = |x− y| and s = |y − z|
(noting r = s = 0 implies the absurd x = y = z). Conversely, given such r and s with
cos(rα) = ± cos(sγ), then it follows that rα± sγ = kπ = k(α+ β+ γ) for some k, so the
triangle is quirky.

If r = 0, then by rational root theorem on Ps(X)± 2 it follows n−4
n−1 must be an integer

which occurs only when n = 4 (recall n ≥ 3). Similarly we may discard the case s = 0.
Thus in what follows assume n 6= 4 and r, s > 0. Then, from the fact that Pr and Ps

are nonconstant monic polynomials, we find

Corollary
If n 6= 4 works, then when n+4

n+1 and n−4
n−1 are written as fractions in lowest terms, the

denominators have the same set of prime factors.

8

https://aops.com/community/p18933954


USA TSTST 2020 Solutions Ankan Bhattacharya and Evan Chen

But gcd(n+ 1, n− 1) divides 2, and gcd(n+ 4, n+ 1), gcd(n− 4, n− 1) divide 3. So we
only have three possibilities:

• n+ 1 = 2u and n− 1 = 2v for some u, v ≥ 0. This is only possible if n = 3. Here
2 cosα = 7

4 and 2 cos γ = −1
2 , and indeed P2(−1/2) = −7/4.

• n + 1 = 3 · 2u and n − 1 = 2v for some u, v ≥ 0, which implies n = 5. Here
2 cosα = 3

2 and 2 cos γ = 1
4 , and indeed P2(3/2) = 1/4.

• n + 1 = 2u and n − 1 = 3 · 2v for some u, v ≥ 0, which implies n = 7. Here
2 cosα = 11

8 and 2 cos γ = 1
2 , and indeed P3(1/2) = −11/8.

Finally, n = 4 works because the triangle is right, completing the solution.

Remark (Major generalization due to Luke Robitaille). In fact one may find all quirky
triangles whose sides are integers in arithmetic progression.

Indeed, if the side lengths of the triangle are x− y, x, x+ y with gcd(x, y) = 1 then the
problem becomes

Pr

(
x+ 4y

x+ y

)
= ±Ps

(
x− 4y

x− y

)
and so in the same way as before, we ought to have x+ y and x− y are both of the form
3 · 2∗ unless rs = 0. This time, when rs = 0, we get the extra solutions (1, 0) and (5, 2).

For rs 6= 0, by triangle inequality, we have x − y ≤ x + y < 3(x − y), and min(ν2(x −
y), ν2(x+ y)) ≤ 1, so it follows one of x− y or x+ y must be in {1, 2, 3, 6}. An exhaustive
check then leads to

(x, y) ∈ {(3, 1), (5, 1), (7, 1), (11, 5)} ∪ {(1, 0), (5, 2), (4, 1)}

as the solution set. And in fact they all work.
In conclusion the equilateral triangle, 3 − 5 − 7 triangle (which has a 120◦ angle) and

6− 11− 16 triangle (which satisfies B = 3A+ 4C) are exactly the new quirky triangles (up
to similarity) whose sides are integers in arithmetic progression.

9
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§2 Solutions to Day 2
§2.1 TSTST 2020/4, proposed by Yang Liu
Available online at https://aops.com/community/p19444614.

Problem statement

Find all pairs of positive integers (a, b) satisfying the following conditions:

(i) a divides b4 + 1,

(ii) b divides a4 + 1,

(iii) b
√
ac = b

√
bc.

The only solutions are (1, 1), (1, 2), and (2, 1), which clearly work. Now we show there
are no others.

Obviously, gcd(a, b) = 1, so the problem conditions imply

ab | (a− b)4 + 1

since each of a and b divide the right-hand side. We define

k
def
=

(b− a)4 + 1

ab
.

Claim (Size estimate) — We must have k ≤ 16.

Proof. Let n = b
√
ac = b

√
bc, so that a, b ∈ [n2, n2 + 2n]. We have that

ab ≥ n2(n2 + 1) ≥ n4 + 1

(b− a)4 + 1 ≤ (2n)4 + 1 = 16n4 + 1

which shows k ≤ 16.

Claim (Orders argument) — In fact, k = 1.

Proof. First of all, note that k cannot be even: if it was, then a, b have opposite parity,
but then 4 | (b− a)4 + 1, contradiction.

Thus k is odd. However, every odd prime divisor of (b − a)4 + 1 is congruent to 1
(mod 8) and is thus at least 17, so k = 1 or k ≥ 17. It follows that k = 1.

At this point, we have reduced to solving

ab = (b− a)4 + 1

and we need to prove the claimed solutions are the only ones. Write b = a + d, and
assume WLOG that d ≥ 0: then we have a(a+ d) = d4 + 1, or

a2 − da− (d4 + 1) = 0.

The discriminant d2 + 4(d4 + 1) = 4d4 + d2 + 4 must be a perfect square.

10
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• The cases d = 0 and d = 1 lead to pairs (1, 1) and (1, 2).

• If d ≥ 2, then we can sandwich

(2d2)2 < 4d4 + d2 + 4 < 4d4 + 4d2 + 1 = (2d2 + 1)2,

so the discriminant is not a square.

The solution is complete.

Remark (Author remarks on origin). This comes from the problem of the existence of
a pair of elliptic curves over Fa, Fb respectively, such that the number of points on one
is the field size of the other. The bound n2 ≤ a, b < (n + 1)2 is the Hasse bound. The
divisibility conditions correspond to asserting that the embedding degree of each curve is 8,
so that they are pairing friendly. In this way, the problem is essentially the key result of
https://arxiv.org/pdf/1803.02067.pdf, shown in Proposition 3.
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§2.2 TSTST 2020/5, proposed by Ashwin Sah, Mehtaab Sawhney
Available online at https://aops.com/community/p19444403.

Problem statement

Let N2 denote the set of ordered pairs of positive integers. A finite subset S of N2 is
stable if whenever (x, y) is in S, then so are all points (x′, y′) of N2 with both x′ ≤ x
and y′ ≤ y.

Prove that if S is a stable set, then among all stable subsets of S (including the
empty set and S itself), at least half of them have an even number of elements.

The following inductive solution was given by Nikolai Beluhov. We proceed by induction
on |S|, with |S| ≤ 1 clear.

Suppose |S| ≥ 2. For any p ∈ S, let R(p) denote the stable rectangle with upper-right
corner p. We say such p is pivotal if p+ (1, 1) /∈ S and |R(p)| is even.

p

Claim — If |S| ≥ 2, then a pivotal p always exists.

Proof. Consider the top row of S.

• If it has length at least 2, one of the two rightmost points in it is pivotal.

• Otherwise, the top row has length 1. Now either the top point or the point below
it (which exists as |S| ≥ 2) is pivotal.

We describe how to complete the induction, given some pivotal p ∈ S. There is a
partition

S = R(p) t S1 t S2

where S1 and S2 are the sets of points in S above and to the right of p (possibly empty).

Claim — The desired inequality holds for stable subsets containing p.

Proof. Let E1 denote the number of even stable subsets of S1; denote E2, O1, O2

analogously. The stable subsets containing p are exactly R(p) t T1 t T2, where T1 ⊆ S1

and T2 ⊆ S2 are stable.
Since |R(p)| is even, exactly E1E2 +O1O2 stable subsets containing p are even, and

exactly E1O2 + E2O1 are odd. As E1 ≥ O1 and E2 ≥ O2 by inductive hypothesis, we
obtain E1E2 +O1O2 ≥ E1O2 + E2O1 as desired.

12
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By the inductive hypothesis, the desired inequality also holds for stable subsets not
containing p, so we are done.

13
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§2.3 TSTST 2020/6, proposed by Andrew Gu
Available online at https://aops.com/community/p19444197.

Problem statement

Let A, B, C, D be four points such that no three are collinear and D is not the
orthocenter of triangle ABC. Let P , Q, R be the orthocenters of 4BCD, 4CAD,
4ABD, respectively. Suppose that lines AP , BQ, CR are pairwise distinct and are
concurrent. Show that the four points A, B, C, D lie on a circle.

Let T be the concurrency point, and let H be the orthocenter of 4ABC.

A

B C

D

P

QR

T

S

O
H

Claim (Key claim) — T is the midpoint of AP , BQ, CR, DH, and D is the
orthocenter of 4PQR.

Proof. Note that AQ ‖ BP , as both are perpendicular to CD. Since lines AP and BQ
are distinct, lines AQ and BP are distinct.

By symmetric reasoning, we get that AQCPBR is a hexagon with opposite sides
parallel and concurrent diagonals as AP , BQ, CR meet at T . This implies that the
hexagon is centrally symmetric about T ; indeed

AT

TP
=

TQ

BT
=

CT

TR
=

TP

AT

so all the ratios are equal to +1.
Next, PD ⊥ BC ‖ QR, so by symmetry we get D is the orthocenter of 4PQR. This

means that T is the midpoint of DH as well.

Corollary
The configuration is now symmetric: we have four points A, B, C, D, and their
reflections in T are four orthocenters P , Q, R, H.

Let S be the centroid of {A,B,C,D}, and let O be the reflection of T in S. We are
ready to conclude:
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Claim — A, B, C, D are equidistant from O.

Proof. Let A′, O′, S′, T ′, D′ be the projections of A, O, S, T , D onto line BC.
Then T ′ is the midpoint of A′D′, so S′ = 1

4(A
′ + D′ + B + C) gives that O′ is the

midpoint of BC.
Thus OB = OC and we’re done.
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§3 Solutions to Day 3
§3.1 TSTST 2020/7, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p20020202.

Problem statement

Find all nonconstant polynomials P (z) with complex coefficients for which all
complex roots of the polynomials P (z) and P (z)− 1 have absolute value 1.

The answer is P (x) should be a polynomial of the form P (x) = λxn − µ where |λ| = |µ|
and Reµ = −1

2 . One may check these all work; let’s prove they are the only solutions.

¶ First approach (Evan Chen) We introduce the following notations:

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0

= cn(x+ α1) . . . (x+ αn)

P (x)− 1 = cn(x+ β1) . . . (x+ βn)

By taking conjugates,

(x+ α1) · · · (x+ αn) = (x+ β1) · · · (x+ βn) + c−1
n

=⇒
(
x+

1

α1

)
· · ·

(
x+

1

αn

)
=

(
x+

1

β1

)
· · ·

(
x+

1

βn

)
+ (cn)

−1 (♠)

The equation (♠) is the main player:

Claim — We have ck = 0 for all k = 1, . . . , n− 1.

Proof. By comparing coefficients of xk in (♠) we obtain
cn−k∏

i αi
=

cn−k∏
i βi

but
∏

i αi −
∏

i βi =
1
cn

6= 0. Hence ck = 0.

It follows that P (x) must be of the form P (x) = λxn−µ, so that P (x) = λxn− (µ+1).
This requires |µ| = |µ+ 1| = |λ| which is equivalent to the stated part.

¶ Second approach (from the author) We let A = P and B = P − 1 to make the
notation more symmetric. We will as before show that A and B have all coefficients
equal to zero other than the leading and constant coefficient; the finish is the same.

First, we rule out double roots.

Claim — Neither A nor B have double roots.

Proof. Suppose that b is a double root of B. By differentiating, we obtain A′ = B′, so
A′(b) = 0. However, by Gauss-Lucas, this forces A(b) = 0, contradiction.

Let ω = e2πi/n, let a1, . . . , an be the roots of A, and let b1, . . . , bn be the roots of B.
For each k, let Ak and Bk be the points in the complex plane corresponding to ak and
bk.
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Claim (Main claim) — For any i and j, ai
aj

is a power of ω.

Proof. Note that

ai − b1
aj − b1

· · · ai − bn
aj − bn

=
B(ai)

B(aj)
=

A(ai)− 1

A(aj)− 1
=

0− 1

0− 1
= 1.

Since the points Ai, Aj , Bk all lie on the unit circle, interpreting the left-hand side
geometrically gives

]AiB1Aj + · · ·+ ]AiBnAj = 0 =⇒ n’AiAj = 0,

where angles are directed modulo 180◦ and arcs are directed modulo 360◦. This implies
that ai

aj
is a power of ω.

Now the finish is easy: since a1, . . . , an are all different, they must be a1ω
0, . . . , a1ω

n−1

in some order; this shows that A is a multiple of xn − an1 , as needed.
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§3.2 TSTST 2020/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p20020195.

Problem statement

For every positive integer N , let σ(N) denote the sum of the positive integer divisors
of N . Find all integers m ≥ n ≥ 2 satisfying

σ(m)− 1

m− 1
=

σ(n)− 1

n− 1
=

σ(mn)− 1

mn− 1
.

The answer is that m and n should be powers of the same prime number. These all work
because for a prime power we have

σ(pe)− 1

pe − 1
=

(1 + p+ · · ·+ pe)− 1

pe − 1
=

p(1 + · · ·+ pe−1)

pe − 1
=

p

p− 1
.

So we now prove these are the only ones. Let λ be the common value of the three
fractions.

Claim — Any solution (m,n) should satisfy d(mn) = d(m) + d(n)− 1.

Proof. The divisors of mn include the divisors of m, plus m times the divisors of n
(counting m only once). Let λ be the common value; then this gives

σ(mn) ≥ σ(m) +mσ(n)−m

= (λm− λ+ 1) +m(λn− λ+ 1)−m

= λmn− λ+ 1

and so equality holds. Thus these are all the divisors of mn, for a count of d(m)+ d(n)−
1.

Claim — If d(mn) = d(m)+ d(n)− 1 and min(m,n) ≥ 2, then m and n are powers
of the same prime.

Proof. Let A denote the set of divisors of m and B denote the set of divisors of n. Then
|A ·B| = |A|+ |B| − 1 and min(|A|, |B|) > 1, so |A| and |B| are geometric progressions
with the same ratio. It follows that m and n are powers of the same prime.

Remark (Nikolai Beluhov). Here is a completion not relying on |A ·B| = |A|+ |B| − 1. By
the above arguments, we see that every divisor of mn is either a divisor of n, or n times a
divisor of m.

Now suppose that some prime p | m but p - n. Then p | mn but p does not appear in the
above classification, a contradiction. By symmetry, it follows that m and n have the same
prime divisors.

Now suppose we have different primes p | m and q | n. Write νp(m) = α and νp(n) = β.
Then pα+β | mn, but it does not appear in the above characterization, a contradiction.
Thus, m and n are powers of the same prime.
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Remark (Comments on the function in the problem). Let f(n) = σ(n)−1
n−1 . Then f is not

really injective even outside the above solution; for example, we have f(6 · 11k) = 11
5 for all

k, plus sporadic equivalences like f(14) = f(404), as pointed out by one reviewer during
test-solving. This means that both relations should be used at once, not independently.

Remark (Authorship remarks). Ankan gave the following story for how he came up with
the problem while thinking about so-called almost perfect numbers.

I was in some boring talk when I recalled a conjecture that if σ(n) = 2n− 1,
then n is a power of 2. For some reason (divine intervention, maybe) I had
the double idea of (1) seeing whether m, n, mn all almost perfect implies m, n
powers of 2, and (2) trying the naive divisor bound to resolve this. Through
sheer dumb luck this happened to work out perfectly. I thought this was kinda
cool but I felt that I hadn’t really unlocked a lot of the potential this idea
had: then I basically tried to find the “general situation” which allows for this
manipulation, and was amazed that it led to such a striking statement.
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§3.3 TSTST 2020/9, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p20020206.

Problem statement

Ten million fireflies are glowing in R3 at midnight. Some of the fireflies are friends,
and friendship is always mutual. Every second, one firefly moves to a new position
so that its distance from each one of its friends is the same as it was before moving.
This is the only way that the fireflies ever change their positions. No two fireflies
may ever occupy the same point.

Initially, no two fireflies, friends or not, are more than a meter away. Following
some finite number of seconds, all fireflies find themselves at least ten million meters
away from their original positions. Given this information, find the greatest possible
number of friendships between the fireflies.

In general, we show that when n ≥ 70, the answer is f(n) = bn2

3 c.

Construction: Choose three pairwise parallel lines `A, `B, `C forming an infinite
equilateral triangle prism (with side larger than 1). Split the n fireflies among the lines
as equally as possible, and say that two fireflies are friends iff they lie on different lines.

To see this works:

1. Reflect `A and all fireflies on `A in the plane containing `B and `C .

2. Reflect `B and all fireflies on `B in the plane containing `C and `A.

3. Reflect `C and all fireflies on `C in the plane containing `A and `B.

...

Proof: Consider a valid configuration of fireflies. If there is no 4-clique of friends, then
by Turán’s theorem, there are at most f(n) pairs of friends.

Let g(n) be the answer, given that there exist four pairwise friends (say a, b, c, d).
Note that for a firefly to move, all its friends must be coplanar.

Claim (No coplanar K4) — We can’t have four coplanar fireflies which are pairwise
friends.

Proof. If we did, none of them could move (unless three are collinear, in which case they
can’t move).

Claim (Key claim — tetrahedrons don’t share faces often) — There are at most 12
fireflies e which are friends with at least three of a, b, c, d.

Proof. First denote by A, B, C, D the locations of fireflies a, b, c, d. These four positions
change over time as fireflies move, but the tetrahedron ABCD always has a fixed shape,
and we will take this tetrahedron as our reference frame for the remainder of the proof.

WLOG, will assume that e is friends with a, b, c. Then e will always be located at
one of two points E1 and E2 relative to ABC, such that E1ABC and E2ABC are two
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congruent tetrahedrons with fixed shape. We note that points D, E1, and E2 are all
different: clearly D 6= E1 and E1 6= E2. (If D = E2, then some fireflies won’t be able to
move.)

Consider the moment where firefly a moves. Its friends must be coplanar at that time,
so one of E1, E2 lies in plane BCD. Similar reasoning holds for planes ACD and ABD.

So, WLOG E1 lies on both planes BCD and ACD. Then E1 lies on line CD, and E2

lies in plane ABD. This uniquely determines (E1, E2) relative to ABCD:

• E1 is the intersection of line CD with the reflection of plane ABD in plane ABC.

• E2 is the intersection of plane ABD with the reflection of line CD in plane ABC.

Accounting for WLOGs, there are at most 12 possibilities for the set {E1, E2}, and thus
at most 12 possibilities for E. (It’s not possible for both elements of one pair {E1, E2}
to be occupied, because then they couldn’t move.)

Thus, the number of friendships involving exactly one of a, b, c, d is at most (n− 16) ·
2 + 12 · 3 = 2n+ 4, so removing these four fireflies gives

g(n) ≤ 6 + (2n+ 4) + max{f(n− 4), g(n− 4)}.

The rest of the solution is bounding. When n ≥ 24, we have (2n+10)+f(n−4) ≤ f(n),
so

g(n) ≤ max{f(n), (2n+ 10) + g(n− 4)} ∀n ≥ 24.

By iterating the above inequality, we get

g(n) ≤ max
{
f(n), (2n+ 10) + (2(n− 4) + 10)

+ · · ·+ (2(n− 4r) + 10) + g(n− 4r − 4)
}
,

where r satisfies n− 4r − 4 < 24 ≤ n− 4r.
Now

(2n+ 10) + (2(n− 4) + 10) + · · ·+ (2(n− 4r) + 10) + g(n− 4r − 4)

= (r + 1)(2n− 4r + 10) + g(n− 4r − 4)

≤
(n
4
− 5

)
(n+ 37) +

(
24

2

)
.

This is less than f(n) for n ≥ 70, which concludes the solution.

Remark. There are positive integers n such that it is possible to do better than f(n)
friendships. For instance, f(5) = 8, whereas five fireflies a, b, c, d, and e as in the proof of
the Lemma (E1 being the intersection point of line CD with the reflection of plane (ABD)
in plane (ABC), E2 being the intersection point of plane (ABD) with the reflection of line
CD in plane (ABC), and tetrahedron ABCD being sufficiently arbitrary that points E1

and E2 exist and points D, E1, and E2 are pairwise distinct) give a total of nine friendships.

Remark (Author comments). It is natural to approach the problem by looking at the
two-dimensional version first. In two dimensions, the following arrangement suggests itself
almost immediately: We distribute all fireflies as equally as possible among two parallel
lines, and two fireflies are friends if and only if they are on different lines.

Similarly to the three-dimensional version, this attains the greatest possible number
of friendships for all sufficiently large n, though not for all n. For instance, at least one
friendlier arrangements exists for n = 4, similarly to the above friendlier arrangement for
n = 5 in three dimensions.
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This observation strongly suggests that in three dimensions we should distribute the
fireflies as equally as possible among two parallel planes, and that two fireflies should be
friends if and only if they are on different planes. It was a great surprise for me to discover
that this arrangement does not in fact give the correct answer!

Remark. On the other hand, Ankan Bhattacharya gives the following reasoning as to why
the answer should not be that surprising:

I think the answer (1014 − 1)/3 is quite natural if you realize that (n/2)2 is
probably optimal in 2D and

(
n
2

)
is optimal in super high dimensions (i.e. around

n). So going from dimension 2 to 3 should increase the answer (and indeed it
does).
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Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
February 11, 2021

§1 Summary of scores for TSTST 2020
N 57
µ 29.67
σ 15.24

1st Q 17
Median 29

3rd Q 42

Max 63
Top 3 53

Top 12 43

§2 Problem statistics for TSTST 2020

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 1 23 42 8 27 34 15 35 41

1 3 1 2 0 0 2 7 2 1

2 1 2 1 1 0 0 3 0 11

3 2 0 0 2 0 0 7 0 0

4 4 0 0 0 0 0 1 0 1

5 6 0 2 2 0 0 1 0 1

6 3 0 0 16 3 3 3 1 0

7 37 31 10 28 27 18 20 19 2

Avg 5.86 3.89 1.47 5.44 3.63 2.56 3.53 2.47 0.81

QM 6.16 5.18 3.09 5.95 5.01 4.17 4.61 4.12 1.80
#5+ 46 31 12 46 30 21 24 20 3
%5+ %80.7 %54.4 %21.1 %80.7 %52.6 %36.8 %42.1 %35.1 %5.3
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§3 Rankings for TSTST 2020
Sc Num Cu Per
63 1 1 1.75%
62 0 1 1.75%
61 0 1 1.75%
60 0 1 1.75%
59 0 1 1.75%
58 1 2 3.51%
57 0 2 3.51%
56 0 2 3.51%
55 0 2 3.51%
54 0 2 3.51%
53 1 3 5.26%
52 0 3 5.26%
51 1 4 7.02%
50 0 4 7.02%
49 2 6 10.53%
48 0 6 10.53%
47 1 7 12.28%
46 0 7 12.28%
45 0 7 12.28%
44 1 8 14.04%
43 4 12 21.05%

Sc Num Cu Per
42 3 15 26.32%
41 5 20 35.09%
40 0 20 35.09%
39 1 21 36.84%
38 2 23 40.35%
37 2 25 43.86%
36 0 25 43.86%
35 1 26 45.61%
34 1 27 47.37%
33 0 27 47.37%
32 0 27 47.37%
31 0 27 47.37%
30 0 27 47.37%
29 3 30 52.63%
28 2 32 56.14%
27 1 33 57.89%
26 3 36 63.16%
25 0 36 63.16%
24 0 36 63.16%
23 1 37 64.91%
22 0 37 64.91%

Sc Num Cu Per
21 2 39 68.42%
20 2 41 71.93%
19 0 41 71.93%
18 1 42 73.68%
17 1 43 75.44%
16 1 44 77.19%
15 1 45 78.95%
14 1 46 80.70%
13 0 46 80.70%
12 1 47 82.46%
11 2 49 85.96%
10 1 50 87.72%
9 0 50 87.72%
8 1 51 89.47%
7 3 54 94.74%
6 1 55 96.49%
5 0 55 96.49%
4 0 55 96.49%
3 1 56 98.25%
2 0 56 98.25%
1 1 57 100.00%
0 0 57 100.00%

§4 Histogram for TSTST 2020
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USA Team Selection Test for 63rd IMO and 11th EGMO

United States of America

Day I

Thursday, November 4, 2021

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 1. Let ABCD be a quadrilateral inscribed in a circle with center O. Points
X and Y lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and
BCY meet line XY again at P and Q, respectively. Show that OP = OQ.

Problem 2. Let a1 < a2 < a3 < a4 < · · · be an infinite sequence of real numbers in the
interval (0, 1). Show that there exists a number that occurs exactly once in the sequence

a1
1
,
a2
2
,
a3
3
,
a4
4
, . . . .

Problem 3. Find all positive integers k > 1 for which there exists a positive integer n
such that

(
n
k

)
is divisible by n, and

(
n
m

)
is not divisible by n for 2 ≤ m < k.

1



USA Team Selection Test for 63rd IMO and 11th EGMO

United States of America

Day II

Thursday, December 9, 2021

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 4. Let a and b be positive integers. Suppose that there are infinitely many
pairs of positive integers (m,n) for which m2 + an+ b and n2 + am+ b are both perfect
squares. Prove that a divides 2b.

Problem 5. Let T be a tree on n vertices with exactly k leaves. Suppose that there
exists a subset of at least n+k−1

2 vertices of T , no two of which are adjacent. Show that
the longest path in T contains an even number of edges.∗

Problem 6. Triangles ABC and DEF share circumcircle Ω and incircle ω so that
points A, F , B, D, C, and E occur in this order along Ω. Let ∆A be the triangle formed
by lines AB, AC, and EF , and define triangles ∆B, ∆C , . . . ,∆F similarly. Furthermore,
let ΩA and ωA be the circumcircle and incircle of triangle ∆A, respectively, and define
circles ΩB, ωB, . . . ,ΩF , ωF similarly.

(a) Prove that the two common external tangents to circles ΩA and ΩD and the two
common external tangents to circles ωA and ωD are either concurrent or pairwise
parallel.

(b) Suppose that these four lines meet at point TA, and define points TB and TC
similarly. Prove that points TA, TB, and TC are collinear.

∗A tree is a connected graph with no cycles. A leaf is a vertex of degree 1.
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USA Team Selection Test for 63rd IMO and 11th EGMO

United States of America

Day III

Thursday, January 13, 2022

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 7. Let M be a finite set of lattice points and n be a positive integer. A
mine-avoiding path is a path of lattice points with length n, beginning at (0, 0) and
ending at a point on the line x+ y = n, that does not contain any point in M . Prove
that if there exists a mine-avoiding path, then there exist at least 2n−|M | mine-avoiding
paths.∗

Problem 8. Let ABC be a scalene triangle. Points A1, B1 and C1 are chosen on
segments BC, CA, and AB, respectively, such that 4A1B1C1 and 4ABC are similar.
Let A2 be the unique point on line B1C1 such that AA2 = A1A2. Points B2 and C2 are
defined similarly. Prove that 4A2B2C2 and 4ABC are similar.

Problem 9. Let q = pr for a prime number p and positive integer r. Let ζ = e
2πi
q . Find

the least positive integer n such that∑
1≤k≤q

gcd(k,p)=1

1

(1− ζk)n

is not an integer. (The sum is over all 1 ≤ k ≤ q with p not dividing k.)

∗A lattice point is a point (x, y) where x and y are integers. A path of lattice points with length n
is a sequence of lattice points P0, P1, . . . , Pn in which any two adjacent points in the sequence have
distance 1 from each other.
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USA TSTST 2021 Solutions Andrew Gu and Evan Chen

§0 Problems
1. Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and

Y lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and
BCY meet line XY again at P and Q, respectively. Show that OP = OQ.

2. Let a1 < a2 < a3 < a4 < · · · be an infinite sequence of real numbers in the interval
(0, 1). Show that there exists a number that occurs exactly once in the sequence

a1
1
,
a2
2
,
a3
3
,
a4
4
, . . . .

3. Find all positive integers k > 1 for which there exists a positive integer n such that(
n
k

)
is divisible by n, and

(
n
m

)
is not divisible by n for 2 ≤ m < k.

4. Let a and b be positive integers. Suppose that there are infinitely many pairs of
positive integers (m,n) for which m2 + an+ b and n2 + am+ b are both perfect
squares. Prove that a divides 2b.

5. Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a
subset of at least n+k−1

2 vertices of T , no two of which are adjacent. Show that the
longest path in T contains an even number of edges.

6. Triangles ABC and DEF share circumcircle Ω and incircle ω so that points A, F ,
B, D, C, and E occur in this order along Ω. Let ∆A be the triangle formed by lines
AB, AC, and EF , and define triangles ∆B, ∆C , . . . ,∆F similarly. Furthermore,
let ΩA and ωA be the circumcircle and incircle of triangle ∆A, respectively, and
define circles ΩB, ωB, . . . ,ΩF , ωF similarly.
(a) Prove that the two common external tangents to circles ΩA and ΩD and the

two common external tangents to circles ωA and ωD are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point TA, and define points TB and TC
similarly. Prove that points TA, TB, and TC are collinear.

7. Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding
path is a path of lattice points with length n, beginning at (0, 0) and ending at a
point on the line x+ y = n, that does not contain any point in M . Prove that if
there exists a mine-avoiding path, then there exist at least 2n−|M | mine-avoiding
paths.

8. Let ABC be a scalene triangle. Points A1, B1 and C1 are chosen on segments BC,
CA, and AB, respectively, such that 4A1B1C1 and 4ABC are similar. Let A2

be the unique point on line B1C1 such that AA2 = A1A2. Points B2 and C2 are
defined similarly. Prove that 4A2B2C2 and 4ABC are similar.

9. Let q = pr for a prime number p and positive integer r. Let ζ = e
2πi
q . Find the

least positive integer n such that ∑
1≤k≤q

gcd(k,p)=1

1

(1− ζk)n

is not an integer. (The sum is over all 1 ≤ k ≤ q with p not dividing k.)
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§1 Solutions to Day 1
§1.1 TSTST 2021/1, proposed by Holden Mui
Available online at https://aops.com/community/p23586650.

Problem statement

Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and Y
lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and BCY
meet line XY again at P and Q, respectively. Show that OP = OQ.

We present many solutions.

¶ First solution, angle chasing only (Ankit Bisain) Let lines BQ and DP meet
(ABCD) again at D′ and B′, respectively.

A

B

C D

O

X

Y

P

Q

B′

D′

Then BB′ ‖ PX and DD′ ‖ QY by Reim’s theorem. Segments BB′, DD′, and PQ share
a perpendicular bisector which passes through O, so OP = OQ.

¶ Second solution via isosceles triangles (from contestants) Let T = BQ ∩DP .
A

B

C D

O

X

Y

P

Q

T

Note that PQT is isosceles because

]PQT = ]Y QB = ]BCD = ]BAD = ]XPD = ]TPQ.

Then (BODT ) is cyclic because

]BOD = 2]BCD = ]PQT + ]TPQ = ]BTD.

3
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USA TSTST 2021 Solutions Andrew Gu and Evan Chen

Since BO = OD, TO is an angle bisector of ]BTD. Since 4PQT is isosceles, TO ⊥ PQ,
so OP = OQ.

¶ Third solution using a parallelogram (from contestants) Let (BCY ) meet AB
again at W and let (ADX) meet CD again at Z. Additionally, let O1 be the center of
(ADX) and O2 be the center of (BCY ).

A

B

C D

X

Y

P

Q

W

Z

O

O1

O2

O′

Note that (WXY Z) is cyclic since

]XWY + ]Y ZX = ]YWB + ]XZD = ]Y CB + ]XAD = 0◦,

so let O′ be the center of (WXY Z). Since AD ‖WY and BC ‖ XZ by Reim’s theorem,
OO1O

′O2 is a parallelogram.
To finish the problem, note that projecting O1, O2, and O′ onto XY gives the midpoints

of PX, QY , and XY . Since OO1O
′O2 is a parallelogram, projecting O onto XY must

give the midpoint of PQ, so OP = OQ.

¶ Fourth solution using congruent circles (from contestants) Let the angle bisector
of ]BOD meet XY at K.

A

B

C D

O

X

Y

P

Q

K

Then (BQOK) is cyclic because ]KOD = ]BAD = ]KPD, and (DOPK) is cyclic
similarly. By symmetry over KO, these circles have the same radius r, so

OP = 2r sin∠OKP = 2r sin∠OKQ = OQ

by the Law of Sines.
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¶ Fifth solution by ratio calculation (from contestants) Let XY meet (ABCD) at
X ′ and Y ′.

A

B

C D

O

X

Y

P

Q

X ′

Y ′

Since ]Y ′BD = ]PX ′D and ]BY ′D = ]BAD = ]X ′PD,

4BY ′D ∼ 4XP ′D =⇒ PX ′ = BY ′ · DX
′

BD
.

Similarly,

4BX ′D ∼ 4BQY ′ =⇒ QY ′ = DX ′ · BY
′

BD
.

Thus PX ′ = QY ′, which gives OP = OQ.

¶ Sixth solution using radical axis (from author) Without loss of generality, assume
AD ∦ BC, as this case holds by continuity. Let (BCY ) meet AB again at W , let (ADX)
meet CD again at Z, and let WZ meet (ADX) and (BCY ) again at R and S.

A

B

C D

X

Y

P

Q

W

Z

R

S

Note that (WXY Z) is cyclic since

]XWY + ]Y ZX = ]YWB + ]XZD = ]Y CB + ]XAD = 0◦

and (PQRS) is cyclic since

]PQS = ]Y QS = ]YWS = ]PXZ = ]PRZ = ]SRP.

Additionally, AD ‖ PR since

]DAX + ]AXP + ]XPR = ]YWX + ]WXY + ]XYW = 0◦,
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and BC ‖ SQ similarly.
Lastly, (ABCD) and (PQRS) are concentric; if not, using the radical axis theorem

twice shows that their radical axis must be parallel to both AD and BC, contradiction.

¶ Seventh solution using Cayley-Bacharach (author) Define points W,Z,R, S as in
the previous solution.

A

B

C D

X

Y

P

Q

W

Z

R

S

The quartics (ADXZ) ∪ (BCWY ) and XY ∪WZ ∪ (ABCD) meet at the 16 points

A,B,C,D,W,X, Y, Z, P,Q,R, S, I, I, J, J,

where I and J are the circular points at infinity. Since AB ∪ CD ∪ (PQR) contains the
13 points

A,B,C,D, P,Q,R,W,X, Y, Z, I, J,

it must contain S, I, and J as well, by quartic Cayley-Bacharach. Thus, (PQRS) is cyclic
and intersects (ABCD) at I, I, J , and J , implying that the two circles are concentric,
as desired.

Remark (Author comments). Holden says he came up with this problem via the Cayley-
Bacharach solution, by trying to get two quartics to intersect.
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§1.2 TSTST 2021/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586635.

Problem statement

Let a1 < a2 < a3 < a4 < · · · be an infinite sequence of real numbers in the interval
(0, 1). Show that there exists a number that occurs exactly once in the sequence

a1
1
,
a2
2
,
a3
3
,
a4
4
, . . . .

We present three solutions.

¶ Solution 1 (Merlijn Staps) We argue by contradiction, so suppose that for each λ
for which the set Sλ = {k : ak/k = λ} is non-empty, it contains at least two elements.
Note that Sλ is always a finite set because ak = kλ implies k < 1/λ.

Write mλ and Mλ for the smallest and largest element of Sλ, respectively, and define
Tλ = {mλ,mλ + 1, . . . ,Mλ} as the smallest set of consecutive positive integers that
contains Sλ. Then all Tλ are sets of at least two consecutive positive integers, and
moreover the Tλ cover N. Additionally, each positive integer is covered finitely many
times because there are only finitely many possible values of mλ smaller than any fixed
integer.

Recall that if three intervals have a point in common then one of them is contained in
the union of the other two. Thus, if any positive integer is covered more than twice by
the sets Tλ, we may throw out one set while maintaining the property that the Tλ cover
N. By using the fact that each positive integer is covered finitely many times, we can
apply this process so that each positive integer is eventually covered at most twice.

Let Λ denote the set of the λ-values for which Tλ remains in our collection of sets; then⋃
λ∈Λ Tλ = N and each positive integer is contained in at most two sets Tλ.
We now obtain ∑

λ∈Λ

∑
k∈Tλ

(ak+1 − ak) ≤ 2
∑
k≥1

(ak+1 − ak) ≤ 2.

On the other hand, because amλ
= λmλ and aMλ

= λMλ, we have

2
∑
k∈Tλ

(ak+1 − ak) ≥ 2
∑

mλ≤k<Mλ

(ak+1 − ak) = 2(aMλ
− amλ

) = 2(Mλ −mλ)λ

= 2(Mλ −mλ) ·
amλ

mλ
≥ (Mλ −mλ + 1) · a1

mλ
≥ a1 ·

∑
k∈Tλ

1

k
.

Combining this with our first estimate, and using the fact that the Tλ cover N, we obtain

4 ≥ 2
∑
λ∈Λ

∑
k∈Tλ

(ak+1 − ak) ≥ a1
∑
λ∈Λ

∑
k∈Tλ

1

k
≥ a1

∑
k≥1

1

k
,

contradicting the fact that the harmonic series diverges.

¶ Solution 2 (Sanjana Das) Assume for the sake of contradiction that no number
appears exactly once in the sequence. For every i < j with ai/i = aj/j, draw an edge

7

https://aops.com/community/p23586635


USA TSTST 2021 Solutions Andrew Gu and Evan Chen

between i and j, so every i has an edge (and being connected by an edge is a transitive
property). Call i good if it has an edge with some j > i.

First, each i has finite degree – otherwise

ax1

x1
=
ax2

x2
= · · ·

for an infinite increasing sequence of positive integers xi, but then the axi are unbounded.
Now we use the following process to build a sequence of indices whose ai we can

lower-bound:

• Start at x1 = 1, which is good.

• If we’re currently at good index xi, then let si be the largest positive integer such
that xi has an edge to xi + si. (This exists because the degrees are finite.)

• Let ti be the smallest positive integer for which xi + si + ti is good, and let this
be xi+1. This exists because if all numbers k ≤ x ≤ 2k are bad, they must each
connect to some number less than k (if two connect to each other, the smaller one
is good), but then two connect to the same number, and therefore to each other –
this is the idea we will use later to bound the ti as well.

Then xi = 1 + s1 + t1 + · · ·+ si−1 + ti−1, and we have

axi+1 > axi+si =
xi + si
xi

axi =
1 + (s1 + · · ·+ si−1 + si) + (t1 + · · ·+ ti−1)

1 + (s1 + · · ·+ si−1) + (t1 + · · ·+ ti−1)
axi .

This means

cn :=
axn

a1
>

n−1∏
i=1

1 + (s1 + · · ·+ si−1 + si) + (t1 + · · ·+ ti−1)

1 + (s1 + · · ·+ si−1) + (t1 + · · ·+ ti−1)
.

Lemma
t1 + · · ·+ tn ≤ s1 + · · ·+ sn for each n.

Proof. Consider 1 ≤ i ≤ n. Note that for every i, the ti − 1 integers strictly between
xi+ si and xi+ si+ ti are all bad, so each such index x must have an edge to some y < x.

First we claim that if x ∈ (xi + si, xi + si + ti), then x cannot have an edge to xj for
any j ≤ i. This is because x > xi + si ≥ xj + sj , contradicting the fact that xj + sj is
the largest neighbor of xj .

This also means x doesn’t have an edge to xj + sj for any j ≤ i, since if it did, it would
have an edge to xj .

Second, no two bad values of x can have an edge, since then the smaller one is good.
This also means no two bad x can have an edge to the same y.

Then each of the
∑

(ti − 1) values in the intervals (xi + si, xi + si + ti) for 1 ≤ i ≤ n
must have an edge to an unique y in one of the intervals (xi, xi + si) (not necessarily
with the same i). Therefore∑

(ti − 1) ≤
∑

(si − 1) =⇒
∑

ti ≤
∑

si.

8
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Now note that if a > b, then a+x
b+x = 1 + a−b

b+x is decreasing in x. This means

cn >
n−1∏
i=1

1 + 2s1 + · · ·+ 2si−1 + si
1 + 2s1 + · · ·+ 2si−1

>
n−1∏
i=1

1 + 2s1 + · · ·+ 2si−1 + 2si
1 + 2s1 + · · ·+ 2si−1 + si

,

By multiplying both products, we have a telescoping product, which results in

c2n ≥ 1 + 2s1 + · · ·+ 2sn + 2sn+1.

The right hand side is unbounded since the si are positive integers, while cn = axn/a1 <
1/a1 is bounded, contradiction.

¶ Solution 3 (Gopal Goel) Suppose for sake of contradiction that the problem is false.
Call an index i a pin if

aj
j

=
ai
i

=⇒ j ≥ i.

Lemma
There exists k such that if we have ai

i =
aj
j with j > i ≥ k, then j ≤ 1.1i.

Proof. Note that for any i, there are only finitely many j with aj
j = ai

i , otherwise aj = jai
i

is unbounded. Thus it suffices to find k for which j ≤ 1.1i when j > i ≥ k.
Suppose no such k exists. Then, take a pair j1 > i1 such that aj1

j1
=

ai1
i1

and j1 > 1.1i1,
or aj1 > 1.1ai1 . Now, since k = j1 can’t work, there exists a pair j2 > i2 ≥ i1 such that
aj2
j2

=
ai2
i2

and j2 > 1.1i2, or aj2 > 1.1ai2 . Continuing in this fashion, we see that

aj` > 1.1ai` > 1.1aj`−1
,

so we have that aj` > 1.1`ai1 . Taking ` > log1.1(1/a1) gives the desired contradiction.

Lemma
For N > k2, there are at most 0.8N pins in [

√
N,N).

Proof. By the first lemma, we see that the number of pins in [
√
N, N

1.1) is at most the
number of non-pins in [

√
N,N). Therefore, if the number of pins in [

√
N,N) is p, then

we have
p−N

(
1− 1

1.1

)
≤ N − p,

so p ≤ 0.8N , as desired.

We say that i is the pin of j if it is the smallest index such that ai
i =

aj
j . The pin of j is

always a pin.
Given an index i, let f(i) denote the largest index less than i that is not a pin (we

leave the function undefined when no such index exists, as we are only interested in the
behavior for large i). Then f is weakly increasing and unbounded by the first lemma.
Let N0 be a positive integer such that f(

√
N0) > k.

Take any N > N0 such that N is not a pin. Let b0 = N , and b1 be the pin of b0.
Recursively define b2i = f(b2i−1), and b2i+1 to be the pin of b2i.

9
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Let ` be the largest odd index such that b` ≥
√
N . We first show that b` ≤ 100

√
N .

Since N > N0, we have b`+1 > k. By the choice of ` we have b`+2 <
√
N , so

b`+1 < 1.1b`+2 < 1.1
√
N

by the first lemma. We see that all the indices from b`+1 + 1 to b` must be pins, so we
have at least b` − 1.1

√
N pins in [

√
N, b`). Combined with the second lemma, this shows

that b` ≤ 100
√
N .

Now, we have that ab2i =
b2i

b2i+1
ab2i+1

and ab2i+1
> ab2i+2

, so combining gives us

ab0
ab`

>
b0
b1

b2
b3

· · · b`−1

b`
.

Note that there are at least

(b1 − b2) + (b3 − b4) + · · ·+ (b`−2 − b`−1)

pins in [
√
N,N), so by the second lemma, that sum is at most 0.8N . Thus,

(b0 − b1) + (b2 − b3) + · · ·+ (b`−1 − b`) = b0 − [(b1 − b2) + · · ·+ (b`−2 − b`−1)]− b`

≥ 0.2N − 100
√
N.

Then

b0
b1

b2
b3

· · · b`−1

b`
≥ 1 +

b0 − b1
b1

+ · · ·+ b`−1 − b`
b`

> 1 +
b0 − b1
b0

+ · · ·+ b`−1 − b`
b0

≥ 1 +
0.2N − 100

√
N

N
,

which is at least 1.01 if N0 is large enough. Thus, we see that

aN > 1.01ab` ≥ 1.01ab
√
Nc

if N > N0 is not a pin. Since there are arbitrarily large non-pins, this implies that the
sequence (an) is unbounded, which is the desired contradiction.
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§1.3 TSTST 2021/3, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586679.

Problem statement

Find all positive integers k > 1 for which there exists a positive integer n such that(
n
k

)
is divisible by n, and

(
n
m

)
is not divisible by n for 2 ≤ m < k.

Such an n exists for any k.
First, suppose k is prime. We choose n = (k − 1)!. For m < k, it follows from m! | n

that

(n− 1)(n− 2) · · · (n−m+ 1) ≡ (−1)(−2) · · · (−m+ 1)

≡ (−1)m−1(m− 1)!

6≡ 0 mod m!.

We see that
(
n
m

)
is not a multiple of m. For m = k, note that

(
n
k

)
= n

k

(
n−1
k−1

)
. Because

k - n, we must have k |
(
n−1
k−1

)
, and it follows that n |

(
n
k

)
.

Now suppose k is composite. We will choose n to satisfy a number of congruence
relations. For each prime p ≤ k, let

tp = νp(lcm(1, 2, . . . , k − 1)) = max(νp(1), νp(2), . . . , νp(k − 1))

and choose kp ∈ {1, 2, . . . , k − 1} as large as possible such that νp(kp) = tp. We now
require

n ≡ 0 mod ptp+1 if p - k; (1)
νp(n− kp) = tp + νp(k) if p | k. (2)

for all p ≤ k. From the Chinese Remainder Theorem, we know that an n exists
that satisfies (1) and (2) (indeed, a sufficient condition for (2) is the congruence n ≡
kp + ptp+νp(k) mod ptp+νp(k)+1). We show that this n has the required property.

We first will compute νp(n− i) for primes p < k and 1 ≤ i < k.

• If p - k, then we have νp(i), νp(n− i) ≤ tp and νp(n) > tp, so νp(n− i) = νp(i);

• If p | k and i 6= kp, then we have νp(i), νp(n − i) ≤ tp and νp(n) ≥ tp, so again
νp(n− i) = νp(i);

• If p | k and i = kp, then we have νp(n− i) = νp(i) + νp(k) by (2).

We conclude that νp(n − i) = νp(i) always holds, except when i = kp, when we have
νp(n− i) = νp(i) + νp(k) (this formula holds irrespective of whether p | k or p - k).

We can now show that
(
n
k

)
is divisible by n, which amounts to showing that k! divides

(n− 1)(n− 2) · · · (n− k + 1). Indeed, for each prime p ≤ k we have

νp ((n− 1)(n− 2) . . . (n− k + 1)) = νp(n− kp) +
∑

i<k,i 6=kp

νp(n− i)

= νp(kp) + νp(k) +
∑

i<k,i 6=kp

νp(i)

11
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=
k∑

i=1

νp(i) = νp(k!),

so it follows that (n− 1)(n− 2) · · · (n− k + 1) is a multiple of k!.
Finally, let 1 < m < k. We will show that n does not divide

(
n
m

)
, which amounts to

showing that m! does not divide (n− 1)(n− 2) · · · (n−m+ 1). First, suppose that m
has a prime divisor q that does not divide k. Then we have

νq ((n− 1)(n− 2) . . . (n−m+ 1)) =

m−1∑
i=1

νq(n− i)

=

m−1∑
i=1

νq(i)

= νq((m− 1)!) < νq(m!),

as desired. Therefore, suppose that m is only divisible by primes that divide k. If there
is such a prime p with νp(m) > νp(k), then it follows that

νp ((n− 1)(n− 2) . . . (n−m+ 1)) = νp(k) +
m−1∑
i=1

νp(i)

< νp(m) +
m−1∑
i=1

νp(i)

= νp(m!),

so m! cannot divide (n − 1)(n − 2) . . . (n −m + 1). On the other hand, suppose that
νp(m) ≤ νp(k) for all p | k, which would mean that m | k and hence m ≤ k

2 . Consider
a prime p dividing m. We have kp ≥ k

2 , because otherwise 2kp could have been used
instead of kp. It follows that m ≤ k

2 ≤ kp. Therefore, we obtain

νp ((n− 1)(n− 2) . . . (n−m+ 1)) =

m−1∑
i=1

νp(n− i)

=

m−1∑
i=1

νp(i)

= νp((m− 1)!) < νp(m!),

showing that (n− 1)(n− 2) · · · (n−m+ 1) is not divisible by m!. This shows that
(
n
m

)
is not divisible by n for m < k, and hence n does have the required property.
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§2 Solutions to Day 2
§2.1 TSTST 2021/4, proposed by Holden Mui
Available online at https://aops.com/community/p23864177.

Problem statement

Let a and b be positive integers. Suppose that there are infinitely many pairs of
positive integers (m,n) for which m2 + an + b and n2 + am + b are both perfect
squares. Prove that a divides 2b.

Treating a and b as fixed, we are given that there are infinitely many quadrpules (m,n, r, s)
which satisfy the system

m2 + an+ b = (m+ r)2

n2 + am+ b = (n+ s)2

We say that (r, s) is exceptional if there exists infinitely many (m,n) that satisfy.

Claim — If (r, s) is exceptional, then either

• 0 < r < a/2, and 0 < s < 1
4a

2; or

• 0 < s < a/2, and 0 < r < 1
4a

2; or

• r2 + s2 ≤ 2b.

In particular, finitely many pairs (r, s) can be exceptional.

Proof. Sum the two equations to get:

r2 + s2 − 2b = (a− 2r)m+ (a− 2s)n. (†)

If 0 < r < a/2, then the idea is to use the bound an+ b ≥ 2m+ 1 to get m ≤ an+b−1
2 .

Consequently,
(n+ s)2 = n2 + am+ b ≤ n2 + a · an+ b− 1

2
+ b

For this to hold for infinitely many integers n, we need 2s ≤ a2

2 , by comparing coefficients.
A similar case occurs when 0 < s < a/2.
If min(r, s) > a/2, then (†) forces r2 + s2 ≤ 2b, giving the last case.

Hence, there exists some particular pair (r, s) for which there are infinitely many
solutions (m,n). Simplifying the system gives

an = 2rm+ r2 − b

2sn = am+ b− s2

Since the system is linear, for there to be infinitely many solutions (m,n) the system
must be dependent. This gives

a

2s
=

2r

a
=
r2 − b

b− s2

13
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so a = 2
√
rs and b = s2

√
r+r2

√
s√

r+
√
s

. Since rs must be square, we can reparametrize as
r = kx2, s = ky2, and gcd(x, y) = 1. This gives

a = 2kxy

b = k2xy(x2 − xy + y2).

Thus, a | 2b, as desired.
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§2.2 TSTST 2021/5, proposed by Vincent Huang
Available online at https://aops.com/community/p23864182.

Problem statement

Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a
subset of at least n+k−1

2 vertices of T , no two of which are adjacent. Show that the
longest path in T contains an even number of edges.

The longest path in T must go between two leaves. The solutions presented here will
solve the problem by showing that in the unique 2-coloring of T , all leaves are the same
color.

¶ Solution 1 (Ankan Bhattacharya, Jeffery Li)

Lemma
If S is an independent set of T , then∑

v∈S
deg(v) ≤ n− 1.

Equality holds if and only if S is one of the two components of the unique 2-coloring
of T .

Proof. Each edge of T is incident to at most one vertex of S, so we obtain the inequality
by counting how many vertices of S each edge is incident to. For equality to hold, each
edge is incident to exactly one vertex of S, which implies the 2-coloring.

We are given that there exists an independent set of at least n+k−1
2 vertices. By

greedily choosing vertices of smallest degree, the sum of the degrees of these vertices is
at least

k + 2 · n− k − 1

2
= n− 1.

Thus equality holds everywhere, which implies that the independent set contains every
leaf and is one of the components of the 2-coloring.

¶ Solution 2 (Andrew Gu)

Lemma
The vertices of T can be partitioned into k − 1 paths (i.e. the induced subgraph on
each set of vertices is a path) such that all edges of T which are not part of a path
are incident to an endpoint of a path.

Proof. Repeatedly trim the tree by taking a leaf and removing the longest path containing
that leaf such that the remaining graph is still a tree.
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Now given a path of a vertices, at most a+1
2 of those vertices can be in an independent

set of T . By the lemma, T can be partitioned into k − 1 paths of a1, . . . , ak−1 vertices,
so the maximum size of an independent set of T is∑ ai + 1

2
=
n+ k − 1

2
.

For equality to hold, each path in the partition must have an odd number of vertices,
and has a unique 2-coloring in red and blue where the endpoints are red. The unique
independent set of T of size n+k−1

2 is then the set of red vertices. By the lemma, the
edges of T which are not part of a path connect an endpoint of a path (which is colored
red) to another vertex (which must be blue, because the red vertices are independent).
Thus the coloring of the paths extends to the unique 2-coloring of T . The leaves of T are
endpoints of paths, so they are all red.

16
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§2.3 TSTST 2021/6, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p23864189.

Problem statement

Triangles ABC and DEF share circumcircle Ω and incircle ω so that points A, F ,
B, D, C, and E occur in this order along Ω. Let ∆A be the triangle formed by lines
AB, AC, and EF , and define triangles ∆B, ∆C , . . . ,∆F similarly. Furthermore, let
ΩA and ωA be the circumcircle and incircle of triangle ∆A, respectively, and define
circles ΩB, ωB, . . . ,ΩF , ωF similarly.

(a) Prove that the two common external tangents to circles ΩA and ΩD and the
two common external tangents to circles ωA and ωD are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point TA, and define points TB and TC
similarly. Prove that points TA, TB, and TC are collinear.

A

B C

D

E

F

TA

TB

TC

Let I and r be the center and radius of ω, and let O and R be the center and radius
of Ω. Let OA and IA be the circumcenter and incenter of triangle ∆A, and define OB,
IB, . . . , IF similarly. Let ω touch EF at A1, and define B1, C1, . . . , F1 similarly.

¶ Part (a) All solutions to part (a) will prove the stronger claim that

(ΩA ∪ ωA) ∼ (ΩD ∪ ωD).

The four lines will concur at the homothetic center of these figures (possibly at infinity).

Solution 1 (author) Let the second tangent to ω parallel to EF meet lines AB and
AC at P and Q, respectively, and let the second tangent to ω parallel to BC meet lines
DE and DF at R and S, respectively. Furthermore, let ω touch PQ and RS at U and
V , respectively.
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Let h be inversion with respect to ω. Then h maps A, B, and C onto the midpoints of
the sides of triangle D1E1F1. So h maps k onto the Euler circle of triangle D1E1F1.

Similarly, h maps k onto the Euler circle of triangle A1B1C1. Therefore, triangles
A1B1C1 and D1E1F1 share a common nine-point circle γ. Let K be its center; its radius
equals 1

2r.
Let H be the reflection of I in K. Then H is the common orthocenter of triangles

A1B1C1 and D1E1F1.
Let γU of center KU and radius 1

2r be the Euler circle of triangle UE1F1, and let γV
of center KV and radius 1

2r be the Euler circle of triangle V B1C1.
Let HU be the orthocenter of triangle UE1F1. Since quadrilateral D1E1F1U is cyclic,

vectors
−−−→
HHU and

−−→
D1U are equal. Consequently,

−−−→
KKU = 1

2

−−→
D1U . Similarly,

−−−→
KKV =

1
2

−−→
A1V .
Since both of A1U and D1V are diameters in ω, vectors

−−→
D1U and

−−→
A1V are equal.

Therefore, KU and KV coincide, and so do γU and γV .
As above, h maps γU onto the circumcircle of triangle APQ and γV onto the circumcircle

of triangle DRS. Therefore, triangles APQ and DRS are inscribed inside the same circle
ΩAD.

Since EF and PQ are parallel, triangles ∆A and APQ are homothetic, and so are
figures ΩA ∪ ωA and ΩAD ∪ ω. Consequently, we have

(ΩA ∪ ωA) ∼ (ΩAD ∪ ω) ∼ (ΩD ∪ ωD),

which solves part (a).

Solution 2 (Michael Ren) As in the previous solution, let the second tangent to ω
parallel to EF meet AB and AC at P and Q, respectively. Let (APQ) meet Ω again at
D′, so that D′ is the Miquel point of {AB,AC,BC,PQ}. Since the quadrilateral formed
by these lines has incircle ω, it is classical that D′I bisects ∠PD′C and BD′Q (e.g. by
DDIT).

Let ` be the tangent to Ω at D′ and D′I meet Ω again at M . We have

](`,D′B) = ]D′CB = ]D′QP = ](D′Q,EF ).

Therefore D′I also bisects the angle between ` and the line parallel to EF through D′.
This means that M is one of the arc midpoints of EF . Additionally, D′ lies on arc BC
not containing A, so D′ = D.

Similarly, letting the second tangent to ω parallel to BC meet DE and DF again at
R and S, we have ADRS cyclic.

Lemma
There exists a circle ΩAD tangent to ΩA and ΩD at A and D, respectively.

Proof. (This step is due to Ankan Bhattacharya.) It is equivalent to have ]OAOA =
]ODDO. Taking isogonals with respect to the shared angle of 4ABC and ∆A, we see
that

]OAOA = ](⊥ EF,⊥ BC) = ](EF,BC).

(Here, ⊥ EF means the direction perpendicular to EF .) By symmetry, this is equal to
]ODDO.
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The circle (ADPQ) passes through A and D, and is tangent to ΩA by homothety.
Therefore it coincides with ΩAD, as does (ADRS). Like the previous solution, we finish
with

(ΩA ∪ ωA) ∼ (ΩAD ∪ ω) ∼ (ΩD ∪ ωD).

Solution 3 (Andrew Gu) Construct triangles homothetic to ∆A and ∆D (with positive
ratio) which have the same circumcircle; it suffices to show that these copies have the
same incircle as well. Let O be the center of this common circumcircle, which we take to
be the origin, and MXY denote the point on the circle such that the tangent at that point
is parallel to line XY (from the two possible choices, we make the choice that corresponds
to the arc midpoint on Ω, e.g. MAB should correspond to the arc midpoint on the internal
angle bisector of ACB). The left diagram below shows the original triangles ABC and
DEF , while the right diagram shows the triangles homothetic to ∆A and ∆D.

A

B C

MBC

MCA

MAB

I

D

E

F

MFD

MDE

MEF

MBC

MCA

MAB

I
MFD

MDE

MEF

Using the fact that the incenter is the orthocenter of the arc midpoints, the incenter of
∆A in this reference frame is MAB+MAC −MEF and the incenter of ∆D in this reference
frame is MDE +MDF −MBC . Since ABC and DEF share a common incenter, we have

MAB +MBC +MCA =MDE +MEF +MFD.

Thus the copies of ∆A and ∆D have the same incenter, and therefore the same incircle
as well (Euler’s theorem determines the inradius).

¶ Part (b) We present several solutions for this part of the problem. Solutions 3 and 4
require solving part (a) first, while the others do not. Solutions 1, 4, and 5 define TA
solely as the exsimilicenter of ωA and ωD, whereas solutions 2 and 3 define TA solely as
the exsimilicenter of ΩA and ΩD.

Solution 1 (author) By Monge’s theorem applied to ω, ωA, and ωD, points A, D,
and TA are collinear. Therefore, TA = AD ∩ IAID.

Let p be pole-and-polar correspondence with respect to ω. Then p maps A onto line
E1F1 and D onto line B1C1. Consequently, p maps line AD onto XA = B1C1 ∩ E1F1.

Furthermore, p maps the line that bisects the angle formed by lines AB and EF and
does not contain I onto the midpoint of segment A1F1. Similarly, p maps the line that
bisects the angle formed by lines AC and EF and does not contain I onto the midpoint of
segment A1E1. So p maps IA onto the midline of triangle A1E1F1 opposite A1. Similarly,
p maps ID onto the midline of triangle D1B1C1 opposite D1. Consequently, p maps line
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IAID onto the intersection point YA of this pair of midlines, and p maps TA onto line
XAYA.

As in the solution to part (a), let H be the common orthocenter of triangles A1B1C1 and
D1E1F1. Let HA be the foot of the altitude from A1 in triangle A1B1C1 and let HD be
the foot of the altitude from D1 in triangle D1E1F1. Furthermore, let LA = HA1 ∩E1F1

and LD = HD1 ∩B1C1.
Since the reflection of H in line B1C1 lies on ω, A1H ·HHA equals half the power of H

with respect to ω. Similarly, D1H ·HHD equals half the power of H with respect to ω.
Then A1H ·HHA = D1H ·HHD and A1HHD ∼ D1HHA. Since ∠HHDLA = 90◦ =

∠HHALD, figures A1HHDLA and D1HHALD are similar as well. Consequently,

HLA

LAA1
=

HLD

LDD1
= s

as a signed ratio.
Let the line through A1 parallel to E1F1 and the line through D1 parallel to B1C1 meet

at ZA. Then HXA/XAZA = s and YA is the midpoint of segment XAZA. Therefore, H
lies on line XAYA. This means that TA lies on the polar of H with respect to ω, and by
symmetry so do TB and TC .

Solution 2 (author) As in the first solution to part (a), let h be inversion with respect
to ω, let γ of center K be the common Euler circle of triangles A1B1C1 and D1E1F1,
and let H be their common orthocenter.

Again as in the solution to part (a), h maps ΩA onto the nine-point circle γA of triangle
A1E1F1 and ΩD onto the nine-point circle γD of triangle D1B1C1.

Let KA and KD be the centers of γA and γD, respectively, and let `A be the perpen-
dicular bisector of segment KAKD. Since γA and γD are congruent (both of them are of
radius 1

2r), they are reflections of each other across `A.
Inversion h maps the two common external tangents of ΩA and ΩD onto the two circles

α and β through I that are tangent to both of γA and γD in the same way. (That is,
either internally to both or externally to both.) Consequently, α and β are reflections of
each other in `A and so their second point of intersection SA, which h maps TA onto, is
the reflection of I in `A.

Define `B, `C , SB, and SC similarly. Then SB is the reflection of I in `B and SC is
the reflection of I in `C .

As in the solution to part (a),
−−−→
KKA = 1

2

−−−→
D1A1 and

−−−→
KKD = 1

2

−−−→
A1D1. Consequently, K

is the midpoint of segment KAKD and so K lies on `A. Similarly, K lies on `B and `C .
Therefore, all four points I, SA, SB , and SC lie on the circle of center K that contains

I. (This is also the circle on diameter IH.) Since points SA, SB, and SC are concyclic
with I, their images TA, TB, and TC under h are collinear, and the solution is complete.

Solution 3 (Ankan Bhattacharya) From either of the first two solutions to part (a),
we know that there is a circle ΩAD passing through A and D which is (internally) tangent
to ΩA and ΩD. By Monge’s theorem applied to ΩA,ΩD, and ΩAD, it follows that A,D,
and TA are collinear.

The inversion at TA swapping ΩA with ΩD also swaps A with D because TA lies on
AD and A is not homologous to D. Let ΩA and ΩD meet Ω again at LA and LD. Since
ADLALD is cyclic, the same inversion at TA also swaps LA and LD, so TA = AD∩LALD.

By Taiwan TST 2014, LA and LD are the tangency points of the A-mixtilinear and
D-mixtilinear incircles, respectively, with Ω. Therefore ALA ∩DLD is the exsimilicenter
X of Ω and ω. Then TA, TB, and TC all lie on the polar of X with respect to Ω.
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Solution 4 (Andrew Gu) We show that TA lies on the radical axis of the point circle
at I and Ω, which will solve the problem. Let IA and ID be the centers of ωA and ωD

respectively. By the Monge’s theorem applied to ω, ωA, and ωD, points A, D, and TA are
collinear. Additionally, these other triples are collinear: (A, IA, I), (D, ID, I), (IA, ID, T ).
By Menelaus’s theorem, we have

TAD

TAA
=
IAI

IAA
· IDD
IDI

.

If s is the length of the side opposite A in ∆A, then we compute
IAI

IAA
=

s/ cos(A/2)
rA/ sin(A/2)

=
2RA sin(A) sin(A/2)

cos(A/2)

=
4RA sin2(A/2)

rA

=
4RAr

2

rAAI2
.

From part (a), we know that RA
rA

= RD
rD

. Therefore, doing a similar calculation for IDD
IDI ,

we get
TAD

TAA
=
IAI

IAA
· IDD
IDI

=
4RAr

2

rAAI2
· rDDI

2

4RDr2

=
DI2

AI2
.

Thus TA is the point where the tangent to (AID) at I meets AD and TAI2 = TAA ·TAD.
This shows what we claimed at the start.

Solution 5 (Ankit Bisain) As in the previous solution, it suffices to show that
IAI
AIA

· DID
IDI = DI2

AI2
. Let AI and DI meet Ω again at M and N , respectively. Let ` be the

line parallel to BC and tangent to ω but different from BC. Then

DID
IDI

=
d(D,BC)

d(BC, `)
=
DB ·DC/2R

2r
=
MI2 −MD2

4Rr
.

Since IDM ∼ IAN , we have

DID
IDI

· IAI
AIA

=
MI2 −MD2

NI2 −NA2
=
DI2

AI2
,

as desired.

Remark (Author comments on generalization of part (b) with a circumscribed hexagram).
Let triangles ABC and DEF be circumscribed about the same circle ω so that they form a
hexagram. However, we do not require anymore that they are inscribed in the same circle.

Define circles ΩA, ωA, . . . , ωF as in the problem. Let TCirc
A be the intersection point of

the two common external tangents to circles ΩA and ΩD, and define points TCirc
B and TCirc

C

similarly. Also let T In
A be the intersection point of the two common external tangents to

circles ωA and ωD, and define points T In
B and T In

C similarly.
Then points TCirc

A , TCirc
B , and TCirc

C are collinear and points T In
A , T In

B , and T In
C are also

collinear.
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The second solution to part (b) of the problem works also for the circumcircles part of
the generalisation. To see that segments KAKD, KBKE , and KCKF still have a common
midpoint, let M be the centroid of points A, B, C, D, E, and F . Then the midpoint of
segment KAKD divides segment OM externally in ratio 3 : 1, and so do the other two
midpoints as well.

For the incircles part of the generalisation, we start out as in the first solution to part (b)
of the problem, and eventually we reduce everything to the following:

Let points A1, B1, C1, D1, E1, and F1 lie on circle ω. Let lines B1C1 and E1F1 meet at
point XA, let the line through A1 parallel to B1C1 and the line through D1 parallel to E1F1

meet at point ZA, and define points XB, ZB, XC , and ZC similarly. Then lines XAZA,
XBZB, and XCZC are concurrent.

Take ω as the unit circle and assign complex numbers u, v, w, x, y, and z to points A1,
F1, B1, D1, C1, and E1, respectively, so that when we permute u, v, w, x, y, and z cyclically
the configuration remains unchanged. Then by standard complex bash formulas we obtain
that each two out of our three lines meet at ϕ/ψ, where

ϕ =
∑
Cyc

u2vw(wx− wy + xy)(y − z)

and

ψ = − u2w2y2 − v2x2z2 − 4uvwxyz +
∑
Cyc

u2(vwxy − vwxz + vwyz − vxyz + wxyz).

(But the calculations were too difficult for me to do by hand, so I used SymPy.)

Remark (Author comments on generalization of part (b) with an inscribed hexagram).
Let triangles ABC and DEF be inscribed inside the same circle Ω so that they form a
hexagram. However, we do not require anymore that they are circumscribed about the same
circle.

Define points TCirc
A , TCirc

B , . . ., T In
C as in the previous remark. It looks like once again

points TCirc
A , TCirc

B , and TCirc
C are collinear and points T In

A , T In
B , and T In

C are also collinear.
However, I do not have proofs of these claims.

Remark (Further generalization from Andrew Gu). Let ABC and DEF be triangles which
share an inconic, or equivalently share a circumconic. Define points TCirc

A , TCirc
B , . . . , T In

C as in
the previous remarks. Then it is conjectured that points TCirc

A , TCirc
B , and TCirc

C are collinear
and points T In

A , T In
B , and T In

C are also collinear. (Note that extraversion may be required
depending on the configuration of points, e.g. excircles instead of incircles.) Additionally, it
appears that the insimilicenters of the circumcircles lie on a line perpendicular to the line
through TCirc

A , TCirc
B , and TCirc

C .
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§3 Solutions to Day 3
§3.1 TSTST 2021/7, proposed by Ankit Bisain, Holden Mui
Available online at https://aops.com/community/p24130213.

Problem statement

Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding
path is a path of lattice points with length n, beginning at (0, 0) and ending at a
point on the line x + y = n, that does not contain any point in M . Prove that if
there exists a mine-avoiding path, then there exist at least 2n−|M | mine-avoiding
paths.

We present two approaches.

¶ Solution 1 We prove the statement by induction on n. We use n = 0 as a base case,
where the statement follows from 1 ≥ 2−|M |. For the inductive step, let n > 0. There
exists at least one mine-avoiding path, which must pass through either (0, 1) or (1, 0).
We consider two cases:

Case 1: there exist mine-avoiding paths starting at both (1, 0) and (0, 1).
By the inductive hypothesis, there are at least 2n−1−|M | mine-avoiding paths starting

from each of (1, 0) and (0, 1). Then the total number of mine-avoiding paths is at least
2n−1−|M | + 2n−1−|M | = 2n−|M |.

Case 2: only one of (1, 0) and (0, 1) is on a mine-avoiding path.
Without loss of generality, suppose no mine-avoiding path starts at (0, 1). Then some

element of M must be of the form (0, k) for 1 ≤ k ≤ n in order to block the path along
the y-axis. This element can be ignored for any mine-avoiding path starting at (1, 0). By
the inductive hypothesis, there are at least 2n−1−(|M |−1) = 2n−|M | mine-avoiding paths.

This completes the induction step, which solves the problem.

¶ Solution 2

Lemma
If |M | < n, there is more than one mine-avoiding path.

Proof. Let P0, P1, . . . , Pn be a mine-avoiding path. Set Pi = (xi, yi). For 0 ≤ i < n,
define a path Qi as follows:

• Make the first i+ 1 points P0, P1, . . . , Pi.

• If Pi → Pi+1 is one unit up, go right until (n− yi, yi).

• If Pi → Pi+1 is one unit right, go up until (xi, n− xi).
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The diagram above is an example for n = 5 with the new segments formed by the Qi

in red, and the line x+ y = n in blue.
By definition, M has less than n points, none of which are in the original path. Since

all Qi only intersect in the original path, each mine is in at most one of Q0, Q1, . . . , Qn−1.
By the Pigeonhole Principle, one of the Qi is mine-avoiding.

Now, consider the following process:

• Start at (0, 0).

• If there is only one choice of next step that is part of a mine-avoiding path, make
that choice.

• Repeat the above until at a point with two possible steps that are part of mine-
avoiding paths.

• Add a mine to the choice of next step with more mine-avoiding paths through it.
If both have the same number of mine-avoiding paths through them, add a mine
arbitrarily.

1

1

112

2

13

55

0

0

0

For instance, consider the above diagram for n = 4. Lattice points are replaced with
squares. Mines are black squares and each non-mine is labelled with the number of
mine-avoiding paths passing through it. This process would start at (0, 0), go to (1, 0),
then place a mine at (1, 1).

This path increases the size of M by one, and reduces the number of mine-avoiding
paths to a nonzero number at most half of the original. Repeat this process until there is
only one path left. By our lemma, the number of mines must be at least n by the end of
the process, so the process was iterated at least n− |M | times. By the halving property,
there must have been at least 2n−|M | mine-avoiding paths before the process, as desired.
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§3.2 TSTST 2021/8, proposed by Fedir Yudin
Available online at https://aops.com/community/p24130228.

Problem statement

Let ABC be a scalene triangle. Points A1, B1 and C1 are chosen on segments BC,
CA, and AB, respectively, such that 4A1B1C1 and 4ABC are similar. Let A2 be
the unique point on line B1C1 such that AA2 = A1A2. Points B2 and C2 are defined
similarly. Prove that 4A2B2C2 and 4ABC are similar.

We give three solutions.

¶ Solution 1 (author) We’ll use the following lemma.

Lemma
Suppose that PQRS is a convex quadrilateral with ∠P = ∠R. Then there is a point
T on QS such that ∠QPT = ∠SRP , ∠TRQ = ∠RPS, and PT = RT .

Before proving the lemma, we will show how it solves the problem. The lemma applied
for the quadrilateral AB1A1C1 with ∠A = ∠A1 shows that ∠B1A1A2 = ∠C1AA1. This
implies that the point A2 in 4A1B1C1 corresponds to the point A1 in 4ABC. Then
4A2B2C2 ∼ 4A1B1C1 ∼ 4ABC, as desired.

Additionally, PT = RT is a corollary of the angle conditions because

]PRT = ]SRQ− ]TRQ− ]SRP = ]QPS − ]RPS − ]QPT = ]TPR.

Therefore we only need to prove the angle conditions.

Proof 1 of lemma Denote X = PQ ∩RS and Y = PS ∩RQ. Note that ∠XPY =
∠XRY , so PRXY is cyclic. Let T be the point of intersection of tangents to this circle at
P and R. By Pascal’s theorem for the degenerate hexagon PPXRRY , we have T ∈ QS
(alternatively, Q, S, and T are collinear on the pole of PR ∩XY with respect to the
circle). Also, ]QPT = ]XRP = ]SRP and similarly ]TRQ = ]RPY = ]RPS, so
we’re done.

P

Q

R

S

X

Y

T
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Proof 2 of lemma Let P ′ and R′ be the reflections of P and R in QS. Note that
PR′ and RP ′ intersect at a point X on QS. Let T be the second intersection of the
circumcircle of 4PRX with QS. Note that

]PXT = ]R′PQ+ ]PQS

= ]R′SQ+ ]PQS

= ]QSR+ ]PQS

= ](PQ, SR)

= ]QPR+ ]PRS.

This means that

]QPT = ]QPR− ]TPR

= ]QPR− ]TXR

= ]QPR− ]PXT

= ]QPR− ]QPR− ]PRS

= ]SRP.

Similarly, ]QRT = ]SPR, so we’re done.

P

Q

R

S

P ′

R′

XT

Proof 3 of lemma Let T be the point on QS such that ∠QPT = ∠SRP . Then we
have

QT

TS
=

sinQPT · PT/ sinPQT
sinTPS · PT/ sinTSP

=
PQ/ sinPRQ
PS/ sinSRP

=
R(4PQR)
R(4PRS)

,

which is symmetric in P and R, so we’re done.

¶ Solution 2 (Ankan Bhattacharya) We prove the main claim B1A2
A2C1

= BA1
A1C

.
Let 4A0B0C0 be the medial triangle of 4ABC. In addition, let A′

1 be the reflection
of A1 over B1C1, and let X be the point satisfying 4XBC −∼ 4AB1C1, so that we have
a compound similarity

4ABC tX −∼ 4A′
1B1C1 tA.

Finally, let OA be the circumcenter of 4A′
1B1C1, and let A∗

2 be the point on B1C1

satisfying B1A∗
2

A∗
2C1

= BA1
A1C

.
Recall that O is the Miquel point of 4A1B1C1, as well as its orthocenter.
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Claim — AA′
1 ‖ BC.

Proof. We need to verify that the foot from A1 to B1C1 lies on the A-midline. This
follows from the fact that O is both the Miquel point and the orthocenter.

Claim — AX ‖ B1C1.

Proof. From the compound similarity,

](BC,AX) = ](AA′
1, B1C1).

As AA′
1 ‖ BC, we obtain AX ‖ B1C1.

Claim — AX ⊥ A1O.

Proof. Because O is the orthocenter of 4A1B1C1.

Claim — AA′
1 ⊥ A∗

2OA.

Proof. Follows from AX ⊥ A1O after the similarity

4ABC tX −∼ 4A′
1B1C1 tA.

Claim — AA∗
2 = A′

1A2.

Proof. Since ]C1AB1 = ]C1A
′
1B1, AOA = A′

1OA, so AA′
1 ⊥ A∗

2OA implies AA∗
2 =

A′
1A

∗
2.

Finally, A′
1A

∗
2 = A1A

∗
2 by reflections, so AA∗

2 = A1A
∗
2, and A∗

2 = A2.
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§3.3 TSTST 2021/9, proposed by Victor Wang
Available online at https://aops.com/community/p24130243.

Problem statement

Let q = pr for a prime number p and positive integer r. Let ζ = e
2πi
q . Find the least

positive integer n such that ∑
1≤k≤q

gcd(k,p)=1

1

(1− ζk)n

is not an integer. (The sum is over all 1 ≤ k ≤ q with p not dividing k.)

Let Sq denote the set of primitive qth roots of unity (thus, the sum in question is a sum
over Sq).

¶ Solution 1 (author) Let ζp = e2πi/p be a fixed primitive pth root of unity. Observe
that the given sum is an integer for all n ≤ 0 (e.g. because the sum is an integer
symmetric polynomial in the primitive qth roots of unity). By expanding polynomials in
the basis (1− x)k, it follows that if the sum in the problem statement is an integer for
all n < n0, then ∑

ω∈Sq

f(ω)

(1− ω)n
∈ Z

for all n < n0 and f ∈ Z[x], whereas for n = n0 there is some f ∈ Z[x] for which the sum
is not an integer (e.g. f = 1).

Let zq = rφ(q)− q/p = pr−1[r(p− 1)− 1]. We claim that the answer is n = zq +1. We
prove this by induction on r. First is the base case r = 1.

Lemma
There exist polynomials u, v ∈ Z[x] such that (1−ω)p−1/p = u(ω) and p/(1−ω)p−1 =
v(ω) for all ω ∈ Sp.

(What we are saying is that p is (1 − ω)p−1 times a unit (invertible algebraic
integer), namely v(ω).)

Proof. Note that p = (1− ω) · · · (1− ωp−1). Thus we can write

p

(1− ω)p−1
=

1− ω

1− ω
· 1− ω2

1− ω
· · · 1− ωp−1

1− ω

and take

v(x) =

p−1∏
k=1

1− xk

1− x
.

Similarly, the polynomial u is

u(x) =

p−1∏
k=1

1− xk`k

1− xk

28

https://aops.com/community/p24130243


USA TSTST 2021 Solutions Andrew Gu and Evan Chen

where `k is a multiplicative inverse of k modulo p.

Now, the main idea: given g ∈ Z[x], observe that

S =
∑
ω∈Sp

(1− ω)g(ω)

is divisible by 1−ζkp (i.e. it is 1−ζkp times an algebraic integer) for every k coprime to p. By
symmetric sums, S is an integer; since Sp−1 is divisible by (1− ζp) · · · (1− ζp−1

p ) = p, the
integer S must itself be divisible by p. (Alternatively, since h(x) := (1− x)g(x) vanishes
at x = 1, one can interpret S using a roots of unity filter: S = p · h([x0] + [xp] + · · · ) ≡ 0
(mod p).) Now write

Z 3 S

p
=

∑
ω∈Sp

(1− ω)p−1

p

g(ω)

(1− ω)p−2
=

∑
ω∈Sp

u(ω)
g(ω)

(1− ω)p−2
.

Taking g = v · (1− x)k for k ≥ 0, we see that the sum in the problem statement is an
integer for any n ≤ p− 2.

Finally, we have ∑
ω∈Sp

u(ω)

(1− ω)p−1
=

∑
ω∈Sp

1

p
=
p− 1

p
/∈ Z,

so the sum is not an integer for n = p− 1.
Now let r ≥ 2 and assume the induction hypothesis for r − 1.

Lemma
There exist polynomials U, V ∈ Z[x] such that (1 − ω)p/(1 − ωp) = U(ω) and
(1− ωp)/(1− ω)p = V (ω) for all ω ∈ Sq. (Again, these are units.)

Proof. Similarly to the previous lemma, we write 1−ωp = (1−ωζ0p ) · · · (1−ωζp−1
p ). The

polynomials U and V are

U(x) =

p−1∏
k=1

1− x(kq/p+1)`k

1− xkq/p+1

V (x) =

p−1∏
k=1

1− xkq/p+1

1− x

where `k is a multiplicative inverse of kq/p+ 1 modulo q.

Corollary
If ω ∈ Sq, then (1− ω)φ(q)/p is a unit.

Proof. Induct on r. For r = 1, this is the first lemma. For the inductive step, we are
given that (1− ωp)φ(q/p)/p is a unit. By the second lemma, (1− ω)φ(q)/(1− ωp)φ(q/p) is
also a unit. Multiplying these together yields another unit.
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Thus we have polynomials A,B ∈ Z[x] such that

A(ω) =
p

(1− ω)φ(q)
V (ω)zq/p

B(ω) =
(1− ω)φ(q)

p
U(ω)zq/p

for all ω ∈ Sq.
Given g ∈ Z[x], consider the pth roots of unity filter

S(x) :=

p−1∑
k=0

g(ζkpx) = p · h(xp),

where h ∈ Z[x]. Then
ph(η) = S(ω) =

∑
ωp=η

g(ω)

for all η ∈ Sq/p, so

h(η)

(1− η)zq/p
=

S(ω)

p(1− η)zq/p
=

∑
ωp=η

(1− ω)pzq/p

(1− ωp)zq/p
g(ω)

p(1− ω)pzq/p

=
∑
ωp=η

U(ω)zq/p
(1− ω)φ(q)

p

g(ω)

(1− ω)zq
.

(Implicit in the last line is zq = φ(q) + pzq/p.) Since U(ω) and (1 − ω)φ(q)/p are units,
we can let g = A · f for arbitrary f ∈ Z[x], so that the expression in the summation
simplifies to f(ω)/(1− ω)zq . From this we conclude that for any f ∈ Z[x], there exists
h ∈ Z[x] such that ∑

ω∈Sq

f(ω)

(1− ω)zq
=

∑
η∈Sq/p

∑
ωp=η

f(ω)

(1− ω)zq

=
∑

η∈Sq/p

h(η)

(1− η)zq/p
.

By the inductive hypothesis, this is always an integer.
In the other direction, for η ∈ Sq/p we have∑

ωp=η

B(ω)

(1− ω)1+zq
=

∑
ωp=η

1

p(1− ωp)zq/p(1− ω)

=
1

p(1− η)zq/p

∑
ωp=η

1

1− ω

=
1

p(1− η)zq/p

[
pxp−1

xp − η

]
x=1

=
1

(1− η)1+zq/p
.

Summing over all η ∈ Sq/p, we conclude by the inductive hypothesis that∑
ω∈Sq

B(ω)

(1− ω)1+zq
=

∑
η∈Sq/p

1

(1− η)1+zq/p

is not an integer. This completes the solution.
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¶ Solution 2 (Nikolai Beluhov) Suppose that the complex numbers 1
1−ω for ω ∈ Sq

are the roots of
P (x) = xd − c1x

d−1 + c2x
d−2 − · · · ± cd,

so that ck is their k-th elementary symmetric polynomial and d = φ(q) = (p − 1)pr−1.
Additionally denote

Sn =
∑
ω∈Sq

1

(1− ω)n
.

Then, by Newton’s identities,

S1 = c1,

S2 = c1S1 − 2c2,

S3 = c1S2 − c2S1 + 3c3,

and so on. The general pattern when n ≤ d is

Sn =

n−1∑
j=1

(−1)j+1cjSn−j

+ (−1)n+1ncn.

After that, when n > d, the pattern changes to

Sn =
d∑

j=1

(−1)j+1cjSn−j .

Lemma
All of the ci are integers except for cd. Furthermore, cd is 1/p times an integer.

Proof. The qth cyclotomic polynomial is

Φq(x) = 1 + xp
r−1

+ x2p
r−1

+ · · ·+ x(p−1)pr−1
.

The polynomial

Q(x) = 1 + (1 + x)p
r−1

+ (1 + x)2p
r−1

+ · · ·+ (1 + x)(p−1)pr−1

has roots ω − 1 for ω ∈ Sq, so it is equal to p(−x)dP (−1/x) by comparing constant
coefficients. Comparing the remaining coefficients, we find that cn is 1/p times the xn
coefficient of Q.

Since (x+ y)p ≡ xp + yp (mod p), we conclude that, modulo p,

Q(x) ≡ 1 +
(
1 + xp

r−1)
+

(
1 + xp

r−1)2
+ · · ·+

(
1 + xp

r−1)p−1

≡
[(
1 + xp

r−1)p − 1
]
/xp

r−1
.

Since
(
p
j

)
is a multiple of p when 0 < j < p, it follows that all coefficients of Q(x) are

multiples of p save for the leading one. Therefore, cn is an integer when n < d, while cd
is 1/p times an integer.

By the recurrences above, Sn is an integer for n < d. When r = 1, we get that dcd is
not an integer, so Sd is not an integer, either. Thus the answer for r = 1 is n = p− 1.

Suppose now that r ≥ 2. Then dcd does become an integer, so Sd is an integer as well.
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Lemma
For all n with 1 ≤ n ≤ d, we have νp(ncn) ≥ r − 2. Furthermore, the smallest n
such that νp(ncn) = r − 2 is d− pr−1 + 1.

Proof. The value of ncn is 1/p times the coefficient of xn−1 in the derivative Q′(x). This
derivative is

pr−1(1 + x)p
r−1−1

[
p−1∑
k=1

k(1 + x)(k−1)pr−1

]
.

What we want to prove reduces to showing that all coefficients of the polynomial in
the square brackets are multiples of p except for the leading one.

Using the same trick (x+y)p ≡ xp+yp (mod p) as before and also writing w for xpr−1 ,
modulo p the polynomial in the square brackets becomes

1 + 2(1 + w) + 3(1 + w)2 + · · ·+ (p− 1)(1 + w)p−2.

This is the derivative of

1 + (1 + w) + (1 + w)2 + · · ·+ (1 + w)p−1 = [(1 + w)p − 1]/w

and so, since
(
p
j

)
is a multiple of p when 0 < j < p, we are done.

Finally, we finish the problem with the following claim.

Claim — Let m = d− pr−1. Then for all k ≥ 0 and 1 ≤ j ≤ d, we have

νp(Skd+m+1) = r − 2− k

νp(Skd+m+j) ≥ r − 2− k.

Proof. First, S1, S2, . . . , Sm are all divisible by pr−1 by Newton’s identities and the second
lemma. Then νp(Sm+1) = r − 2 because

νp((m+ 1)cm+1) = r − 2,

and all other terms in the recurrence relation are divisible by pr−1. We can similarly
check that νp(Sn) ≥ r− 2 for m+1 ≤ n ≤ d. Newton’s identities combined with the first
lemma now imply the following for n > d:

• If νp(Sn−j) ≥ ` for all 1 ≤ j ≤ d and νp(Sn−d) ≥ `+ 1, then νp(Sn) ≥ `.

• If νp(Sn−j) ≥ ` for all 1 ≤ j ≤ d and νp(Sn−d) = `, then νp(Sn) = `− 1.

Together, these prove the claim by induction.

By the claim, the smallest n for which νp(Sn) < 0 (equivalent to Sn not being an
integer, by the recurrences) is

n = (r − 1)d+m+ 1 = ((p− 1)r − 1)pr−1 + 1.
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Remark. The original proposal was the following more general version:

Let n be an integer with prime power factorization q1 · · · qm. Let Sn denote
the set of primitive nth roots of unity. Find all tuples of nonnegative integers
(z1, . . . , zm) such that∑

ω∈Sn

f(ω)

(1− ωn/q1)z1 · · · (1− ωn/qm)zm
∈ Z

for all polynomials f ∈ Z[x].

The maximal zi are exponents in the prime ideal factorization of the different ideal of the
cyclotomic extension Q(ζn)/Q.

Remark. Let F = (xp − 1)/(x − 1) be the minimal polynomial of ζp = e2πi/p over Q. A
calculation of Euler shows that

(Z[ζp])∗ := {α = g(ζp) ∈ Q[ζp] :
∑
ω∈Sp

f(ω)g(ω) ∈ Z ∀f ∈ Z[x]} =
1

F ′(ζp)
· Z[ζp],

where
F ′(ζp) =

pζp−1
p − [1 + ζp + · · ·+ ζp−1

p ]

1− ζp
= p(1− ζp)

−1ζp−1
p

is (1 − ζp)
[p−1]−1 = (1 − ζp)

p−2 times a unit of Z[ζp]. Here, (Z[ζp])∗ is the dual lattice of
Z[ζp].

Remark. Let K = Q(ω), so (p) factors as (1− ω)p−1 in the ring of integers OK (which, for
cyclotomic fields, can be shown to be Z[ω]). In particular, the ramification index e of (1−ω)
over p is the exponent, p− 1. Since e = p− 1 is not divisible by p, we have so-called tame
ramification. Now by the ramification theory of Dedekind’s different ideal, the exponent z1
that works when n = p is e− 1 = p− 2.

Higher prime powers are more interesting because of wild ramification: p divides φ(pr) =
pr−1(p− 1) if and only if r > 1. (This is a similar phenomena to how Hensel’s lemma for
x2 − c is more interesting mod powers of 2 than mod odd prime powers.)

Remark. Let F = (xq − 1)/(xq/p − 1) be the minimal polynomial of ζq = e2πi/q over Q.
The aforementioned calculation of Euler shows that

(Z[ζq])∗ := {α = g(ζq) ∈ Q[ζq] :
∑
ω∈Sq

f(ω)g(ω) ∈ Z ∀f ∈ Z[x]} =
1

F ′(ζq)
· Z[ζq],

where the chain rule implies (using the computation from the prime case)

F ′(ζq) = [p(1− ζp)
−1ζp−1

p ] · q
p
ζ(q/p)−1
q = q(1− ζp)

−1ζ−1
q .

is (1− ζq)
rφ(q)−q/p = (1− ζq)

zq times a unit of Z[ζq].
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TSTST 2021 Statistics
Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
January 28, 2022

§1 Summary of scores for TSTST 2021
N 60
µ 24.80
σ 13.79

1st Q 14
Median 28

3rd Q 36

Max 50
Top 3 49

Top 12 38

§2 Problem statistics for TSTST 2021

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 15 37 54 23 16 48 20 23 49

1 4 3 5 1 1 11 0 6 5

2 1 0 0 3 0 0 0 4 1

3 0 0 0 1 1 0 0 0 1

4 0 1 0 0 0 0 0 0 0

5 0 0 0 0 1 0 1 0 1

6 1 4 1 8 1 0 0 0 0

7 39 15 0 24 40 1 39 27 3

Avg 4.75 2.27 0.18 3.77 4.92 0.30 4.63 3.38 0.60

QM 5.71 3.87 0.83 4.98 5.82 1.00 5.68 4.73 1.78
#5+ 40 19 1 32 42 1 40 27 4
%5+ %66.7 %31.7 %1.7 %53.3 %70.0 %1.7 %66.7 %45.0 %6.7
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§3 Rankings for TSTST 2021
Sc Num Cu Per
63 0 0 0.00%
62 0 0 0.00%
61 0 0 0.00%
60 0 0 0.00%
59 0 0 0.00%
58 0 0 0.00%
57 0 0 0.00%
56 0 0 0.00%
55 0 0 0.00%
54 0 0 0.00%
53 0 0 0.00%
52 0 0 0.00%
51 0 0 0.00%
50 1 1 1.67%
49 2 3 5.00%
48 0 3 5.00%
47 0 3 5.00%
46 0 3 5.00%
45 1 4 6.67%
44 0 4 6.67%
43 2 6 10.00%

Sc Num Cu Per
42 3 9 15.00%
41 1 10 16.67%
40 0 10 16.67%
39 1 11 18.33%
38 1 12 20.00%
37 2 14 23.33%
36 3 17 28.33%
35 2 19 31.67%
34 0 19 31.67%
33 1 20 33.33%
32 0 20 33.33%
31 0 20 33.33%
30 0 20 33.33%
29 7 27 45.00%
28 5 32 53.33%
27 1 33 55.00%
26 0 33 55.00%
25 0 33 55.00%
24 1 34 56.67%
23 0 34 56.67%
22 1 35 58.33%

Sc Num Cu Per
21 2 37 61.67%
20 0 37 61.67%
19 0 37 61.67%
18 1 38 63.33%
17 1 39 65.00%
16 0 39 65.00%
15 0 39 65.00%
14 6 45 75.00%
13 2 47 78.33%
12 0 47 78.33%
11 0 47 78.33%
10 2 49 81.67%
9 0 49 81.67%
8 0 49 81.67%
7 7 56 93.33%
6 1 57 95.00%
5 0 57 95.00%
4 0 57 95.00%
3 0 57 95.00%
2 1 58 96.67%
1 0 58 96.67%
0 2 60 100.00%

§4 Histogram for TSTST 2021
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USA TST Selection Test for 64th IMO and 12th EGMO

Pittsburgh, PA

Day I 1:15pm – 5:45pm

Tuesday, June 21, 2022

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 1. Let n be a positive integer. Find the smallest positive integer k such
that for any set S of n points in the interior of the unit square, there exists a set of k
rectangles such that the following hold:

• The sides of each rectangle are parallel to the sides of the unit square.

• Each point in S is not in the interior of any rectangle.

• Each point in the interior of the unit square but not in S is in the interior of at
least one of the k rectangles.

(The interior of a polygon does not contain its boundary.)

Problem 2. Let ABC be a triangle. Let θ be a fixed angle for which

θ <
1

2
min(∠A,∠B,∠C).

Points SA and TA lie on segment BC such that ∠BASA = ∠TAAC = θ. Let PA and
QA be the feet from B and C to ASA and ATA respectively. Then ℓA is defined as the
perpendicular bisector of PAQA.

Define ℓB and ℓC analogously by repeating this construction two more times (using the
same value of θ). Prove that ℓA, ℓB, and ℓC are concurrent or all parallel.

Problem 3. Determine all positive integers N for which there exists a strictly increasing
sequence of positive integers s0 < s1 < s2 < · · · satisfying the following properties:

• the sequence s1 − s0, s2 − s1, s3 − s2, . . . is periodic; and

• ssn − ssn−1 ≤ N < s1+sn − ssn−1 for all positive integers n.

1



USA TST Selection Test for 64th IMO and 12th EGMO

Pittsburgh, PA

Day II 1:15pm – 5:45pm

Thursday, June 23, 2022

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 4. Let N denote the set of positive integers. A function f : N → N has the
property that for all positive integers m and n, exactly one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

Problem 5. Let A1, . . . , A2022 be the vertices of a regular 2022-gon in the plane. Alice
and Bob play a game. Alice secretly chooses a line and colors all points in the plane on
one side of the line blue, and all points on the other side of the line red. Points on the
line are colored blue, so every point in the plane is either red or blue. (Bob cannot see
the colors of the points.)

In each round, Bob chooses a point in the plane (not necessarily among A1, . . . , A2022)
and Alice responds truthfully with the color of that point. What is the smallest number
Q for which Bob has a strategy to always determine the colors of points A1, . . . , A2022 in
Q rounds?

Problem 6. Let O and H be the circumcenter and orthocenter, respectively, of an
acute scalene triangle ABC. The perpendicular bisector of AH intersects AB and AC at
XA and YA respectively. Let KA denote the intersection of the circumcircles of triangles
OXAYA and BOC other than O.

Define KB and KC analogously by repeating this construction two more times. Prove
that KA, KB, KC , and O are concyclic.
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USA TST Selection Test for 64th IMO and 12th EGMO

Pittsburgh, PA

Day III 1:15pm – 5:45pm

Saturday, June 25, 2022

Time limit : 4.5 hours. You may keep the problems, but they should not be posted until
next Monday at noon Eastern time.

Problem 7. Let ABCD be a parallelogram. Point E lies on segment CD such that

2∠AEB = ∠ADB + ∠ACB,

and point F lies on segment BC such that

2∠DFA = ∠DCA+ ∠DBA.

Let K be the circumcenter of triangle ABD. Prove that KE = KF .

Problem 8. Let N denote the set of positive integers. Find all functions f : N → Z
such that ⌊

f(mn)

n

⌋
= f(m)

for all positive integers m, n.

Problem 9. Let k > 1 be a fixed positive integer. Prove that if n is a sufficiently large
positive integer, there exists a sequence of integers with the following properties:

• Each element of the sequence is between 1 and n, inclusive.

• For any two different contiguous subsequences of the sequence with length between
2 and k inclusive, the multisets of values in those two subsequences is not the same.

• The sequence has length at least 0.499n2.
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USA TSTST 2022 Solutions Andrew Gu and Evan Chen

§0 Problems
1. Let n be a positive integer. Find the smallest positive integer k such that for any

set S of n points in the interior of the unit square, there exists a set of k rectangles
such that the following hold:

• The sides of each rectangle are parallel to the sides of the unit square.
• Each point in S is not in the interior of any rectangle.
• Each point in the interior of the unit square but not in S is in the interior of

at least one of the k rectangles.
(The interior of a polygon does not contain its boundary.)

2. Let ABC be a triangle. Let θ be a fixed angle for which

θ <
1

2
min(∠A,∠B,∠C).

Points SA and TA lie on segment BC such that ∠BASA = ∠TAAC = θ. Let PA

and QA be the feet from B and C to ASA and ATA respectively. Then `A is defined
as the perpendicular bisector of PAQA.
Define `B and `C analogously by repeating this construction two more times (using
the same value of θ). Prove that `A, `B, and `C are concurrent or all parallel.

3. Determine all positive integers N for which there exists a strictly increasing sequence
of positive integers s0 < s1 < s2 < · · · satisfying the following properties:

• the sequence s1 − s0, s2 − s1, s3 − s2, . . . is periodic; and
• ssn − ssn−1 ≤ N < s1+sn − ssn−1 for all positive integers n.

4. A function f : N → N has the property that for all positive integers m and n,
exactly one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

5. Let A1, . . . , A2022 be the vertices of a regular 2022-gon in the plane. Alice and
Bob play a game. Alice secretly chooses a line and colors all points in the plane on
one side of the line blue, and all points on the other side of the line red. Points on
the line are colored blue, so every point in the plane is either red or blue. (Bob
cannot see the colors of the points.)
In each round, Bob chooses a point in the plane (not necessarily among A1, . . . ,
A2022) and Alice responds truthfully with the color of that point. What is the
smallest number Q for which Bob has a strategy to always determine the colors of
points A1, . . . , A2022 in Q rounds?

6. Let O and H be the circumcenter and orthocenter, respectively, of an acute scalene
triangle ABC. The perpendicular bisector of AH intersects AB and AC at XA and
YA respectively. Let KA denote the intersection of the circumcircles of triangles
OXAYA and BOC other than O.
Define KB and KC analogously by repeating this construction two more times.
Prove that KA, KB, KC , and O are concyclic.
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7. Let ABCD be a parallelogram. Point E lies on segment CD such that

2∠AEB = ∠ADB + ∠ACB,

and point F lies on segment BC such that

2∠DFA = ∠DCA+ ∠DBA.

Let K be the circumcenter of triangle ABD. Prove that KE = KF .

8. Find all functions f : N → Z such that⌊
f(mn)

n

⌋
= f(m)

for all positive integers m, n.

9. Let k > 1 be a fixed positive integer. Prove that if n is a sufficiently large positive
integer, there exists a sequence of integers with the following properties:

• Each element of the sequence is between 1 and n, inclusive.
• For any two different contiguous subsequences of the sequence with length

between 2 and k inclusive, the multisets of values in those two subsequences
is not the same.

• The sequence has length at least 0.499n2.
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§1 Solutions to Day 1
§1.1 TSTST 2022/1, proposed by Holden Mui
Available online at https://aops.com/community/p25516960.

Problem statement

Let n be a positive integer. Find the smallest positive integer k such that for any
set S of n points in the interior of the unit square, there exists a set of k rectangles
such that the following hold:

• The sides of each rectangle are parallel to the sides of the unit square.

• Each point in S is not in the interior of any rectangle.

• Each point in the interior of the unit square but not in S is in the interior of
at least one of the k rectangles.

(The interior of a polygon does not contain its boundary.)

We give the author’s solution. In terms of n, we wish find the smallest integer k for
which (0, 1)2 \ S is always a union of k open rectangles for every set S ⊂ (0, 1)2 of size n.

We claim the answer is k = 2n+ 2 .
The lower bound is given by picking

S = {(s1, s1), (s2, s2), . . . , (sn, sn)}

for some real numbers 0 < s1 < s2 < · · · < sn < 1. Consider the 4n points

S′ = S + {(ε, 0), (0, ε), (−ε, 0), (0,−ε)} ⊂ (0, 1)2

for some sufficiently small ε > 0. The four rectangles covering each of

(s1 − ε, s1), (s1, s1 − ε), (sn + ε, sn), (sn, sn + ε)

cannot cover any other points in S′; all other rectangles can only cover at most 2 points
in S′, giving a bound of

k ≥ 4 +
|S′| − 4

2
= 2n+ 2.
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To prove that 2n + 2 rectangles are sufficient, assume that the number of distinct
y-coordinates is at least the number of distinct x-coordinates. Let

0 = x0 < x1 < · · · < xm < xm+1 = 1,

where x1, . . . , xm are the distinct x-coordinates of points in S, and let Yi be the set of
y-coordinates of points with x-coordinate xi. For each 1 ≤ i ≤ m, include the |Yi| + 1
rectangles

(xi−1, xi+1)× ((0, 1) \ Yi)
in the union, and also include (0, x1) × (0, 1) and (xm, 1) × (0, 1); this uses m + n + 2
rectangles.

All remaining uncovered points are between pairs of points with the same y-coordinate
and adjacent x-coordinates {xi, xi+1}. There are at most n−m such pairs by the initial
assumption, so covering the points between each pair with

(xi, xi+1)× (y − ε, y + ε)

5
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for some sufficiently small ε > 0 gives a total of

(m+ n+ 2) + (n−m) = 2n+ 2

rectangles.

6
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§1.2 TSTST 2022/2, proposed by Hongzhou Lin
Available online at https://aops.com/community/p25516988.

Problem statement

Let ABC be a triangle. Let θ be a fixed angle for which

θ <
1

2
min(∠A,∠B,∠C).

Points SA and TA lie on segment BC such that ∠BASA = ∠TAAC = θ. Let PA

and QA be the feet from B and C to ASA and ATA respectively. Then `A is defined
as the perpendicular bisector of PAQA.

Define `B and `C analogously by repeating this construction two more times (using
the same value of θ). Prove that `A, `B, and `C are concurrent or all parallel.

We discard the points SA and TA since they are only there to direct the angles correctly
in the problem statement.

¶ First solution, by author Let X be the projection from C to APA, Y be the projection
from B to AQA.

A

B C
PA

QA

X

Y

MA

MBMC

Claim — Line `A passes through MA, the midpoint of BC. Also, quadrilateral
PAQAY X is cyclic with circumcenter MA.

Proof. Since

APA ·AX = AB ·AC · cos θ cos(∠A− θ) = AQA ·AY,

it follows that PA, QA, Y , X are concyclic by power of a point. Moreover, by projection,
the perpendicular bisector of PAX passes through MA, similar for QAY , implying that
MA is the center of PAQAY X. Hence `A passes through MA.

7
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Claim — ](MAMC , `A) = ]Y PAQA.

Proof. Indeed, `A ⊥ PAQA, and MAMC ⊥ PAY (since MAPA = MAY from (PAQAYAX)
and MCPA = MCMA = MCY from the circle with diameter AB). Hence ](MAMC , `A) =
](PAY, PAQA) = ]Y PAQA.

Therefore,

sin∠(MAMC , `A)

sin∠(`A,MAMB)
=

sin∠Y PAQA

sin∠PAQAX
=

Y QA

XPA
=

BC sin(∠C + θ)

BC sin(∠B + θ)
=

sin(∠C + θ)

sin(∠B + θ)
,

and we conclude by trig Ceva theorem.

¶ Second solution via Jacobi, by Maxim Li Let D be the foot of the A-altitude. Note
that line BC is the external angle bisector of ∠PADQA.

Claim — (DPAQA) passes through the midpoint MA of BC.

Proof. Perform
√
bc inversion. Then the intersection of BC and (DPAQA) maps to the

second intersection of (ABC) and (A′PAQA), where A′ is the antipode to A on (ABC),
i.e. the center of spiral similarity from BC to PAQA. Since BPA : CQA = AB : AC, we
see the center of spiral similarity is the intersection of the A-symmedian with (ABC),
which is the image of MA in the inversion.

It follows that MA lies on `A; we need to identify a second point. We’ll use the
circumcenter OA of (DPAQA). The perpendicular bisector of DPA passes through
MC ; indeed, we can easily show the angle it makes with MCMA is 90◦ − θ − C, so
∠OAMCMA = 90 − θ − C, and then by analogous angle-chasing we can finish with
Jacobi’s theorem on 4MAMBMC .

8
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§1.3 TSTST 2022/3
Available online at https://aops.com/community/p25517008.

Problem statement

Determine all positive integers N for which there exists a strictly increasing sequence
of positive integers s0 < s1 < s2 < · · · satisfying the following properties:

• the sequence s1 − s0, s2 − s1, s3 − s2, . . . is periodic; and

• ssn − ssn−1 ≤ N < s1+sn − ssn−1 for all positive integers n.

¶ Answer All N such that t2 ≤ N < t2 + t for some positive integer t.

¶ Solution 1 (local) If t2 ≤ N < t2 + t then the sequence sn = tn + 1 satisfies both
conditions. It remains to show that no other values of N work.

Define an := sn − sn−1, and let p be the minimal period of {an}. For each k ∈ Z≥0,
let f(k) be the integer such that

sf(k) − sk ≤ N < sf(k)+1 − sk.

Note that f(sn−1) = sn for all n. Since {an} is periodic with period p, f(k+p) = f(k)+p
for all k, so k 7→ f(k)− k is periodic with period p. We also note that f is nondecreasing:
if k < k′ but f(k′) < f(k) then

N < sf(k′)+1 − sk′ < sf(k) − sk ≤ N,

which is absurd. We now claim that

max
k

(f(k)− k) < p+ min
k

(f(k)− k).

Indeed, if f(k′) − k′ ≥ p + f(k) − k then we can shift k and k′ so that 0 ≤ k − k′ < p,
and it follows that k ≤ k′ ≤ f(k′) < f(k), violating the fact that f is nondecreasing.
Therefore maxk(f(k)−k) < p+mink(f(k)−k), so f(k)−k is uniquely determined by its
value modulo p. In particular, since an = f(sn−1)− sn−1, an is also uniquely determined
by its value modulo p, so {an mod p} also has minimal period p.

Now work in Z/pZ and consider the sequence s0, f(s0), f(f(s0)), . . .. This sequence
must be eventually periodic; suppose it has minimal period p′, which must be at most p.
Then, since

fn(s0)− fn−1(s0) = sn − sn−1 = an,

and {an mod p} has minimal period p, we must have p′ = p. Therefore the directed
graph G on Z/pZ given by the edges k → f(k) is simply a p-cycle, which implies that
the map k 7→ f(k) is a bijection on Z/pZ. Therefore, f(k + 1) 6= f(k) for all k (unless
p = 1, but in this case the following holds anyways), hence

f(k) < f(k + 1) < · · · < f(k + p) = f(k) + p.

This implies f(k + 1) = f(k) + 1 for all k, so f(k) − k is constant, therefore an =
f(sn−1)− sn−1 is also constant. Let an ≡ t. It follows that t2 ≤ N < t2+ t as we wanted.

9
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¶ Solution 2 (global). Define {an} and f as in the previous solution. We first show
that si 6≡ sj (mod p) for all i < j < i + p. Suppose the contrary, i.e. that si ≡ sj
(mod p) for some i, j with i < j < i + p. Then asi+k = asj+k for all k ≥ 0, therefore
ssi+k − ssi = ssj+k − ssj for all k ≥ 0, therefore

ai+1 = f(si)− si = f(sj)− sj = aj+1 and si+1 = f(si) ≡ f(sj) = sj+1 (mod p).

Continuing this inductively, we obtain ai+k = aj+k for all k, so {an} has period j− i < p,
which is a contradiction. Therefore si 6≡ sj (mod p) for all i < j < i+ p, and this implies
that {si, . . . , si+p−1} forms a complete residue system modulo p for all i. Consequently
we must have si+p ≡ si (mod p) for all i.

Let T = sp−s0 = a1+· · ·+ap. Since {an} is periodic with period p, and {i+1, . . . , i+kp}
contains exactly k values of each residue class modulo p,

si+kp − si = ai+1 + · · ·+ ai+kp = kT

for all i, k. Since p | T , it follows that ssp−ss0 = T
p ·T = T 2

p . Summing up the inequalities

ssn − ssn−1 ≤ N < ssn+1 − ssn−1 = ssn − ssn−1 + asn+1

for n ∈ {1, . . . , p} then implies

T 2

p
= ssp − ss0 ≤ Np <

T 2

p
+ as1+1 + as2+1 + · · ·+ asp+1 =

T 2

p
+ T,

where the last equality holds because {s1 + 1, . . . , sp + 1} is a complete residue system
modulo p. Dividing this by p yields t2 ≤ N < t2 + t for t := T

p ∈ Z+.

Remark (Author comments). There are some similarities between this problem and IMO
2009/3, mainly that they both involve terms of the form ssn and ssn+1 and the sequence
s0, s1, . . . turns out to be an arithmetic progression. Other than this, I don’t think knowing
about IMO 2009/3 will be that useful on this problem, since in this problem the fact that
{sn+1 − sn} is periodic is fundamentally important.

The motivation for this problem comes from the following scenario: assume we have boxes
that can hold some things of total size ≤ N , and a sequence of things of size a1, a2, . . .
(where ai := si+1 − si). We then greedily pack the things in a sequence of boxes, ‘closing’
each box when it cannot fit the next thing. The number of things we put in each box gives
a sequence b1, b2, . . .. This problem asks when we can have {an} = {bn}, assuming that we
start with a sequence {an} that is periodic.

(Extra motivation: I first thought about this scenario when I was pasting some text
repeatedly into the Notes app and noticed that the word at the end of lines are also
(eventually) periodic.)
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§2 Solutions to Day 2
§2.1 TSTST 2022/4, proposed by Merlijn Staps
Available online at https://aops.com/community/p25517031.

Problem statement

A function f : N → N has the property that for all positive integers m and n, exactly
one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

We start with the following claim:

Claim — If a | b then f(a) | f(b).

Proof. From applying the condition with n = a, we find that the set Sa = {n ≥ 2 :
a | f(n)} is an arithmetic progression with common difference f(a). Similarly, the set
Sb = {n ≥ 2 : b | f(n)} is an arithmetic progression with common difference f(b). From
a | b it follows that Sb ⊆ Sa. Because an arithmetic progression with common difference
x can only be contained in an arithmetic progression with common difference y if y | x,
we conclude f(a) | f(b).

In what follows, let a ≥ 2 be any positive integer. Because f(a) and f(2a) are both
divisible by f(a), there are a+ 1 consecutive values of f of which at least two divisible
by f(a). It follows that f(f(a)) ≤ a.

However, we also know that exactly one of f(2), f(3), . . ., f(1+ f(a)) is divisible by a;
let this be f(t). Then we have Sa = {t, t+ f(a), t+ 2f(a), . . .}. Because a | f(t) | f(2t),
we know that 2t ∈ Sa, so t is a multiple of f(a). Because 2 ≤ t ≤ 1 + f(a), and f(a) ≥ 2
for a ≥ 2, we conclude that we must have t = f(a), so f(f(a)) is a multiple of a. Together
with f(f(a)) ≤ a, this yields f(f(a)) = a. Because f(f(a)) = a also holds for a = 1
(from the given condition for n = 1 it immediately follows that f(1) = 1), we conclude
that f(f(a)) = a for all a, and hence f is a bijection.

Moreover, we now have that f(a) | f(b) implies f(f(a)) | f(f(b)), i.e. a | b, so a | b if
and only if f(a) | f(b). Together with the fact that f is a bijection, this implies that
f(n) has the same number of divisors of n. Let p be a prime. Then f(p) = q must be a
prime as well. If q 6= p, then from f(p) | f(pq) and f(q) | f(pq) it follows that pq | f(pq),
so f(pq) = pq because f(pq) and pq must have the same number of divisors. Therefore,
for every prime number p we either have that f(p) = p or f(pf(p)) = pf(p). From here,
it is easy to see that f(n) = n for infinitely many n.

11
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§2.2 TSTST 2022/5, proposed by Ray Li
Available online at https://aops.com/community/p25517063.

Problem statement

Let A1, . . . , A2022 be the vertices of a regular 2022-gon in the plane. Alice and Bob
play a game. Alice secretly chooses a line and colors all points in the plane on one
side of the line blue, and all points on the other side of the line red. Points on the
line are colored blue, so every point in the plane is either red or blue. (Bob cannot
see the colors of the points.)

In each round, Bob chooses a point in the plane (not necessarily among A1, . . . ,
A2022) and Alice responds truthfully with the color of that point. What is the
smallest number Q for which Bob has a strategy to always determine the colors of
points A1, . . . , A2022 in Q rounds?

The answer is 22. To prove the lower bound, note that there are 2022 · 2021 + 2 > 221

possible colorings. If Bob makes less than 22 queries, then he can only output 221 possible
colorings, which means he is wrong on some coloring.

Now we show Bob can always win in 22 queries. A key observation is that the set of
red points is convex, as is the set of blue points, so if a set of points is all the same color,
then their convex hull is all the same color.

Lemma
Let B0, . . . , Bk+1 be equally spaced points on a circular arc such that colors of B0

and Bk+1 differ and are known. Then it is possible to determine the colors of B1,
. . . , Bk in dlog2 ke queries.

Proof. There exists some 0 ≤ i ≤ k such that B0, . . . , Bi are the same color and Bi+1,
. . . , Bk+1 are the same color. (If i < j and B0 and Bj were red and Bi and Bk+1

were blue, then segment B0Bj is red and segment BiBk+1 is blue, but they intersect).
Therefore we can binary search.

Lemma
  Let B0, . . . , Bk+1 be equally spaced points on a circular arc such that colors of
B0, Bdk/2e, Bk+1 are both red and are known.   Then at least one of the following
holds: all of B1 ,. . . , Bdk/2e are red or all of Bdk/2e,. . . ,Bk are red.   Furthermore,
in one query we can determine which one of the cases holds.

Proof. The existence part holds for similar reason to previous lemma. To figure out
which case, choose a point P such that all of B0, . . . , Bk+1 lie between rays PB0 and
PBdk/2e, and such that B1, . . . , Bdk/2e−1 lie inside triangle PB0Bdk/2e and such that
Bdk/2e+1, . . . , Bk+1 lie outside (this point should always exist by looking around the
intersections of lines B0B1 and Bdk/2e−1Bdk/2e). Then if P is red, all the inside points
are red because they lie in the convex hull of red points P , B0, Bdk/2e. If P is blue, then
all the outside points are red: if Bi were blue for i > dk/2e, then the segment PBi is
blue and intersect the segment B0Bdk/2e, which is red, contradiction.

12
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Now the strategy is: Bob picks A1. WLOG it is red. Now suppose Bob does not know
the colors of ≤ 2k − 1 points Ai, . . . , Aj with j − i + 1 ≤ 2k − 1 and knows the rest
are red. I claim Bob can win in 2k − 1 queries. First, if k = 1, there is one point and
he wins by querying the point, so the base case holds, so assume k > 1. Bob queries
Ai+d(j−i+1)/2e. If it is blue, he finishes in 2 log2 d(j − i+ 1)/2e ≤ 2(k − 1) queries by the
first lemma, for a total of 2k − 1 queries. If it is red, he can query one more point and
learn some half of Ai, . . . , Aj that are red by the second lemma, and then he has reduced
it to the case with ≤ 2k−1 − 1 points in two queries, at which point we induct.

13
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§2.3 TSTST 2022/6, proposed by Hongzhou Lin
Available online at https://aops.com/community/p25516957.

Problem statement

Let O and H be the circumcenter and orthocenter, respectively, of an acute scalene
triangle ABC. The perpendicular bisector of AH intersects AB and AC at XA and
YA respectively. Let KA denote the intersection of the circumcircles of triangles
OXAYA and BOC other than O.

Define KB and KC analogously by repeating this construction two more times.
Prove that KA, KB, KC , and O are concyclic.

We present several approaches.

¶ First solution, by author Let �OXAYA intersects AB, AC again at U , V . Then by
Reim’s theorem UV CB are concyclic. Hence the radical axis of �OXAYA, �OBC and
�(UV CB) are concurrent, i.e. OKA, BC, UV are concurrent, Denote the intersection
as K∗

A, which is indeed the inversion of KA with respect to �O. (The inversion sends
�OBC to the line BC).

Let PA, PB, PC be the circumcenters of 4OBC, 4OCA, 4OAB respectively.

Claim — K∗
A coincides with the intersection of PBPC and BC.

Proof. Note that d(O,BC) = 1/2AH = d(A,XAYA). This means the midpoint MC of
AB is equal distance to XAYA and the line through O parallel to BC. Together with
OMC ⊥ AB implies that ∠MCXAO = ∠B. Hence ∠UV O = ∠B = ∠AV U . Similarly
∠V UO = ∠AUV , hence 4AUV ' 4OUV . In other words, UV is the perpendicular
bisector of AO, which pass through PB, PC . Hence K∗

A is indeed PBPC ∩BC.

Finally by Desargue’s theorem, it suffices to show that APA, BPB, CPC are concurrent.
Note that

d(PA, AB) = PAB sin(90◦ + ∠C − ∠A),

d(PA, AC) = PAC sin(90◦ + ∠B − ∠A).

Hence the symmetric product and trig Ceva finishes the proof.

14
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A

B C

O

PA

H

XA YA

KA

K∗
A

U1

U2
MC

¶ Second solution, from Jeffrey Kwan Let OA be the circumcenter of 4AXAYA. The
key claim is that:

Claim — OAXAYAO is cyclic.

Proof. Let DEF be the orthic triangle; we will show that 4OXAYA ∼ 4DEF . Indeed,
since AO and AD are isogonal, it suffices to note that

AXA

AB
=

AH/2

AD
=

R cosA
AD

,

and so
AO

AD
= R · AXA

AB ·R cosA
=

AXA

AE
=

AYA
AF

.

Hence ∠XAOYA = 180◦ − 2∠A = 180◦ − ∠XAOAYA, which proves the claim.

Let PA be the circumcenter of 4OBC, and define PB, PC similarly. By the claim,
A is the exsimilicenter of (OXAYA) and (OBC), so APA is the line between their two
centers. In particular, APA is the perpendicular bisector of OKA.
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A

B C

O

H

XA
YA

KA

OA

PA

Claim — APA, BPB, CPC concur at T .

Proof. The key observation is that O is the incenter of 4PAPBPC , and that A, B, C
are the reflections of O across the sides of 4PAPBPC . Hence PAA, PBB, PCC concur
by Jacobi.

Now T lies on the perpendicular bisectors of OKA, OKB, and OKC . Hence OKAKBKC

is cyclic with center T , as desired.
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§3 Solutions to Day 3
§3.1 TSTST 2022/7, proposed by Merlijn Staps
Available online at https://aops.com/community/p25516961.

Problem statement

Let ABCD be a parallelogram. Point E lies on segment CD such that

2∠AEB = ∠ADB + ∠ACB,

and point F lies on segment BC such that

2∠DFA = ∠DCA+ ∠DBA.

Let K be the circumcenter of triangle ABD. Prove that KE = KF .

Let the circle through A, B, and E intersect CD again at E′, and let the circle through D,
A, and F intersect BC again at F ′. Now ABEE′ and DAF ′F are cyclic quadrilaterals
with two parallel sides, so they are isosceles trapezoids. From KA = KB, it now follows
that KE = KE′, whereas from KA = KD it follows that KF = KF ′.

Next, let the circle through A, B, and E intersect AC again at S. Then

∠ASB = ∠AEB =
1

2
(∠ADB + ∠ACB) =

1

2
(∠ADB + ∠DAC) =

1

2
∠AMB,

where M is the intersection of AC and BD. From ∠ASB = 1
2∠AMB, it follows that

MS = MB, so S is the point on MC such that MS = MB = MD. By symmetry, the
circle through A, D, and F also passes through S, and it follows that the line AS is the
radical axis of the circles (ABE) and (ADF ).

By power of a point, we now obtain

CE · CE′ = CS · CA = CF · CF ′,

from which it follows that E, F , E′, and F ′ are concyclic. The segments EE′ and FF ′

are not parallel, so their perpendicular bisectors only meet at one point, which is K.
Hence KE = KF .
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§3.2 TSTST 2022/8, proposed by Merlijn Staps
Available online at https://aops.com/community/p25516968.

Problem statement

Find all functions f : N → Z such that⌊
f(mn)

n

⌋
= f(m)

for all positive integers m, n.

There are two families of functions that work: for each α ∈ R the function f(n) = bαnc,
and for each α ∈ R the function f(n) = dαne − 1. (For irrational α these two functions
coincide.) It is straightforward to check that these functions indeed work; essentially, this
follows from the identity ⌊

bxnc
n

⌋
= bxc

which holds for all positive integers n and real numbers x.
We now show that every function that works must be of one of the above forms. Let f

be a function that works, and define the sequence a1, a2, . . . by an = f(n!)/n!. Applying
the give condition with (n!, n+1) yields an+1 ∈ [an, an+

1
n!). It follows that the sequence

a1, a2, . . . is non-decreasing and bounded from above by a1 + e, so this sequence must
converge to some limit α.

If there exists a k such that ak = α, then we have a` = α for all ` > k. For each
positive integer m, there exists ` > k such that m | `!. Plugging in mn = `!, it then
follows that

f(m) =

⌊
f(`!)

`!/m

⌋
= bαmc

for all m, so f is of the desired form.
If there does not exist a k such that ak = α, we must have ak < α for all k. For

each positive integer m, we can now pick an ` such that m | `! and a` = α − x with x
arbitrarily small. It then follows from plugging in mn = `! that

f(m) =

⌊
f(`!)

`!/m

⌋
=

⌊
`!(α− x)

`!/m

⌋
= bαm−mxc .

If αm is an integer we can choose ` such that mx < 1, and it follows that f(m) = dαme−1.
If αm is not an integer we can choose ` such that mx < {αm}, and it also follows that
f(m) = dαme − 1. We conclude that in this case f is again of the desired form.
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§3.3 TSTST 2022/9, proposed by Vincent Huang
Available online at https://aops.com/community/p25517112.

Problem statement

Let k > 1 be a fixed positive integer. Prove that if n is a sufficiently large positive
integer, there exists a sequence of integers with the following properties:

• Each element of the sequence is between 1 and n, inclusive.

• For any two different contiguous subsequences of the sequence with length
between 2 and k inclusive, the multisets of values in those two subsequences is
not the same.

• The sequence has length at least 0.499n2.

For any positive integer n, define an (n, k)-good sequence to be a finite sequence of
integers each between 1 and n inclusive satisfying the second property in the problem
statement. The problems asks to show that, for all sufficiently large integers n, there is
an (n, k)-good sequence of length at least 0.499n2.

Fix k ≥ 2 and consider some prime power n = pm with p > k + 1. Consider some
0 < g < n

k − 1 with gcd(g, n) = 1 and let a be the smallest positive integer with ga ≡ ±1
(mod n).

Claim (Main claim) — For k, n, g, a defined as above, there is an (n, k)-good sequence
of length a(n+ 2) + 2.

To prove the main claim, we need some results about the structure of Z/nZ. Specifically,
we’ll first show that any nontrivial arithmetic sequence is uniquely recoverable.

Lemma
Consider any arithmetic progression of length i ≤ k whose common difference is
relatively prime to n, and let S be the set of residues it takes modulo n. Then there
exists a unique integer 0 < d ≤ n

2 and a unique integer 0 ≤ a < n such that

S = {a, a+ d, . . . , a+ (i− 1)d}.

Proof of lemma. We’ll split into cases, based on if i is odd or not.
• Case 1: i is odd, so i = 2j + 1 for some j. Then the middle term of the arithmetic

progression is the average of all residues in S, which we can uniquely identify as
some u (and we know n is coprime to i, so it is possible to average the residues).
We need to show that there is only one choice of d, up to ±, so that S = {u −
jd, u− (j − 1)d, . . . , u+ jd}.
Let X be the sum of squares of the residues in S, so we have

X ≡ (u− jd)2+(u− (j− 1)d)2+ · · ·+(u+ jd)2 = (2j+1)u2+d2
j(j + 1)(2j + 1)

3
,

which therefore implies

3(X − (2j + 1)u2)(j(j + 1)(2j + 1))−1 ≡ d2,

19

https://aops.com/community/p25517112


USA TSTST 2022 Solutions Andrew Gu and Evan Chen

thus identifying d uniquely up to sign as desired.

• Case 2: i is even, so i = 2j for some j. Once again we can compute the average u
of the residues in S, and we need to show that there is only one choice of d, up
to ±, so that S = {u− (2j − 1)d, u− (2j − 3)d, . . . , u+ (2j − 1)d}. Once again we
compute the sum of squares X of the residues in S, so that

X ≡ (u−(2j−1)d)2+(u−(2j−3)d)2+· · ·+(u+(2j−1)d)2 = 2ju2+
(2j − 1)2j(2j + 1)

3

which therefore implies

3(X − 2ju2)((2j − 1)2j(2j + 1))−1 ≡ d2,

again identifying d uniquely up to sign as desired.

Thus we have shown that given the set of residues an arithmetic progression takes on
modulo n, we can recover that progression up to sign. Here we have used the fact that
given d2 (mod n), it is possible to recover d up to sign provided that n is of the form pm

with p 6= 2 and gcd(d, n) = 1.

Now, we will proceed by chaining many arithmetic sequences together.

Definition. For any integer l between 0 and a−1, inclusive, define Cl to be the sequence
0, gl, gl, 2gl, 3gl, . . . , (n− 1)gl, (n− 1)gl taken (mod n). (This is just a sequence where
the ith term is (i− 1)gl, except the terms gl, (n− 1)gl is repeated once.)

Definition. Consider the sequence Sn of residues mod n defined as follows:

• The first term of Sn is 0.

• For each 0 ≤ l < a, the next n+ 2 terms of Sn are the terms of Cl in order.

• The next and final term of Sn is 0.

We claim that Sn constitutes a k-good string with respect to the alphabet of residues
modulo n. We first make some initial observations about Sn.

Lemma
Sn has the following properties:

• Sn has length a(n+ 2) + 2.

• If a contiguous subsequence of Sn of length ≤ k contains two of the same
residue (mod n), those two residues occur consecutively in the subsequence.

Proof of lemma. The first property is clear since each Cl has length n+ 2, and there are
a of them, along with the 0s at beginning and end.

To prove the second property, consider any contiguous subsequence Sn[i : i+ k − 1] of
length k which contains two of the same residue modulo n. If Sn[i : i+ k − 1] is wholly
contained within some Cl, it’s clear that the only way Sn[i : i + k − 1] could repeat
residues if it repeats one of the two consecutive values gl, gl or (n − 1)gl, (n − 1)gl, so
assume that is not the case.
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Now, it must be true that Sn[i : i+ k − 1] consists of one contiguous subsequence of
the form

(n− k1)g
l−1, (n− (k1 − 1))gl−1, . . . , (n− 1)gl−1, (n− 1)gl−1,

which are the portions of Sn[i : i+k−1] contained in Cl−1, and then a second contiguous
subsequence of the form

0, gl, gl, 2gl, . . . , k2g
l,

which are the portions of Sn[i : i + k − 1] contained in Cl, and we obviously have
k2+k1 = k−3. For Sn[i : i+k−1] to contain two of the same residue in non-consecutive
positions, there would have to exist some 0 < u ≤ k1, 0 < v ≤ k2 with (n− u)gl−1 ≡ vgl

(mod n), meaning that u + gv ≡ 0 (mod n). But we know since k1 + k2 < k that
0 < u+ gv < k + kg < n, so this is impossible, as desired.

Now we can prove the main claim.

Proof of main claim. Consider any multiset M of 2 ≤ i ≤ k residues (mod n) which
corresponds to some unknown contiguous subsequence of Sn. We will show that it is
possible to uniquely identify which contiguous subsequence M corresponds to, thereby
showing that Sn has no twins of length i for each 2 ≤ i ≤ k, and then the result will
follow.

First suppose M contains some residue twice. By the last lemma there are only a few
possible cases:

• M contains multiple copies of the residue 0. In this case we know M contains the
beginning of Sn, so the corresponding contiguous subsequence is just the first i
terms of Sn.

• M contains multiple copies of multiple residues. By the last lemma and the structure
of Sn, we can easily see that M must contain two copies of −gi−1 and two copies of
gi for some 0 ≤ i < a that can be identified uniquely, and M must contain portions
of both Ci−1, Ci. It follows M ’s terms can be partitioned into two portions, the
first one being

−i1g
i−1,−(i1 − 1)gi−1, . . . ,−gi−1,−gi−1,

and the second one being
0, gi, gi, 2gi, . . . , i2g

i

for some i1, i2 with i1 + i2 = i − 3, and we just need to uniquely identify i1, i2.
Luckily, by dividing the residues in M by gi−1, we know we can partition M ’s
terms into

−i1,−(i1 − 1), . . . ,−1,−1

as well as
0, g, g, 2g, . . . , i2g.

Now since i2g ≤ kg < n− k and −i1 ≡ n− i1 ≥ n− k it is easy to see that i1, i2
can be identified uniquely, as desired.

• M contains multiple copies of only one residue gi, for some 0 ≤ i < a that can be
identified uniquely. Then by the last lemma M must be located at the beginning
of Ci and possibly contain the last few terms of Ci−1, so M must be of the form
gi, gi, 2gi, . . . , i1g

i, along with possibly the term 0 or the terms 0,−gi−1. So when
we divide M by gi−1 we should be left with terms of the form g, g, 2g, . . . , i1g along
with possibly 0 or 0,−1. Since i1g ≤ kg < n− k, we can easily disambiguate these
cases and uniquely identify the contiguous subsequence corresponding to M .
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• M contains multiple copies of only one residue −gi, for some 0 ≤ i < a that can be
identified uniquely. Then by the last lemma M must be located at the end of Ci and
possibly the first terms of Ci+1, so M must be of the form −gi,−gi,−2gi, . . . ,−i1g

i,
along with possibly the term 0 or the terms 0, gi+1. So when we divide M by gi−1

we should be left with terms of the form −1,−1,−2, . . . ,−i1, along with possibly 0
or 0, g. Since −i1 ≡ n− i1 ≥ n

2 and g < n
2 , we can disambiguate these cases and

uniquely identify the contiguous subsequence corresponding to M .

Thus in all cases where M contains a repeated residue, we can identify the unique
contiguous subsequence of Sn corresponding to M .

When M does not contain a repeated residue, it follows that M cannot contain both
of the gi terms or (n− 1)gi terms at the beginning or end of each Ci. It follows that M
is either entirely contained in some Ci or contained in the union of the end of some Ci

with the beginning of some Ci+1, meaning M corresponds to a contiguous subsequence
of (−gi, 0, gi+1). In the first case, since each Ci is an arithmetic progression when
the repeated terms are ignored, Lemma 1 implies that we can uniquely determine the
location of M , and in the second case, it is easy to tell which contiguous subsequence of
(−gi, 0, gi+1) corresponds to M .

Therefore, in all cases, for any multiset M corresponding to some contiguous sub-
sequence of Sn of length i ≤ k, we can uniquely identify the contiguous subsequence,
meaning Sn is k-good with respect to the alphabet of residues modulo n, as desired.

Now we will finish the problem. We observe the following.

Claim — Fix k and let p > k + 1 be a prime. Then for n = p2 we can find a
(n, k)-good sequence of length p(p−1)(p2+2)

2 .

Proof of last claim. Let g be the smallest primitive root modulo n = p2, so that a =
p(p−1)

2 . As long as we can show that g < n
k − 1, we can apply the previous claim to get

the desired bound.
We will prove a stronger statement that g < p. Indeed, consider any primitive root g0

(mod p). Then g0 + ap has order p− 1 modulo p, so its order modulo p2 is divisible by
p− 1, hence g0 + ap is a primitive root modulo p2 as long as (g0 + ap)p−1 6≡ 1 (mod p2).
Now

(g0 + ap)p−1 =
∑
i

gp−1−i
0 (ap)i

(
p− 1

i

)
≡ gp−1

0 + gp−2
0 (ap) (mod p2).

In particular, of the values g0, g0 + p, . . . , g0 + p(p− 1), only one has order p− 1 and the
rest are primitive roots.

So for each 0 < g0 < p which is a primitive root modulo p, either g0 is a primitive root
modulo p2 or g0 has order p − 1 but g0 + p, g0 + 2p, . . . , g0 + p(p − 1) are all primitive
roots. By considering all choices of g0, we either find a primitive root (mod p2) which
is between 0 and p, or we find that all residues (mod p2) of order p− 1 are between 0
and p. But if ordp2(a) = p− 1 then ordp2(a

−1) = p− 1, and two residues between 0, p
cannot be inverses modulo p2 (because with the exception of 1, they cannot multiply to
something ≥ p2 + 1), so there is always a primitive root between 0, p as desired.

Now for arbitrarily large n we can choose p <
√
n with p√

n
arbitrarily close to 1; by

the previous claim, we can get an (n, k)-good sequence of length at least p−1
p · p4

2 for any
constant, so for sufficiently large n, p we get (n, k)-good sequences of length 0.499n2.
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TSTST 2022 Statistics
Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
June 27, 2022

§1 Summary of scores for TSTST 2022
N 59
µ 16.86
σ 10.94

1st Q 9
Median 16

3rd Q 22

Max 50
Top 3 38

Top 12 25

§2 Problem statistics for TSTST 2022

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 8 47 39 6 28 49 36 39 55

1 7 0 19 2 12 0 0 5 2

2 23 4 0 7 3 1 0 3 1

3 8 0 0 1 1 1 1 0 0

4 4 0 1 0 0 1 0 0 0

5 0 0 0 0 1 0 1 0 0

6 1 1 0 2 2 2 1 2 0

7 8 7 0 41 12 5 20 10 1

Avg 2.63 1.07 0.39 5.39 2.07 0.95 2.61 1.58 0.19

QM 3.35 2.59 0.77 5.99 3.49 2.42 4.22 3.13 0.97
#5+ 9 8 0 43 15 7 22 12 1
%5+ %15.3 %13.6 %0.0 %72.9 %25.4 %11.9 %37.3 %20.3 %1.7
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§3 Rankings for TSTST 2022
Sc Num Cu Per
63 0 0 0.00%
62 0 0 0.00%
61 0 0 0.00%
60 0 0 0.00%
59 0 0 0.00%
58 0 0 0.00%
57 0 0 0.00%
56 0 0 0.00%
55 0 0 0.00%
54 0 0 0.00%
53 0 0 0.00%
52 0 0 0.00%
51 0 0 0.00%
50 1 1 1.69%
49 1 2 3.39%
48 0 2 3.39%
47 0 2 3.39%
46 0 2 3.39%
45 0 2 3.39%
44 0 2 3.39%
43 0 2 3.39%

Sc Num Cu Per
42 0 2 3.39%
41 0 2 3.39%
40 0 2 3.39%
39 0 2 3.39%
38 1 3 5.08%
37 0 3 5.08%
36 0 3 5.08%
35 1 4 6.78%
34 0 4 6.78%
33 1 5 8.47%
32 0 5 8.47%
31 1 6 10.17%
30 2 8 13.56%
29 1 9 15.25%
28 0 9 15.25%
27 2 11 18.64%
26 0 11 18.64%
25 1 12 20.34%
24 0 12 20.34%
23 2 14 23.73%
22 4 18 30.51%

Sc Num Cu Per
21 0 18 30.51%
20 1 19 32.20%
19 1 20 33.90%
18 4 24 40.68%
17 4 28 47.46%
16 3 31 52.54%
15 2 33 55.93%
14 3 36 61.02%
13 3 39 66.10%
12 1 40 67.80%
11 1 41 69.49%
10 2 43 72.88%
9 2 45 76.27%
8 3 48 81.36%
7 1 49 83.05%
6 1 50 84.75%
5 1 51 86.44%
4 1 52 88.14%
3 2 54 91.53%
2 2 56 94.92%
1 2 58 98.31%
0 1 59 100.00%

§4 Histogram for TSTST 2022
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USA TST Selection Test for 65th IMO and 13th EGMO

Pittsburgh, PA

Day I 1:15pm – 5:45pm

Tuesday, June 20, 2023

Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do
so under proctor supervision. Proctors may not answer clarification questions.
You may keep the problems, but they should not be posted until next Monday at noon
Eastern time.

Problem 1. Let ABC be a triangle with centroid G. Points R and S are chosen on
rays GB and GC, respectively, such that

∠ABS = ∠ACR = 180◦ − ∠BGC.

Prove that ∠RAS + ∠BAC = ∠BGC.

Problem 2. Let n ≥ m ≥ 1 be integers. Prove that

n∑
k=m

(
1

k2
+

1

k3

)
≥ m ·

(
n∑

k=m

1

k2

)2

.

Problem 3. Find all positive integers n for which it is possible to color some cells of an
infinite grid of unit squares red, such that each rectangle consisting of exactly n cells
(and whose edges lie along the lines of the grid) contains an odd number of red cells.
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USA TST Selection Test for 65th IMO and 13th EGMO

Pittsburgh, PA

Day II 1:15pm – 5:45pm

Thursday, June 22, 2023

Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do
so under proctor supervision. Proctors may not answer clarification questions.
You may keep the problems, but they should not be posted until next Monday at noon
Eastern time.

Problem 4. Let n ≥ 3 be an integer and let Kn be the complete graph on n vertices.
Each edge of Kn is colored either red, green, or blue. Let A denote the number of
triangles in Kn with all edges of the same color, and let B denote the number of triangles
in Kn with all edges of different colors. Prove that

B ≤ 2A+
n(n− 1)

3
.

(The complete graph on n vertices is the graph on n vertices with
(
n
2

)
edges, with exactly

one edge joining every pair of vertices. A triangle consists of the set of
(
3
2

)
= 3 edges

between 3 of these n vertices.)

Problem 5. Suppose a, b, and c are three complex numbers with product 1. Assume
that none of a, b, and c are real or have absolute value 1. Define

p = (a+ b+ c) +

(
1

a
+

1

b
+

1

c

)
and q =

a

b
+

b

c
+

c

a
.

Given that both p and q are real numbers, find all possible values of the ordered pair
(p, q).

Problem 6. Let ABC be a scalene triangle and let P and Q be two distinct points
in its interior. Suppose that the angle bisectors of ∠PAQ, ∠PBQ, and ∠PCQ are the
altitudes of triangle ABC. Prove that the midpoint of PQ lies on the Euler line of ABC.
(The Euler line is the line through the circumcenter and orthocenter of a triangle.)
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Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do
so under proctor supervision. Proctors may not answer clarification questions.
You may keep the problems, but they should not be posted until next Monday at noon
Eastern time.

Problem 7. The Bank of Pittsburgh issues coins that have a heads side and a tails side.
Vera has a row of 2023 such coins alternately tails-up and heads-up, with the leftmost
coin tails-up.
In a move, Vera may flip over one of the coins in the row, subject to the following rules:

• On the first move, Vera may flip over any of the 2023 coins.
• On all subsequent moves, Vera may only flip over a coin adjacent to the coin she

flipped on the previous move. (We do not consider a coin to be adjacent to itself.)
Determine the smallest possible number of moves Vera can make to reach a state in
which every coin is heads-up.

Problem 8. Let ABC be an equilateral triangle with side length 1. Points A1 and A2

are chosen on side BC, points B1 and B2 are chosen on side CA, and points C1 and C2

are chosen on side AB such that BA1 < BA2, CB1 < CB2, and AC1 < AC2.
Suppose that the three line segments B1C2, C1A2, and A1B2 are concurrent, and the
perimeters of triangles AB2C1, BC2A1, and CA2B1 are all equal. Find all possible values
of this common perimeter.

Problem 9. For every integer m ≥ 1, let Z/mZ denote the set of integers modulo m.
Let p be a fixed prime and let a ≥ 2 and e ≥ 1 be fixed integers. Given a function
f : Z/aZ → Z/peZ and an integer k ≥ 0, the kth finite difference, denoted ∆kf , is the
function from Z/aZ to Z/peZ defined recursively by

∆0f(n) = f(n)

∆kf(n) = ∆k−1f(n+ 1)−∆k−1f(n) for k = 1, 2, . . . .

Determine the number of functions f such that there exists some k ≥ 1 for which
∆kf = f .
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§0 Problems
1. Let ABC be a triangle with centroid G. Points R and S are chosen on rays GB

and GC, respectively, such that

∠ABS = ∠ACR = 180◦ − ∠BGC.

Prove that ∠RAS + ∠BAC = ∠BGC.

2. Let n ≥ m ≥ 1 be integers. Prove that

n∑
k=m

(
1

k2
+

1

k3

)
≥ m ·

(
n∑

k=m

1

k2

)2

.

3. Find all positive integers n for which it is possible to color some cells of an infinite
grid of unit squares red, such that each rectangle consisting of exactly n cells (and
whose edges lie along the lines of the grid) contains an odd number of red cells.

4. Let n ≥ 3 be an integer and let Kn be the complete graph on n vertices. Each edge
of Kn is colored either red, green, or blue. Let A denote the number of triangles in
Kn with all edges of the same color, and let B denote the number of triangles in
Kn with all edges of different colors. Prove that

B ≤ 2A+
n(n− 1)

3
.

5. Suppose a, b, and c are three complex numbers with product 1. Assume that none
of a, b, and c are real or have absolute value 1. Define

p = (a+ b+ c) +

(
1

a
+

1

b
+

1

c

)
and q =

a

b
+

b

c
+

c

a
.

Given that both p and q are real numbers, find all possible values of the ordered
pair (p, q).

6. Let ABC be a scalene triangle and let P and Q be two distinct points in its interior.
Suppose that the angle bisectors of ∠PAQ, ∠PBQ, and ∠PCQ are the altitudes
of triangle ABC. Prove that the midpoint of PQ lies on the Euler line of ABC.

7. The Bank of Pittsburgh issues coins that have a heads side and a tails side. Vera
has a row of 2023 such coins alternately tails-up and heads-up, with the leftmost
coin tails-up.
In a move, Vera may flip over one of the coins in the row, subject to the following
rules:

• On the first move, Vera may flip over any of the 2023 coins.
• On all subsequent moves, Vera may only flip over a coin adjacent to the coin

she flipped on the previous move. (We do not consider a coin to be adjacent
to itself.)

Determine the smallest possible number of moves Vera can make to reach a state
in which every coin is heads-up.

2
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8. Let ABC be an equilateral triangle with side length 1. Points A1 and A2 are chosen
on side BC, points B1 and B2 are chosen on side CA, and points C1 and C2 are
chosen on side AB such that BA1 < BA2, CB1 < CB2, and AC1 < AC2.
Suppose that the three line segments B1C2, C1A2, and A1B2 are concurrent, and
the perimeters of triangles AB2C1, BC2A1, and CA2B1 are all equal. Find all
possible values of this common perimeter.

9. Let p be a fixed prime and let a ≥ 2 and e ≥ 1 be fixed integers. Given a function
f : Z/aZ → Z/peZ and an integer k ≥ 0, the kth finite difference, denoted ∆kf , is
the function from Z/aZ to Z/peZ defined recursively by

∆0f(n) = f(n)

∆kf(n) = ∆k−1f(n+ 1)−∆k−1f(n) for k = 1, 2, . . . .

Determine the number of functions f such that there exists some k ≥ 1 for which
∆kf = f .

3
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§1 Solutions to Day 1
§1.1 TSTST 2023/1, proposed by Merlijn Staps
Available online at https://aops.com/community/p28015679.

Problem statement

Let ABC be a triangle with centroid G. Points R and S are chosen on rays GB and
GC, respectively, such that

∠ABS = ∠ACR = 180◦ − ∠BGC.

Prove that ∠RAS + ∠BAC = ∠BGC.

In all the following solutions, let M and N denote the midpoints of AC and AB,
respectively.

A

B C

MN

G

S

R

¶ Solution 1 using power of a point From the given condition that ]ACR = ]CGM ,
we get that

MA2 = MC2 = MG ·MR =⇒ ]RAC = ]MGA.

Analogously,
]BAS = ]AGN.

Hence,

]RAS + ]BAC = ]RAC + ]BAS = ]MGA+ ]AGN = ]MGN = ]BGC.

¶ Solution 2 using similar triangles As before, 4MGC ∼ 4MCR and 4NGB ∼
4NBS. We obtain

|AC|
|CR|

=
2|MC|
|CR|

=
2|MG|
|GC|

=
|GB|
2|NG|

=
|BS|
2|BN |

=
|BS|
|AB|

which together with ∠ACR = ∠ABS yields

4ACR ∼ 4SBA =⇒ ]BAS = ]CRA.

4
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Hence

]RAS + ]BAC = ]RAC + ]BAS = ]RAC + ]CRA = −]ACR = ]BGC,

which proves the statement.

¶ Solution 3 using parallelograms Let M and N be defined as above. Let P be the
reflection of G in M and let Q the reflection of G in N . Then AGCP and AGBQ are
parallelograms.

A

B C

MN

G

S
R

PQ

Claim — Quadrilaterals APCR and AQBS are concyclic.

Proof. Because ]APR = ]APG = ]CGP = −]BGC = ]ACR.

Thus from PC ‖ GA we get

]RAC = ]RPC = ]GPC = ]PGA

and similarly
]BAS = ]BQS = ]BQG = ]AGQ.

We conclude that

]RAS + ]BAC = ]RAC + ]BAS = ]PGA+ ]AGQ = ]PGQ = ]BGC.

¶ Solution 4 also using parallelograms, by Ankan Bhattacharya Construct parallelo-
grams ARCK and ASBL. Since

]CAK = ]ACR = ]CGB = ]CGK,

it follows that AGCK is cyclic. Similarly, AGBL is also cyclic.

5
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A

B C

G

K
L

R
S

Finally, observe that

∠RAS + ∠BAC = ]BAS + ]RAC

= ]ABL+ ]KCA

= ]AGL+ ]KGA

= ]KGL

= ∠BGC

as requested.

¶ Solution 5 using complex numbers, by Milan Haiman Note that ∠RAS+∠BAC =
∠BAS + ∠RAC. We compute ∠BAS in complex numbers; then ∠RAC will then be
known by symmetry.

Let a, b, c be points on the unit circle representing A, B, C respectively. Let
g = 1

3(a+ b+ c) represent the centroid G, and let s represent S.

Claim — We have
s− a

b− a
=

ab− 2bc+ ca

2ab− bc− ca
.

Proof. Since S is on line CG, which passes through the midpoint of segment AB, we
have that

s =
a+ b

2
+ t(c− g)

for some t ∈ R.
By the given angle condition, we have that

(s− b)/(b− a)

(c− g)/(g − b)
∈ R.

Note that
s− b

b− a
= t

c− g

b− a
− 1

2
.

So,
t
g − b

b− a
− g − b

2(c− g)
∈ R.

6
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Thus

t =
Im
(

g−b
2(c−g)

)
Im
(
g−b
b−a

) =
1

2
·

(
g−b
c−g

)
−
(
g−b
c−g

)
(
g−b
b−a

)
−
(
g−b
b−a

) .
Let N and D be the numerator and denominator of the second factor above.

We want to compute

s− a

b− a
=

1

2
+ t

c− g

b− a
=

(b− a) + 2t(c− g)

2(b− a)
=

(b− a)D + (c− g)N

2(b− a)D
.

We have

(c− g)N = g − b− (c− g)

(
g − b

c− g

)
=

a+ b+ c

3
− b−

(
c− a+ b+ c

3

) 1
a + 1

b +
1
c −

3
b

3
c −

1
a − 1

b −
1
c

=
(a+ c− 2b)(2ab− bc− ca)− (2c− a− b)(ab+ bc− 2ca)

3(2ab− bc− ca)

=
3(a2b+ b2c+ c2a− ab2 − bc2 − ca2)

3(2ab− bc− ca)

=
(a− b)(b− c)(a− c)

2ab− bc− ca

We also compute

(b− a)D = g − b− (b− a)

(
g − b

b− a

)
=

a+ b+ c

3
− b− (b− a)

1
a + 1

b +
1
c −

3
b

3
b −

3
a

=
(a+ c− 2b)c+ (ab+ bc− 2ca)

3c

=
ab− bc− ca+ c2

3c

=
(a− c)(b− c)

3c

So, we obtain

s− a

b− a
=

1
3c +

a−b
2ab−bc−ca
2
3c

=
2ab− bc− ca+ 3c(a− b)

2(2ab− bc− ca)
=

ab− 2bc+ ca

2ab− bc− ca
.

By symmetry,
r − a

c− a
=

ab− 2bc+ ca

2ca− ab− bc
.

Hence their ratio
s− a

b− a
÷ r − a

c− a
=

2ab− bc− ca

2ca− ab− bc

has argument ∠RAC + ∠BAS.
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We also have that ∠BGC is the argument of

b− g

c− g
=

2b− a− c

2c− a− b
.

Note that these two complex numbers are inverse-conjugates, and thus have the same
argument. So we’re done.

8
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§1.2 TSTST 2023/2, proposed by Raymond Feng, Luke Robitaille
Available online at https://aops.com/community/p28015692.

Problem statement

Let n ≥ m ≥ 1 be integers. Prove that

n∑
k=m

(
1

k2
+

1

k3

)
≥ m ·

(
n∑

k=m

1

k2

)2

.

We show several approaches.

¶ First solution (authors) By Cauchy-Schwarz, we have

n∑
k=m

k + 1

k3
=

n∑
k=m

(
1
k2

)2
1

k(k+1)

≥

(
1
m2 + 1

(m+1)2
+ · · ·+ 1

n2

)2
1

m(m+1) +
1

(m+1)(m+2) + · · ·+ 1
n(n+1)

=

(
1
m2 + 1

(m+1)2
+ · · ·+ 1

n2

)2
1
m − 1

n+1

>

(∑n
k=m

1
k2

)2
1
m

as desired.

Remark (Bound on error). Let A =
∑n

k=m k−2 and B =
∑n

k=m k−3. The inequality
above becomes tighter for large m and n � m. If we use Lagrange’s identity in place of
Cauchy-Schwarz, we get

A+B −mA2 = m ·
∑

m≤a<b

(a− b)2

a3b3(a+ 1)(b+ 1)
.

We can upper bound this error by

≤ m ·
∑

m≤a<b

1

a3(a+ 1)b(b+ 1)
= m ·

∑
m≤a

1

a3(a+ 1)2
≈ m · 1

m4
=

1

m3
,

which is still generous as (a − b)2 � b2 for b not much larger than a, so the real error is
probably around 1

10m3 . This exhibits the tightness of the inequality since it implies

mA2 +O(B/m) > A+B.

Remark (Construction commentary, from author). My motivation was to write an inequality
where Titu could be applied creatively to yield a telescoping sum. This can be difficult
because most of the time, such a reverse-engineered inequality will be so loose it’s trivial

9
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anyways. My first attempt was the not-so-amazing inequality

n2 + 3n

2
=

n∑
1

i+ 1 =

n∑
1

1
i
1

i(i+1)

>

(
n∑
1

1√
i

)2

,

which is really not surprising given that
∑

1√
i
� n√

2
. The key here is that we need

“near-equality” as dictated by the Cauchy-Schwarz equality case, i.e. the square root of the
numerators should be approximately proportional to the denominators.

This motivates using 1
i4 as the numerator, which works like a charm. After working out

the resulting statement, the LHS and RHS even share a sum, which adds to the simplicity
of the problem.

The final touch was to unrestrict the starting value of the sum, since this allows the
strength of the estimate 1

i2 ≈ 1
i(i+1) to be fully exploited.

¶ Second approach by inducting down, Luke Robitaille and Carl Schildkraut Fix n;
we’ll induct downwards on m. For the base case of n = m the result is easy, since the
left side is m+1

m3 and the right side is m
m4 = 1

m3 .
For the inductive step, suppose we have shown the result for m+ 1. Let

A =
n∑

k=m+1

1

k2
and B =

n∑
k=m+1

1

k3
.

We know A+B ≥ (m+ 1)A2, and we want to show(
A+

1

m2

)
+

(
B +

1

m3

)
≥ m

(
A+

1

m2

)2

.

Indeed,(
A+

1

m2

)
+

(
B +

1

m3

)
−m

(
A+

1

m2

)2

= A+B +
m+ 1

m3
−mA2 − 2A

m
− 1

m3

=
(
A+B − (m+ 1)A2

)
+

(
A− 1

m

)2

≥ 0,

and we are done.

¶ Third approach by reducing n → ∞, Michael Ren and Carl Schildkraut First, we
give:

Claim (Reduction to n → ∞) — If the problem is true when n → ∞, it is true for
all n.

Proof. Let A =
∑n

k=m k−2 and B =
∑n

k=m k−3. Consider the region of the xy-plane
defined by y > mx2 − x. We are interested in whether (A,B) lies in this region.

However, the region is bounded by a convex curve, and the sequence of points (0, 0),(
1
m2 ,

1
m3

)
,
(

1
m2 + 1

(m+1)2
, 1
m3 + 1

(m+1)3

)
, . . . has successively decreasing slopes between

consecutive points. Thus it suffices to check that the inequality is true when n → ∞.

Set n = ∞ henceforth. Let

A =

∞∑
k=m

1

k2
and B =

∞∑
k=m

1

k3
;

10
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we want to show B ≥ mA2 −A, which rearranges to

1 + 4mB ≥ (2mA− 1)2.

Write

C =
∞∑

k=m

1

k2(2k − 1)(2k + 1)
and D =

∞∑
k=m

8k2 − 1

k3(2k − 1)2(2k + 1)2
.

Then
2

2k − 1
− 2

2k + 1
=

1

k2
+

1

k2(2k − 1)(2k + 1)
,

and
2

(2k − 1)2
− 2

(2k + 1)2
=

1

k3
+

8k2 − 1

k3(2k − 1)2(2k + 1)2
,

so that
A =

2

2m− 1
− C and B =

2

(2m− 1)2
−D.

Our inequality we wish to show becomes

2m+ 1

2m− 1
C ≥ D +mC2.

We in fact show two claims:

Claim — We have
2m+ 1/2

2m− 1
C ≥ D.

Proof. We compare termwise; we need

2m+ 1/2

2m− 1
· 1

k2(2k − 1)(2k + 1)
≥ 8k2 − 1

k3(2k − 1)2(2k + 1)2

for k ≥ m. It suffices to show

2k + 1/2

2k − 1
· 1

k2(2k − 1)(2k + 1)
≥ 8k2 − 1

k3(2k − 1)2(2k + 1)2
,

which is equivalent to k(2k + 1/2)(2k + 1) ≥ 8k2 − 1. This holds for all k ≥ 1.

Claim — We have
1/2

2m− 1
C ≥ mC2.

Proof. We need C ≤ 1/(2m(2m− 1)); indeed,

1

2m(2m− 1)
=

∞∑
k=m

(
1

2k(2k − 1)
− 1

2(k + 1)(2k + 1)

)
=

∞∑
k=m

4k + 1

2k(2k − 1)(k + 1)(2k + 1)
;

comparing term-wise with the definition of C and using the inequality k(4k+1) ≥ 2(k+1)
for k ≥ 1 gives the desired result.

Combining the two claims finishes the solution.

11
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¶ Fourth approach by bashing, Carl Schildkraut With a bit more work, the third
approach can be adapted to avoid the n → ∞ reduction. Similarly to before, define

A =

n∑
k=m

1

k2
and B =

n∑
k=m

1

k3
;

we want to show 1 + 4mB ≥ (2mA− 1)2. Writing

C =

n∑
k=m

1

k2(2k − 1)(2k + 1)
and D =

n∑
k=m

8k2 − 1

k3(2k − 1)2(2k + 1)2
.

We compute

A =
2

2m− 1
− 2

2n+ 1
− C and B =

2

(2m− 1)2
− 2

(2n+ 1)2
−D.

Then, the inequality we wish to show reduces (as in the previous solution) to

2m+ 1

2m− 1
C +

2(2m+ 1)

(2m− 1)(2n+ 1)
≥ D +mC2 +

2(2m+ 1)

(2n+ 1)2
+

4m

2n+ 1
C.

We deal first with the terms not containing the variable n, i.e. we show that

2m+ 1

2m− 1
C ≥ D +mC2.

For this part, the two claims from the previous solution go through exactly as written
above, and we have C ≤ 1/(2m(2m− 1)). We now need to show

2(2m+ 1)

(2m− 1)(2n+ 1)
≥ 2(2m+ 1)

(2n+ 1)2
+

4m

2n+ 1
C

(this is just the inequality between the remaining terms); our bound on C reduces this to
proving

4(2m+ 1)(n−m+ 1)

(2m− 1)(2n+ 1)2
≥ 2

(2m− 1)(2n+ 1)
.

Expanding and writing in terms of n, this is equivalent to

n ≥ 1 + 2(m− 1)(2m+ 1)

4m
= m− 2m+ 1

4m
,

which holds for all n ≥ m.

12
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§1.3 TSTST 2023/3, proposed by Merlijn Staps
Available online at https://aops.com/community/p28015682.

Problem statement

Find all positive integers n for which it is possible to color some cells of an infinite
grid of unit squares red, such that each rectangle consisting of exactly n cells (and
whose edges lie along the lines of the grid) contains an odd number of red cells.

We claim that this is possible for all positive integers n. Call a positive integer for which
such a coloring is possible good. To show that all positive integers n are good we prove
the following:

(i) If n is good and p is an odd prime, then pn is good;

(ii) For every k ≥ 0, the number n = 2k is good.

Together, (i) and (ii) imply that all positive integers are good.

¶ Proof of (i) We simply observe that if every rectangle consisting of n cells contains
an odd number of red cells, then so must every rectangle consisting of pn cells. Indeed,
because p is prime, a rectangle consisting of pn cells must have a dimension (length or
width) divisible by p and can thus be subdivided into p rectangles consisting of n cells.

Thus every coloring that works for n automatically also works for pn.

¶ Proof of (ii) Observe that rectangles with n = 2k cells have k + 1 possible shapes:
2m × 2k−m for 0 ≤ m ≤ k.

Claim — For each of these k+1 shapes, there exists a coloring with two properties:

• Every rectangle with n cells and shape 2m × 2k−m contains an odd number of
red cells.

• Every rectangle with n cells and a different shape contains an even number of
red cells.

Proof. This can be achieved as follows: assuming the cells are labeled with (x, y) ∈ Z2,
color a cell red if x ≡ 0 (mod 2m) and y ≡ 0 (mod 2k−m). For example, a 4×2 rectangle
gets the following coloring:

A 2m × 2k−m rectangle contains every possible pair (x mod 2m, y mod 2k−m) exactly
once, so such a rectangle will contain one red cell (an odd number).

13
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On the other hand, consider a 2` × 2k−` rectangle with ` > m. The set of cells this
covers is (x, y) where x covers a range of size 2` and y covers a range of size 2k−`. The
number of red cells is the count of x with x ≡ 0 mod 2m multiplied by the count of y
with y ≡ 0 mod 2k−m. The former number is exactly 2`−k because 2k divides 2` (while
the latter is 0 or 1) so the number of red cells is even. The ` < m case is similar.

Finally, given these k + 1 colorings, we can add them up modulo 2, i.e. a cell will be
colored red if it is red in an odd number of these k + 1 colorings. We illustrate n = 4 as
an example; the coloring is 4-periodic in both axes so we only show one 4× 4 cell.

⊕ ⊕ =

This solves the problem.

Remark. The final coloring can be described as follows: color (x, y) red if

max(0,min(ν2(x), k) + min(ν2(y), k)− k + 1)

is odd.

Remark (Luke Robitaille). Alternatively for (i), if n = 2ek for odd k then one may dissect
an a× b rectangle with area n into k rectangles of area 2e, each 2ν2(a) × 2ν2(b). This gives a
way to deduce the problem from (ii) without having to consider odd prime numbers.

¶ Alternate proof of (ii) using generating functions We will commit to constructing
a coloring which is n-periodic in both directions. (This is actually forced, so it’s natural
to do so.) With that in mind, let

f(x, y) =

2k−1∑
i=0

2k−1∑
j=0

λi,jx
iyj

denote its generating function, where f ∈ F2[x, y].
For this to be valid, we need that for any 2p × 2q rectangle with area n, the sum of the

coefficients of f over it should be one, modulo x2
k
= y2

k
= 1. In other words, whenever

p+ q = k, we must have

f(x, y)(1 + · · ·+ x2
p−1)(1 + · · ·+ y2

q−1) = (1 + · · ·+ x2
k−1)(1 + · · ·+ y2

k−1),

taken modulo x2
k
= y2

k
= 1. The idea is to rewrite these expressions: because we’re

in characteristic 2, the given assertion is (x + 1)2
k
= (y + 1)2

k
= 0, and the requested

property is
f(x, y)(x+ 1)2

p−1(y + 1)2
q−1 = (x+ 1)2

k−1(y + 1)2
k−1.

This suggests the substitution g(x, y) = f(x+1, y+1): then we can replace (x+1, y+1) 7→
(x, y) to simplify the requested property significantly:

Whenever p+ q = k, we must have

g(x, y)x2
p−1y2

q−1 = x2
k−1y2

k−1,

modulo x2
k and y2

k .
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However, now the construction of g is very simple: for example, the choice

g(x, y) =
∑

p+q=k

x2
k−2py2

k−2q

works. The end.

Remark. Unraveling the substitutions seen here, it’s possible to show that this is actually
the same construction provided in the first solution.
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§2 Solutions to Day 2
§2.1 TSTST 2023/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p28015691.

Problem statement

Let n ≥ 3 be an integer and let Kn be the complete graph on n vertices. Each edge
of Kn is colored either red, green, or blue. Let A denote the number of triangles in
Kn with all edges of the same color, and let B denote the number of triangles in Kn

with all edges of different colors. Prove that

B ≤ 2A+
n(n− 1)

3
.

Consider all unordered pairs of different edges which share exactly one vertex (call these
vees for convenience). Assign each vee a charge of +2 if its edge colors are the same, and
a charge of −1 otherwise.

We compute the total charge in two ways.

¶ Total charge by summing over triangles Note that

• each monochromatic triangle has a charge of +6,

• each bichromatic triangle has a charge of 0, and

• each trichromatic triangle has a charge of −3.

Since each vee contributes to exactly one triangle, we obtain that the total charge is
6A− 3B.

¶ Total charge by summing over vertices We can also calculate the total charge by
examining the centers of the vees. If a vertex has a red edges, b green edges, and c blue
edges, the vees centered at that vertex contribute a total charge of

2

[(
a

2

)
+

(
b

2

)
+

(
c

2

)]
− (ab+ ac+ bc)

= (a2 − a+ b2 − b+ c2 − c)− (ab+ ac+ bc)

= (a2 + b2 + c2 − ab− ac− bc)− (a+ b+ c)

= (a2 + b2 + c2 − ab− ac− bc)− (n− 1)

≥ −(n− 1).

In particular, the total charge is at least −n(n− 1).

¶ Conclusion Thus, we obtain

6A− 3B ≥ −n(n− 1) ⇐⇒ B ≤ 2A+
n(n− 1)

3

as desired.
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§2.2 TSTST 2023/5, proposed by David Altizio
Available online at https://aops.com/community/p28015713.

Problem statement

Suppose a, b, and c are three complex numbers with product 1. Assume that none
of a, b, and c are real or have absolute value 1. Define

p = (a+ b+ c) +

(
1

a
+

1

b
+

1

c

)
and q =

a

b
+

b

c
+

c

a
.

Given that both p and q are real numbers, find all possible values of the ordered
pair (p, q).

We show (p, q) = (−3, 3) is the only possible ordered pair.

¶ First solution

Setup for proof Let us denote a = y/x, b = z/y, c = x/z, where x, y, z are nonzero
complex numbers. Then

p+ 3 = 3 +
∑
cyc

(
x

y
+

y

x

)
= 3 +

x2(y + z) + y2(z + x) + z2(x+ y)

xyz

=
(x+ y + z)(xy + yz + zx)

xyz
.

q − 3 = −3 +
∑
cyc

y2

zx
=

x3 + y3 + z3 − 3xyz

xyz

=
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx)

xyz
.

It follows that

R 3 3(p+ 3) + (q − 3)

=
(x+ y + z)(x2 + y2 + z2 + 2(xy + yz + zx))

xyz

=
(x+ y + z)3

xyz
.

Now, note that if x+ y + z = 0, then p = −3, q = 3 so we are done.

Main proof We will prove that if x+y+z 6= 0 then we contradict either the hypothesis
that a, b, c /∈ R or that a, b, c do not have absolute value 1.

Scale x, y, z in such a way that x+ y + z is nonzero and real; hence so is xyz. Thus,
as p + 3 ∈ R, we conclude xy + yz + zx ∈ R as well. Hence, x, y, z are the roots of a
cubic with real coefficients. Thus,

• either all three of {x, y, z} are real (which implies a, b, c ∈ R),

• or two of {x, y, z} are a complex conjugate pair (which implies one of a, b, c has
absolute value 1).

Both of these were forbidden by hypothesis.
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Construction As we saw in the setup, (p, q) = (−3, 3) will occur as long as x+y+z = 0,
and no two of x, y, z to share the same magnitude or are collinear with the origin. This
is easy to do; for example, we could choose (x, y, z) = (3, 4i,−(3 + 4i)). Hence a = 3

4i ,
b = − 4i

3+4i , c = −3+4i
3 satisfies the hypotheses of the problem statement.

¶ Second solution, found by contestants The main idea is to make the substitution

x = a+
1

c
, y = b+

1

a
, z = c+

1

b
.

Then we can check that

x+ y + z = p

xy + yz + zx = p+ q + 3

xyz = p+ 2.

Therefore x, y, z are the roots of a cubic with real coefficients. As in the previous
solution, we note that this cubic must either have all real roots, or a complex conjugate
pair of roots. We also have the relation a(y + 1) = ab + a + 1 = x + 1, and likewise
b(z + 1) = y + 1, c(x + 1) = z + 1. This means that if any of x, y, z are equal to −1,
then all are equal to −1.

Assume for the sake of contradiction that none are equal to −1. In the case where
the cubic has three real roots, a = x+1

y+1 would be real. On the other hand, if there is a
complex conjugate pair (without loss of generality, x and y) then a has magnitude 1.
Therefore this cannot occur.

We conclude that x = y = z = −1, so p = −3 and q = 3. The solutions (a, b, c) can
then be parameterized as (a,−1− 1

a ,−
1

1+a). To construct a solution, we need to choose
a specific value of a such that none of the wrong conditions hold; when a = 2i, say, we
obtain the solution (2i,−1 + i

2 ,
−1+2i

5 ).

¶ Third solution by Luke Robitaille and Daniel Zhu The answer is p = −3 and q = 3.
Let’s first prove that no other (p, q) work.

Let e1 = a+ b+ c and e2 = a−1 + b−1 + c−1 = ab+ ac+ bc. Also, let f = e1e2. Note
that p = e1 + e2.

Our main insight is to consider the quantity q′ = b
a + c

b +
a
c . Note that f = q + q′ + 3.

Also,

qq′ = 3 +
a2

bc
+

b2

ac
+

c2

ab
+

bc

a2
+

ac

b2
+

ab

c2

= 3 + a3 + b3 + c3 + a−3 + b−3 + c−3

= 9 + a3 + b3 + c3 − 3abc+ a−3 + b−3 + c−3 − 3a−1b−1c−1

= 9 + e1(e
2
1 − 3e2) + e2(e

2
2 − 3e1)

= 9 + e31 + e32 − 6e1e2

= 9 + p(p2 − 3f)− 6f

= p3 − (3p+ 6)f + 9.

As a result, the quadratic with roots q and q′ is x2 − (f − 3)x + (p3 − (3p + 6)f + 9),
which implies that

q2 − qf + 3q + p3 − (3p+ 6)f + 9 = 0 ⇐⇒ (3p+ q + 6)f = p3 + q2 + 3q + 9.

At this point, two miracles occur. The first is the following claim:
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Claim — f is not real.

Proof. Suppose f is real. Since (x− e1)(x− e2) = x2 − px+ f , there are two cases:

• e1 and e2 are real. Then, a, b, and c are the roots of x3 − e1x
2 + e2x− 1, and since

every cubic with real coefficients has at least one real root, at least one of a, b, and
c is real, contradiction.

• e1 and e2 are conjugates. Then, the polynomial x3− ē2x
2+ ē1x−1, which has roots

ā−1, b̄−1, and c̄−1, is the same as the polynomial with a, b, c as roots. We conclude
that the multiset {a, b, c} is invariant under inversion about the unit circle, so one
of a, b, and c must lie on the unit circle. This is yet another contradiction.

As a result, we know that 3p + q + 6 = p3 + q2 + 3q + 9 = 0. The second miracle is
that substituting q = −3p− 6 into q2 + 3q + p3 + 9 = 0, we get

0 = p3 + 9p2 + 27p+ 27 = (p+ 3)3,

so p = −3. Thus q = 3.
It remains to construct valid a, b, and c. To do this, let’s pick some e1, let e2 = −3−e1,

and let a, b, and c be the roots of x3−e1x
2+e2x−1. It is clear that this guarantees p = −3.

By our above calculations, q and q′ are the roots of the quadratic x2−(f−3)x+(3f−18),
so one of q and q′ must be 3; by changing the order of a, b, and c if needed, we can
guarantee this to be q. It suffices to show that for some choice of e1, none of a, b, or c
are real or lie on the unit circle.

To do this, note that we can rewrite x3 − e1x
2 + (−3− e1)x− 1 = 0 as

e1 =
x3 − 3x− 1

x2 + x
,

so all we need is a value of e1 that is not x3−3x−1
x2+x

for any real x or x on the unit circle.
One way to do this is to choose any nonreal e1 with |e1| < 1/2. This clearly rules out any
real x. Also, if |x| = 1, by the triangle inequality

∣∣x3 − 3x− 1
∣∣ ≥ |3x| −

∣∣x3∣∣ − |1| = 1

and
∣∣x2 + x

∣∣ ≤ 2, so
∣∣∣x3−3x−1

x2+x

∣∣∣ ≥ 1/2.
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§2.3 TSTST 2023/6, proposed by Holden Mui
Available online at https://aops.com/community/p28015708.

Problem statement

Let ABC be a scalene triangle and let P and Q be two distinct points in its interior.
Suppose that the angle bisectors of ∠PAQ, ∠PBQ, and ∠PCQ are the altitudes of
triangle ABC. Prove that the midpoint of PQ lies on the Euler line of ABC.

We present three approaches.

¶ Solution 1 (Ankit Bisain) Let H be the orthocenter of ABC, and construct P ′ using
the following claim.

Claim — There is a point P ′ for which

]APH + ]AP ′H = ]BPH + ]BP ′H = ]CPH + ]CP ′H = 0.

Proof. After inversion at H, this is equivalent to the fact that P ’s image has an isogonal
conjugate in ABC’s image.

Now, let X, Y , and Z be the reflections of P over AH, BH, and CH respectively.
Additionally, let Q′ be the image of Q under inversion about (PXY Z).

A

B C

XY

Z

H

P

Q

Q′

P ′

Claim — ABCP ′ −∼ XY ZQ′.

Proof. Since
]Y XZ = ]Y PZ = ](BH,CH) = −]BAC

and cyclic variants, triangles ABC and XY Z are similar. Additionally,

]HQ′X = −]HXQ = −]HXA = ]HPA = −]HP ′A

and cyclic variants, so summing in pairs gives ]Y Q′Z = −]BP ′C and cyclic variants;
this implies the similarity.
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Claim — Q′ lies on the Euler line of triangle XY Z.

Proof. Let O be the circumcenter of ABC so that ABCOP ′ −∼ XY ZHQ′. Then
]HP ′A = −]HQ′X = ]OP ′A, so P ′ lies on OH. By the similarity, Q′ must lie
on the Euler line of XY Z.

To finish the problem, let G1 be the centroid of ABC and G2 be the centroid of XY Z.
Then with signed areas,

[G1HP ] + [G1HQ] =
[AHP ] + [BHP ] + [CHP ]

3
+

[AHQ] + [BHQ] + [CHQ]

3

=
[AHQ]− [AHX] + [BHQ]− [BHY ] + [CHQ]− [CHZ]

3

=
[HQX] + [HQY ] + [HQZ]

3
= [QG2H]

= 0

where the last line follows from the last claim. Therefore G1H bisects PQ, as desired.

Remark. This solution characterizes the set of all points P for which such a point Q exists.
It is the image of the Euler line under the mapping described in the first claim.

¶ Solution 2 using complex numbers (Carl Schildkraut and Milan Haiman) Let
(ABC) be the unit circle in the complex plane, and let A = a, B = b, C = c such that
|a| = |b| = |c| = 1. Let P = p and Q = q, and O = 0 and H = h = a + b + c be the
circumcenter and orthocenter of ABC respectively.

The first step is to translate the given geometric conditions into a single usable
equation:

Claim — We have the equation

(p+ q)
∑
cyc

a3(b2 − c2) = (p+ q)abc
∑
cyc

(bc(b2 − c2)). (1)

Proof. The condition that the altitude AH bisects ∠PAQ is equivalent to

(p− a)(q − a)

(h− a)2
=

(p− a)(q − a)

(b+ c)2
∈ R

=⇒ (p− a)(q − a)

(b+ c)2
=

(
(p− a)(q − a)

(b+ c)2

)
=

(ap− 1)(aq − 1)b2c2

(b+ c)2a2

=⇒ a2(p− a)(q − a) = b2c2(ap− 1)(aq − 1)

=⇒ a2pq − a2b2c2pq + (a4 − b2c2) = a3(p+ q)− ab2c2(p+ q).

Writing the symmetric conditions that BH and CH bisect ∠PBQ and ∠PCQ gives
three equations:

a2pq − a2b2c2pq + (a4 − b2c2) = a3(p+ q)− ab2c2(p+ q)

b2pq − a2b2c2pq + (b4 − c2a2) = b3(p+ q)− bc2a2(p+ q)
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c2pq − a2b2c2pq + (c4 − a2b2) = c3(p+ q)− ca2b2(p+ q).

Now, sum (b2 − c2) times the first equation, (c2 − a2) times the second equation, and
(a2 − b2) times the third equation. On the left side, the coefficients of pq and pq are
0. Additionally, the coefficient of 1 (the parenthesized terms on the left sides of each
equation) sum to 0, since∑

cyc
(a4 − b2c2)(b2 − c2) =

∑
cyc

(a4b2 − b4c2 − a4c2 + c4b2).

This gives (1) as desired.

We can then factor (1):

Claim — The left-hand side of (1) factors as

−(p+ q)(a− b)(b− c)(c− a)(ab+ bc+ ca)

while the right-hand side factors as

−(p+ q)(a− b)(b− c)(c− a)(a+ b+ c).

Proof. This can of course be verified by direct expansion, but here is a slightly more
economic indirect proof.

Consider the cyclic sum on the left as a polynomial in a, b, and c. If a = b, then it
simplifies as a3(a2 − c2) + a3(c2 − a2) + c3(a2 − a2) = 0, so a− b divides this polynomial.
Similarly, a− c and b− c divide it, so it can be written as f(a, b, c)(a− b)(b− c)(c− a)
for some symmetric quadratic polynomial f , and thus it is some linear combination
of a2 + b2 + c2 and ab + bc + ca. When a = 0, the whole expression is b2c2(b − c), so
f(0, b, c) = −bc, which implies that f(a, b, c) = −(ab+ bc+ ca).

Similarly, consider the cyclic sum on the right as a polynomial in a, b, and c. If
a = b, then it simplifies as ac(a2 − c2) + ca(c2 − a2) + a2(a2 − a2) = 0, so a − b
divides this polynomial. Similarly, a − c and b − c divide it, so it can be written as
g(a, b, c)(a− b)(b− c)(c−a) where g is a symmetric linear polynomial; hence, it is a scalar
multiple of a+b+c. When a = 0, the whole expression is bc(b2−c2), so g(0, b, c) = −b−c,
which implies that g(a, b, c) = −(a+ b+ c).

Since A, B, and C are distinct, we may divide by (a− b)(b− c)(c− a) to obtain

(p+ q)(ab+ bc+ ca) = (p+ q)abc(a+ b+ c) =⇒ (p+ q)h = (p+ q)h.

This implies that
p+q
2

−0

h−0 is real, so the midpoint of PQ lies on line OH.

¶ Solution 3 also using complex numbers (Michael Ren) We use complex numbers
as in the previous solution. The angle conditions imply that (a−p)(a−q)

(b−c)2
, (b−p)(b−q)

(c−a)2
, and

(c−p)(c−q)
(a−b)2

are real numbers. Take a linear combination of these with real coefficients X,
Y , and Z to be determined; after expansion, we obtain[

X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2

]
pq

−
[

aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2

]
(p+ q)

22



USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

+

[
a2X

(b− c)2
+

b2Y

(c− a)2
+

c2Z

(a− b)2

]
which is a real number. To get something about the midpoint of PQ, the pq coefficient
should be zero, which motivates the following lemma.

Lemma
There exist real X, Y , Z for which

X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2
= 0 and

aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2
6= 0.

Proof. Since C is a 2-dimensional vector space over R, there exist real X,Y, Z such that
(X,Y, Z) 6= (0, 0, 0) and the first condition holds. Suppose for the sake of contradiction
that aX

(b−c)2
+ bY

(c−a)2
+ cZ

(a−b)2
= 0. Then

(b− a)Y

(c− a)2
+

(c− a)Z

(a− b)2

=
aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2
− a

(
X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2

)
=0.

We can easily check that (Y, Z) = (0, 0) is impossible, therefore (b−a)3

(c−a)3
= −Z

Y is real.
This means ∠BAC = 60◦ or 120◦. By symmetry, the same is true of ∠CBA and ∠ACB.
This is impossible because ABC is scalene.

With the choice of X, Y , Z as in the lemma, there exist complex numbers α and
β, depending only on a, b, and c, such that α 6= 0 and α(p + q) + β is real. Therefore
the midpoint of PQ, which corresponds to p+q

2 , lies on a fixed line. It remains to show
that this line is the Euler line. First, choose P = Q to be the orthocenter to show that
the orthocenter lies on the line. Secondly, choose P and Q to be the foci of the Steiner
circumellipse to show that the centroid lies on the line. (By some ellipse properties, the
external angle bisector of ∠PAQ is the tangent to the circumellipse at A, which is the
line through A parallel to BC. Therefore these points are valid.) Therefore the fixed line
of the midpoint is the Euler line.

Remark. This solution does not require fixing the origin of the complex plane or setting
(ABC) to be the unit circle.
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§3 Solutions to Day 3
§3.1 TSTST 2023/7, proposed by Luke Robitaille
Available online at https://aops.com/community/p28015706.

Problem statement

The Bank of Pittsburgh issues coins that have a heads side and a tails side. Vera
has a row of 2023 such coins alternately tails-up and heads-up, with the leftmost
coin tails-up.

In a move, Vera may flip over one of the coins in the row, subject to the following
rules:

• On the first move, Vera may flip over any of the 2023 coins.

• On all subsequent moves, Vera may only flip over a coin adjacent to the coin
she flipped on the previous move. (We do not consider a coin to be adjacent
to itself.)

Determine the smallest possible number of moves Vera can make to reach a state in
which every coin is heads-up.

The answer is 4044 . In general, replacing 2023 with 4n+ 3, the answer is 8n+ 4.

¶ Bound Observe that the first and last coins must be flipped, and so every coin is
flipped at least once. Then, the 2n+ 1 even-indexed coins must be flipped at least twice,
so they are flipped at least 4n+ 2 times.

The 2n+ 2 odd-indexed coins must then be flipped at least 4n+ 1 times. Since there
are an even number of these coins, the total flip count must be even, so they are actually
flipped a total of at least 4n+ 2 times, for a total of at least 8n+ 4 flips in all.

¶ Construction For k = 0, 1, . . . , n− 1, flip (4k + 1, 4k + 2, 4k + 3, 4k + 2, 4k + 3, 4k +
4, 4k + 3, 4k + 4) in that order; then at the end, flip 4n+ 1, 4n+ 2, 4n+ 3, 4n+ 2. This
is illustrated below for 4n+ 3 = 15.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

It is easy to check this works, and there are 4044 flips, as desired.
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§3.2 TSTST 2023/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p28015680.

Problem statement

Let ABC be an equilateral triangle with side length 1. Points A1 and A2 are chosen
on side BC, points B1 and B2 are chosen on side CA, and points C1 and C2 are
chosen on side AB such that BA1 < BA2, CB1 < CB2, and AC1 < AC2.

Suppose that the three line segments B1C2, C1A2, and A1B2 are concurrent, and
the perimeters of triangles AB2C1, BC2A1, and CA2B1 are all equal. Find all
possible values of this common perimeter.

The only possible value of the common perimeter, denoted p, is 1.

¶ Synthetic approach (from author) We prove the converse of the problem first:

Claim (p = 1 implies concurrence) — Suppose the six points are chosen so that
triangles AB2C1, BC2A1, CA2B1 all have perimeter 1. Then lines B1C2, C1A2, and
A1B2 are concurrent.

Proof. The perimeter conditions mean that B2C1, C2A1, and A2B1 are tangent to the
incircle of 4ABC.

A

B CA1 A2

B1

B2
C1

C2

Hence the result follows by Brianchon’s theorem.

Now suppose p 6= 1. Let B′
2C

′
1 be the dilation of B2C1 with ratio 1

p at center A, and
define C ′

2, A′
1, A′

2, B′
1 similarly. The following diagram showcases the situation p < 1.
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A

B CA′
1 A′

2

B′
1

B′
2

C ′
1

C ′
2

A1 A2

B1

B2
C1

C2

By the reasoning in the p = 1 case, note that B′
1C

′
2, C ′

1A
′
2, and A′

1B
′
2 are concurrent.

However, B1C2, C1A2, A1B2 lie in the interior of quadrilaterals BCB′
1C

′
2, CAC ′

1A
′
2, and

ABA′
1B

′
2, and these quadrilaterals do not share an interior point, a contradiction.

Thus p ≥ 1. Similarly, we can show p ≤ 1, and so p = 1 is forced (and achieved if, for
example, the three triangles are equilateral with side length 1/3).

¶ Barycentric solution (by Carl, Krit, Milan) We show that, if the common perimeter
is 1, then the lines concur. To do this, we use barycentric coordinates. Let A = (1 : 0 : 0),
B = (0 : 1 : 0), and C = (0 : 0 : 1). Let A1 = (0 : 1 − a1 : a1), A2 = (0 : a2 : 1 − a2),
B1 = (b1 : 0 : 1−b1), B2 = (1−b2 : 0 : b2), C1 = (1−c1 : c1 : 0), and C2 = (c2 : 1−c2 : 0).
The line B1C2 is defined by the equation

det

x y z
b1 0 1− b1
c2 1− c2 0

 = 0;

i.e.
x
(
− (1− b1)(1− c2)

)
+ y
(
(1− b1)c2

)
+ z
(
b1(1− c2)

)
= 0.

Computing the equations for the other lines cyclically, we get that the lines B1C2, C1A2,
and A1B2 concur if and only if

det

−(1− b1)(1− c2) (1− b1)c2 b1(1− c2)
c1(1− a2) −(1− c1)(1− a2) (1− c1)a2
(1− a1)b2 a1(1− b2) −(1− a1)(1− b2)

 = 0.

Let this matrix be M . We also define the similar matrix

N =

−(1− b2)(1− c1) (1− b2)c1 b2(1− c1)
c2(1− a1) −(1− c2)(1− a1) (1− c2)a1
(1− a2)b1 a2(1− b1) −(1− a2)(1− b1)

 .

Geometrically, detN = 0 if and only if B′
2C

′
1, C ′

2A
′
1, and A′

2B
′
1 concur, where for a point

P on a side of triangle ABC, P ′ denotes its reflection over that side’s midpoint.
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Claim — We have detM = detN .

Proof. To show detM = detN , it suffices to demonstrate that the determinant above is
invariant under swapping subscripts of “1” and “2,” an operation we call Ψ.

We use the definition of the determinant as a sum over permutations. The even
permutations give us the following three terms:

−(1− b1)(1− c2)(1− c1)(1− a2)(1− a1)(1− b2) = −
2∏

i=1

(
(1− ai)(1− bi)(1− ci)

)
(1− a1)b2(1− b1)c2(1− c1)a2 =

(
(1− a1)(1− b1)(1− c1)

)(
a2b2c2

)
c1(1− a2)a1(1− b2)b1(1− c2) =

(
(1− a2)(1− b2)(1− c2)

)(
a1b1c1

)
.

The first term is invariant under Ψ, while the second and third terms are swapped under
Ψ. For the odd permutations, we have a contribution to the determinant of∑

cyc
(1− b1)(1− c2)(1− c1)a2a1(1− b2);

each summand is invariant under Ψ. This finishes the proof of our claim.

Now, it suffices to show that, if AB2C1, BC2A1, and CA2B1 each have perimeter 1,
then

det

−(1− b2)(1− c1) (1− b2)c1 b2(1− c1)
c2(1− a1) −(1− c2)(1− a1) (1− c2)a1
(1− a2)b1 a2(1− b1) −(1− a2)(1− b1).

 = 0.

Indeed, we have AB2 = b2 and AC1 = c1, so by the law of cosines,

1− b2 − c1 = 1−AB2 −AC1 = B2C1 =
√
b22 + c21 − b2c1.

This gives

(1− b2 − c1)
2 = b22 + c21 − b2c1 =⇒ 1− 2b2 − 2c1 + 3b2c1 = 0.

Similarly, 1− 2c2 − 2a1 + 3c2a1 = 0 and 1− 2a2 − 2b1 + 3a2b1 = 0.
Now,

N

11
1

 =

−(1− b2)(1− c1) + (1− b2)c1 + b2(1− c1)
−(1− c2)(1− a1) + (1− c2)a1 + c2(1− a1)
−(1− a2)(1− b1) + (1− a2)b1 + a2(1− b1)


=

−1 + 2b2 + 2c1 − 3b2c1
−1 + 2c2 + 2a1 − 3c2a1
−1 + 2a2 + 2b1 − 2a2b1

 =

00
0

 .

So it follows detN = 0, as desired.

27



USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

§3.3 TSTST 2023/9, proposed by Holden Mui
Available online at https://aops.com/community/p28015688.

Problem statement

Let p be a fixed prime and let a ≥ 2 and e ≥ 1 be fixed integers. Given a function
f : Z/aZ → Z/peZ and an integer k ≥ 0, the kth finite difference, denoted ∆kf , is
the function from Z/aZ to Z/peZ defined recursively by

∆0f(n) = f(n)

∆kf(n) = ∆k−1f(n+ 1)−∆k−1f(n) for k = 1, 2, . . . .

Determine the number of functions f such that there exists some k ≥ 1 for which
∆kf = f .

The answer is
(pe)a · p−epνp(a) = pe(a−pνp(a)).

¶ First solution by author For convenience in what follows, set d = νp(a), let a = pd · b,
and let a function f : Z/aZ → Z/peZ be essential if it equals one of its iterated finite
differences.

The key claim is the following.

Claim (Characterization of essential functions) — A function f is essential if and
only if

f(x) + f(x+ pd) + · · ·+ f(x+ (b− 1)pd) = 0 (2)

for all x.

As usual, we split the proof into two halves.

Proof that essential implies the equation First, suppose that f is essential, with
∆Nf = f . Observe that f is in the image of ∆k for any k, because ∆mNf = f for any
m. The following lemma will be useful.

Lemma
Let g : Z/aZ → Z/peZ be any function, and let h = ∆pdg. Then

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd) ≡ 0 (mod p)

for all x.

Proof. By definition,

h(x) = ∆pdg(x) =

pd∑
k=0

(−1)k
(
pd

k

)
g(x+ pd − k).

However, it is known that
(
pd

k

)
is a multiple of p if 1 ≤ k ≤ pd − 1, so

h(x) ≡ g(x+ pd) + (−1)p
d
g(x) (mod p).
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Using this, we easily obtain

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd)

≡

{
0 p > 2

2(g(x) + g(x+ pd) + · · ·+ g(x+ (b− 1)pd)) p = 2

≡ 0 (mod p),

as desired.

Corollary
Let g : Z/aZ → Z/peZ be any function, and let h = ∆epdg. Then

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd) = 0

for all x.

Proof. Starting with the lemma, define

h1(x) =
h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd)

p
.

Applying the lemma to h1 shows the corollary for e = 2, since h1(x) is divisible by p,
hence the numerator is divisible by p2. Continue in this manner to get the result for
general e > 2.

This immediately settles this direction, since f is in the image of ∆epd .

Proof the equation implies essential Let S be the set of all functions satisfying
2; then it’s easy to see that ∆ is a function on S. To show that all functions in S are
essential, it’s equivalent to show that ∆ is a permutation on S.

We will show that ∆ is injective on S. Suppose otherwise, and consider two functions f ,
g in S with ∆f = ∆g. Then, we obtain that f and g differ by a constant; say g = f + λ.
However, then

g(0) + g(pe) + · · ·+ g((b− 1)pe)

= (f(0) + λ) + (f(pe) + λ) + · · ·+ (f((b− 1)pe) + λ)

= bλ.

This should also be zero. Since p - b, we obtain λ = 0, as desired.

Counting Finally, we can count the essential functions: all but the last pd entries
can be chosen arbitrarily, and then each remaining entry has exactly one possible choice.
This leads to a count of

(pe)a−pd = pe(a−pνp(a)),

as promised.

¶ Second solution by Daniel Zhu There are two parts to the proof: solving the e = 1
case, and using the e = 1 result to solve the general problem by induction on e. These
parts are independent of each other.
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The case e = 1 Represent functions f as elements

αf :=
∑

k∈Z/aZ

f(−k)xk ∈ Fp[x]/(x
a − 1)

Then, since α∆f = (x − 1)αf , we wish to find the number of α ∈ Fp[x]/(x
a − 1) such

that (x− 1)mα = α for some m.
Now, make the substitution y = x − 1 and let P (y) = (y + 1)a − 1; we want to find

α ∈ Fp[y]/(P (y)) such that ymα = α for some m.
If we write P (y) = ydQ(y) with Q(0) 6= 0, then by the Chinese Remainder Theorem

we have the ring isomorphism

Fp[y]/(P (y)) ∼= Fp[y]/(y
d)× Fp[y]/(Q(y)).

Note that y is nilpotent in the first factor, while it is a unit in the second factor. So the
α that work are exactly those that are zero in the first factor; thus there are pa−d such α.
We can calculate d = pvp(a) (via, say, Lucas’s Theorem), so we are done.

The general problem The general idea is as follows: call a f : Z/aZ → Z/peZ e-good
if ∆mf = f for some m. Our result above allows us to count the 1-good functions. Then,
if e ≥ 1, every (e+ 1)-good function, when reduced mod pe, yields an e-good function,
so we count (e+ 1)-good functions by counting how many reduce to any given e-good
function.

Formally, we use induction on e, with the e = 1 case being treated above. Suppose
now we have solved the problem for a given e ≥ 1, and we now wish to solve it for e+ 1.
For any function g : Z/aZ → Z/pe+1Z, let ḡ : Z/aZ → Z/peZ be its reduction mod pe.
For a given e-good f , let n(f) be the number of (e+1)-good g with ḡ = f . The following
two claims now finish the problem:

Claim — If f is e-good, then n(f) > 0.

Proof. Suppose m is such that ∆mf = f . Pick any g with ḡ = f , and consider the
sequence of functions

g,∆mg,∆2mg, . . . .

Since there are finitely many functions Z/aZ → Z/pe+1Z, there must exist a < b such
that ∆amg = ∆bmg. We claim ∆amg is the desired (e + 1)-good function. To see this,
first note that since ∆kg = ∆kḡ, we must have ∆amg = ∆amf = f . Moreover,

∆(b−a)m(∆amg) = ∆bmg = ∆amg,

so ∆amg is (e+ 1)-good.

Claim — If f is e-good, and n(f) > 0, then n(f) is exactly the number of 1-good
functions, i.e. pa−pvp(a) .

Proof. Let g be any (e+1)-good function with ḡ = f . We claim that the (e+1)-good g1
with ḡ1 = f are exactly the functions of the form g + peh for any 1-good h. Since these
functions are clearly distinct, this characterization will prove the claim.
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To show that this condition is sufficient, note that g + peh = ḡ = f . Moreover, if
∆mg = g and ∆m′

h = h, then

∆mm′
(g + peh) = ∆mm′

g + pe∆mm′
h = g + peh.

To show that this condition is necessary, let g1 be any (e+ 1)-good function such that
ḡ1 = f . Then g1 − g is also (e+ 1)-good, since if ∆mg = g, ∆m′

g1 = g1, we have

∆mm′
(g1 − g) = ∆mm′

g1 −∆mm′
g = g1 − g.

On the other hand, we also know that g1 − g is divisible by pe. This means that it must
be peh for some function f : Z/aZ → Z/pZ, and it is not hard to show that g1 − g being
(e+ 1)-good means that h is 1-good.
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Mathematical Olympiad Summer Program

Evan Chen《陳誼廷》
June 25, 2023

The cutoff for TST group is 24 points (this was 38 students of 65 eligible students).

§1 Summary of scores for TSTST 2023
N 65
µ 26.92
σ 12.78

1st Q 20
Median 26

3rd Q 32

Max 58
Top 3 53

Top 12 35

§2 Problem statistics for TSTST 2023

P1 P2 P3 P4 P5 P6 P7 P8 P9
0 10 36 35 21 32 52 2 35 47

1 5 6 11 2 11 1 2 4 7

2 0 0 3 0 4 0 3 4 1

3 0 0 2 0 4 0 0 1 3

4 0 0 0 0 0 0 0 3 1

5 0 0 0 1 4 1 1 1 1

6 0 1 2 0 3 1 6 3 0

7 50 22 12 41 7 10 51 14 5

Avg 5.46 2.55 1.83 4.52 1.82 1.26 6.25 2.28 0.95

QM 6.15 4.15 3.28 5.60 3.07 2.91 6.51 3.71 2.23
#5+ 50 23 14 42 14 12 58 18 6
%5+ %76.9 %35.4 %21.5 %64.6 %21.5 %18.5 %89.2 %27.7 %9.2
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§3 Rankings for TSTST 2023
Sc Num Cu Per
63 0 0 0.00%
62 0 0 0.00%
61 0 0 0.00%
60 0 0 0.00%
59 0 0 0.00%
58 1 1 1.54%
57 0 1 1.54%
56 1 2 3.08%
55 0 2 3.08%
54 0 2 3.08%
53 1 3 4.62%
52 0 3 4.62%
51 1 4 6.15%
50 1 5 7.69%
49 2 7 10.77%
48 0 7 10.77%
47 0 7 10.77%
46 0 7 10.77%
45 0 7 10.77%
44 1 8 12.31%
43 0 8 12.31%

Sc Num Cu Per
42 1 9 13.85%
41 0 9 13.85%
40 1 10 15.38%
39 0 10 15.38%
38 1 11 16.92%
37 0 11 16.92%
36 0 11 16.92%
35 5 16 24.62%
34 0 16 24.62%
33 0 16 24.62%
32 4 20 30.77%
31 2 22 33.85%
30 5 27 41.54%
29 2 29 44.62%
28 1 30 46.15%
27 0 30 46.15%
26 3 33 50.77%
25 3 36 55.38%
24 2 38 58.46%
23 2 40 61.54%
22 2 42 64.62%

Sc Num Cu Per
21 6 48 73.85%
20 3 51 78.46%
19 0 51 78.46%
18 0 51 78.46%
17 1 52 80.00%
16 0 52 80.00%
15 2 54 83.08%
14 1 55 84.62%
13 1 56 86.15%
12 1 57 87.69%
11 0 57 87.69%
10 2 59 90.77%
9 3 62 95.38%
8 0 62 95.38%
7 1 63 96.92%
6 0 63 96.92%
5 0 63 96.92%
4 0 63 96.92%
3 0 63 96.92%
2 1 64 98.46%
1 0 64 98.46%
0 1 65 100.00%

§4 Histogram for TSTST 2023
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