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Toomates Coolección 
 

Los libros de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un 

ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser 
digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele 

suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que 

no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales pretenden 
cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima 

calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, pretende 

convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende 
pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos 

que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el 
libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Estos libros se comparten bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve y 

se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los libros se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” de 

MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 

 

Toomates Coolección Problem Solving (en español):  

Geometría Axiomática  ,  Problemas de Geometría 1  ,  Problemas de Geometría 2 

Introducción a la Geometría ,  Álgebra ,  Teoría de números  ,  Combinatoria  ,  Probabilidad  

Trigonometría  , Desigualdades  ,  Números complejos , Funciones  
 

Toomates Coolección Llibres de Text (en catalán): 

Nombres (Preàlgebra) , Àlgebra , Proporcionalitat , Mesures geomètriques , Geometria analítica

 Combinatòria i Probabilitat , Estadística , Trigonometria , Funcions , Nombres Complexos , 

Àlgebra Lineal , Geometria Lineal , Càlcul Infinitesimal , Programació Lineal , Mates amb Excel 
 

Toomates Coolección Compendiums:  

Ámbito PAU: Catalunya TEC Cat CCSS Valencia Galicia País Vasco Portugal A B Italia UK 

Ámbito Canguro: ESP   CAT   FR   USA   UK   AUS 

Ámbito USA: Mathcounts AMC 8 10 12 AIME  USAJMO  USAMO  TSTST  TST  Putnam 

Ámbito español: OME   OMEFL   OMEC   OMEA   OMEM   CDP 

Ámbito internacional: IMO OMI IGO SMT INMO CMO REOIM Arquimede HMMT BMO 

 Ámbito Pruebas acceso: ACM4 , CFGS , PAP 

Recopilatorios Pizzazz!: Book A  Book B  Book C  Book D  Book E  Pre-Algebra  Algebra 

Recopilatorios AHSME: Book 1 Book 2 Book 3 Book 4 Book 5 Book 6 Book 7 Book 8 Book 9 
 

¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones 

editables “MS Word” de todos los materiales, para facilitar su edición.  

 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 
 

¡No utilices una versión anticuada! Todos estos libros se revisan y amplían constantemente. Descarga 

totalmente gratis la última versión de estos documentos en los correspondientes enlaces superiores, en los 

que siempre encontrarás la versión más actualizada. 
 

Consulta el Catálogo de libros de la biblioteca Toomates Coolección en http://www.toomates.net/biblioteca.htm 
 

Encontrarás muchos más materiales para el aprendizaje de las matemáticas en  www.toomates.net 
 

Visita mi Canal de Youtube: https://www.youtube.com/c/GerardRomo  
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Índex. 
 

 # IMO Enunciados Soluciones Estadísticas 

2000 41  4   

2001 42  6   

2002 43  9   

2003 44  11  14  

2004 45    

2005 46    

2006 47    

2007 48  29   

2008 49  31   

2009 50  33   

2010 51  35   

2011 52    

2012 53    

2013 54  37   

2014 55  41  43  

2015 56  54  56  

2016 57  68  70  

2017 58  80  83  

2018 59  95  97  114 

2019 60  116  118  140 

2020 61  142  144  165 

2021 62  167  168  177 

2022 63  No celebrada   

2023 64  182  183  202 

 

 

 

 

 

 

 

 

 

 

Fuente. 
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41st IMO Team Selection Test

Lincoln, Nebraska

Day I 1:00 p.m. - 5:30 p.m.

June 10, 2002

1. Let a, b, c be nonnegative real numbers. Prove that

a + b + c

3
− 3
√

abc ≤ max{(
√

a−
√

b)2, (
√

b−
√

c)2, (
√

c−
√

a)2}.

2. Let ABCD be a cyclic quadrilateral and let E and F be the feet of perpendiculars
from the intersection of diagonals AC and BD to AB and CD, respectively. Prove
that EF is perpendicular to the line through the midpoints of AD and BC.

3. Let p be a prime number. For integers r, s such that rs(r2 − s2) is not divisible by p,
let f(r, s) denote the number of integers n ∈ {1, 2, . . . , p − 1} such that {rn/p} and
{sn/p} are either both less than 1/2 or both greater than 1/2. Prove that there exists
N > 0 such that for p ≥ N and all r, s,⌈

p− 1

3

⌉
≤ f(r, s) ≤

⌊
2(p− 1)

3

⌋
.

Copyright c© Committee on the American Mathematics Competitions,
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41st IMO Team Selection Test

Lincoln, Nebraska

Day II 1:00 p.m. - 5:30 p.m.

June 11, 2002

4. Let n be a positive integer. Prove that(
n

0

)−1

+

(
n

1

)−1

+ · · ·+
(

n

n

)−1

=
n + 1

2n+1

(
2

1
+

22

2
+ · · ·+ 2n+1

n + 1

)
.

5. Let n be a positive integer. A corner is a finite set S of ordered n-tuples of positive
integers such that if a1, a2, . . . , an, b1, b2, . . . , bn are positive integers with ak ≥ bk for
k = 1, 2, . . . , n and (a1, a2, . . . , an) ∈ S, then (b1, b2, . . . , bn) ∈ S. Prove that among
any infinite collection of corners, there exist two corners, one of which is a subset of
the other one.

6. Let ABC be a triangle inscribed in a circle of radius R, and let P be a point in the
interior of ABC. Prove that

PA

BC2
+

PB

CA2
+

PC

AB2
≥ 1

R
.
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42nd IMO Team Selection Test

Washington, D.C.

Day I 1:00 p.m. - 5:30 p.m.

June 9, 2001

1. Let { an}n≥0 be a sequence of real numbers such that an+1 ≥ a2
n +

1

5
for all n ≥ 0.

Prove that
√

an+5 ≥ a2
n−5 for all n ≥ 5.

2. Express
n∑

k=0

(−1)k(n−k)!(n+k)!

in closed form.

3. For a set S, let |S| denote the number of elements in S. Let A be a set of positive
integers with |A| = 2001. Prove that there exists a set B such that

(i) B ⊆ A;

(ii) |B| ≥ 668;

(iii) for any u, v ∈ B (not necessarily distinct), u + v 6∈ B.

Copyright c© Committee on the American Mathematics Competitions,
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42nd IMO Team Selection Test

Lincoln, Nebraska

Day II 1:00 p.m. - 5:30 p.m.

June 10, 2001

4. There are 51 senators in a senate. The senate needs to be divided into n committees so
that each senator is on one committee. Each senator hates exactly three other senators.
(If senator A hates senator B, then senator B does not necessarily hate senator A.)
Find the smallest n such that it is always possible to arrange the committees so that
no senator hates another senator on his or her committee.

5. In triangle ABC, ∠B = 2∠C. Let P and Q be points on the perpendicular bisector of
segment BC such that rays AP and AQ trisect ∠A. Prove that PQ < AB if and only
if ∠B is obtuse.

6. Let a, b, c be positive real numbers such that

a + b + c ≥ abc.

Prove that at least two of the inequalities

2

a
+

3

b
+

6

c
≥ 6,

2

b
+

3

c
+

6

a
≥ 6,

2

c
+

3

a
+

6

b
≥ 6

are true.
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42nd IMO Team Selection Test

Washington, D.C.

Day III 1:00 p.m. - 5:30 p.m.

June 11, 2001

7. Let ABCD be a convex quadrilateral such that ∠ABC = ∠ADC = 135◦ and

AC2 ·BD2 = 2AB ·BC · CD ·DA.

Prove that the diagonals of quadrilateral ABCD are perpendicular.

8. Find all pairs of nonnegative integers (m, n) such that

(m + n− 5)2 = 9mn.

9. Let A be a finite set of positive integers. Prove that there exists a finite set B of
positive integers such that A ⊆ B and∏

x∈B

x =
∑
x∈B

x2.
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43rd IMO Team Selection Test

Lincoln, Nebraska

Day I 8:30 a.m. - 1:00 p.m.

June 21, 2002

1. Let ABC be a triangle. Prove that

sin
3A

2
+ sin

3B

2
+ sin

3C

2
≤ cos

A−B

2
+ cos

B − C

2
+ cos

C − A

2
.

2. Let p be a prime number greater than 5. For any integer x, define

fp(x) =

p−1∑
k=1

1

(px + k)2
.

Prove that for all positive integers x and y the numerator of fp(x)−fp(y), when written
in lowest terms, is divisible by p3.

3. Let n be an integer greater than 2, and P1, P2, · · · , Pn distinct points in the plane. Let
S denote the union of all segments P1P2, P2P3, . . . , Pn−1Pn. Determine if it is always
possible to find points A and B in S such that P1Pn ‖ AB (segment AB can lie on line
P1Pn) and P1Pn = kAB, where (1) k = 2.5; (2) k = 3.

Copyright c© Committee on the American Mathematics Competitions,
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43rd IMO Team Selection Test

Lincoln, Nebraska

Day II 8:30 a.m. - 1:00 p.m.

June 22, 2002

4. Let n be a positive integer and let S be a set of 2n + 1 elements. Let f be a function
from the set of two-element subsets of S to {0, . . . , 2n−1 − 1}. Assume that for any
elements x, y, z of S, one of f({x, y}), f({y, z}), f({z, x}) is equal to the sum of the
other two. Show that there exist a, b, c in S such that f({a, b}), f({b, c}), f({c, a}) are
all equal to 0.

5. Consider the family of nonisoceles triangles ABC satisfying the property AC2+BC2 =
2AB2. Points M and D lie on side AB such that AM = BM and ∠ACD = ∠BCD.
Point E is in the plane such that D is the incenter of triangle CEM . Prove that
exactly one of the ratios

CE

EM
,

EM

MC
,

MC

CE

is constant.

6. Find in explicit form all ordered pairs of positive integers (m, n) such that mn − 1
divides m2 + n2.

Copyright c© Committee on the American Mathematics Competitions,
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The Problems 3

2 Team Selection Test
44th IMO Team Selection Test

Lincoln, Nebraska

Day I 1:00 PM – 5:30 PM

June 20, 2003

1. For a pair of integers a and b, with 0 < a < b < 1000, the set
S ⊆ {1, 2, . . . , 2003} is called a skipping set for (a, b) if for any
pair of elements s1, s2 ∈ S, |s1 − s2| 6∈ {a, b}. Let f(a, b) be the
maximum size of a skipping set for (a, b). Determine the maximum
and minimum values of f .

2. Let ABC be a triangle and let P be a point in its interior. Lines
PA, PB, and PC intersect sides BC, CA, and AB at D, E, and F ,
respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1

2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC.
(Here [XY Z] denotes the area of triangle XY Z.)

3. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.



4 USA and International Mathematical Olympiads 2003

44th IMO Team Selection Test

Lincoln, Nebraska

Day II 8:30 AM – 1:00 PM

June 21, 2003

4. Let N denote the set of positive integers. Find all functions f : N→ N
such that

f(m+ n)f(m− n) = f(m2)

for all m,n ∈ N.
5. Let a, b, c be real numbers in the interval (0, π2 ). Prove that

sin a sin(a− b) sin(a− c)
sin(b+ c)

+
sin b sin(b− c) sin(b− a)

sin(c+ a)

+
sin c sin(c− a) sin(c− b)

sin(a+ b)
≥ 0.

6. Let AH1, BH2, and CH3 be the altitudes of an acute scalene triangle
ABC. The incircle of triangle ABC is tangent to BC,CA, and AB
at T1, T2, and T3, respectively. For k = 1, 2, 3, let Pi be the point on
line HiHi+1 (where H4 = H1) such that HiTiPi is an acute isosceles
triangle with HiTi = HiPi. Prove that the circumcircles of triangles
T1P1T2, T2P2T3, T3P3T1 pass through a common point.



8 USA and International Mathematical Olympiads 2003

2 Team Selection Test
1. The extremes can be obtained by different approaches. One requires
the greedy algorithm, another applies congruence theory.

2. Apply the ingredients that prove Ceva’s Theorem to convert this into
an algebra problem.

3. Prove that one of the primes is 2.

4. Play with the given relation and compute many values of the function.

5. Reduce this to Schur’s Inequality.

6. The common point is the orthocenter of triangle T1T2T3.
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2 Team Selection Test
1. For a pair of integers a and b, with 0 < a < b < 1000, the set
S ⊆ {1, 2, . . . , 2003} is called a skipping set for (a, b) if for any
pair of elements s1, s2 ∈ S, |s1 − s2| 6∈ {a, b}. Let f(a, b) be the
maximum size of a skipping set for (a, b). Determine the maximum
and minimum values of f .

Note. This problem caused unexpected difficulties for students. It requires
two ideas: applying the greedy algorithm to obtain the minimum and
applying the Pigeonhole Principle on congruence classes to obtain the
maximum. Most students were successful in getting one of the two ideas
and obtaining one of the extremal values quickly, but then many of them
failed to switch to the other idea. In turn, their solutions for the second
extremal value were very lengthy and sometimes unsuccessful.

Solution. The maximum and minimum values of f are 1334 and 338,
respectively.

(a) First, we will show that the maximum value of f is 1334. The set
S = {1, 2, . . . , 667} ∪ {1336, 1337, . . . , 2002} is a skipping set for
(a, b) = (667, 668), so f(667, 668) ≥ 1334.
Now we prove that for any 0 < a < b < 1000, f(a, b) ≤ 1334.

Because a 6= b, we can choose d ∈ {a, b} such that d 6= 668. We
assume first that d ≥ 669. Then consider the 2003 − d ≤ 1334 sets
{1, d+1}, {2, d+2}, . . . , {2003−d, 2003}. Each can contain at most
one element of S, so |S| ≤ 1334.
We assume second that d ≤ 667 and that § 2003a ¨

is even, that is,§
2003
a

¨
= 2k for some positive integer k. Then each of the congruence

classes of 1, 2, . . . , 2003 modulo a contains at most 2k elements.
Therefore at most k members of each of these congruence classes
can belong to S. Consequently,

|S| ≤ ka < 1

2

µ
2003

a
+ 1

¶
a =

2003 + a

2

≤ 1335,

implying that |S| ≤ 1334.
Finally, we assume that d ≤ 667 and that

§
2003
a

¨
is odd, that

is,
§
2003
a

¨
= 2k + 1 for some positive integer k. Then, as before,

S can contain at most k elements from each congruence class of
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{1, 2, . . . , 2ka} modulo a. Then
|S| ≤ ka+ (2003− 2ka) = 2003− ka

= 2003−
Ã§

2003
a

¨− 1
2

!
a

≤ 2003−
µ 2003

a − 1
2

¶
a

=
2003 + a

2
≤ 1335.

The last inequality holds if and only if a = 667. But if a = 667, then
2003
a is not an integer, and so the second inequality is strict. Thus,
|S| ≤ 1334. Therefore the maximum value of f is 1334.

(b) We will now show that the minimum value of f is 668. First, we will
show that f(a, b) ≥ 668 by constructing a skipping set S for any (a, b)
with |S| ≥ 668. Note that if we add x to S, then we are not allowed to
add x, x+a, or x+b to S at any later time. Then at each step, let us add
to S the smallest element of {1, 2, . . . , 2003} that is not already in S
and that has not already been disallowed from being in S. Then since
adding this element prevents at most three elements from being added
at any future time, we can always perform this step

§
2003
3

¨
= 668

times. Thus, |S| ≥ 668, so f(a, b) ≥ 668. Now notice that if we let
a = 1, b = 2, then at most one element from each of the 668 sets
{1, 2, 3}, {4, 5, 6}, . . . , {1999, 2000, 2001}, {2002, 2003} can belong
to S. This implies that f(1, 2) = 668, so indeed the minimum value
of f is 668.

2. Let ABC be a triangle and let P be a point in its interior. Lines
PA, PB, and PC intersect sides BC, CA, and AB at D, E, and F ,
respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1

2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC.
(Here [XY Z] denotes the area of triangle XY Z.)

Solution. Let [PAF ] = x, [PBD] = y, [PCE] = z, [PAE] = u,
[PCD] = v, and [PBF ] = w.
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v

w

u

z

y

x

P
F E

D CB

A

Note first that
x

w
=
x+ u+ z

w + y + v
=
u+ z

y + v
=
AF

FB
,

y

v
=
x+ y + w

u+ v + z
=
x+ w

u+ z
=
BD

DC
,

z

u
=
y + z + v

x+ u+ w
=
y + v

x+ w
=
CE

EA
.

Point P lies on one of the medians if and only if

(x− w)(y − v)(z − u) = 0. (∗)
By Ceva’s Theorem, we have

xyz

uvw
=
AF

FB
· BD
DC

· CE
EA

= 1,

or,
xyz = uvw. (1)

Multiplying out xw =
u+z
y+v yields xy+xv = uw+zw. Likewise, uy+yz =

xv + vw and xz + zw = uy + uv. Summing up the last three relations,
we obtain

xy + yz + zx = uv + vw + wu. (2)

Now we are ready to prove the desired result. We first prove the “if”
part by assuming that P lies on one of the medians, say AD. Then
y = v, and so y

v =
x+w
u+z and xyz = uvw become x + w = u + z and

xz = uw, respectively. Then the numbers x,−z and u,−w have the same
sum and the same product. It follows that x = u and z = w. Therefore
x+ y + z = u+ v + w, as desired.
Conversely, we assume that

x+ y + z = u+ v + w. (3)
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From (1), (2), and (3) it follows that x, y, z and u, v, w are roots of the
same degree three polynomial. Hence {x, y, z} = {u, v, w}. If x = w or
y = v or z = u, then the conclusion follows by (∗). If x = u, y = w, and
z = v, then from

x

w
=
u+ z

y + v
=
u+ z − x
y + v − w =

z

v
= 1,

we obtain x = w. Likewise, we have y = v, and so x = y = z = u = v =
w, that is, P is the centroid of triangle ABC and the conclusion follows.
Finally, if x = v, y = u, z = w, then from

x

w
=
x+ u+ z

w + y + v
=
x+ y + z

w + u+ v
= 1,

we obtain x = w. Similarly, y = v and P is again the centroid.

3. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.

Solution. Answer: (2, 5, 3) and cyclic permutations.
We check that this is a solution:

2 | 126 = 53 + 1, 5 | 10 = 32 + 1, 3 | 33 = 25 + 1.
Now let p, q, r be three primes satisfying the given divisibility relations.

Since q does not divide qr + 1, p 6= q, and similarly q 6= r, r 6= p, so p, q
and r are all distinct. We now prove a lemma.
Lemma. Let p, q, r be distinct primes with p | qr + 1, and p > 2.

Then either 2r | p− 1 or p | q2 − 1.
Proof. Since p | qr + 1, we have

qr ≡ −1 6≡ 1 (mod p), because p > 2,

but
q2r ≡ (−1)2 ≡ 1 (mod p).

Let d be the order of q mod p; then from the above congruences, d divides
2r but not r. Since r is prime, the only possibilities are d = 2 or d = 2r.
If d = 2r, then 2r | p−1 because d | p−1. If d = 2, then q2 ≡ 1 (mod p)
so p | q2 − 1. This proves the lemma.
Now let’s first consider the case where p, q and r are all odd. Since

p | qr + 1, by the lemma either 2r | p− 1 or p | q2 − 1. But 2r | p− 1 is
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impossible because

2r | p− 1 =⇒ p ≡ 1 (mod r) =⇒ 0 ≡ pq + 1 ≡ 2 (mod r)
and r > 2. So we must have p | q2 − 1 = (q − 1)(q + 1). Since p is an
odd prime and q − 1, q + 1 are both even, we must have

p | q − 1
2

or p | q + 1
2
;

either way,
p ≤ q + 1

2
< q.

But then by a similar argument we may conclude q < r, r < p, a
contradiction.
Thus, at least one of p, q, r must equal 2. By a cyclic permutation we

may assume that p = 2. Now r | 2q+1, so by the lemma, either 2q | r−1
or r | 22 − 1. But 2q | r − 1 is impossible as before, because q divides
r2 + 1 = (r2 − 1) + 2 and q > 2. Hence, we must have r | 22 − 1. We
conclude that r = 3, and q | r2 + 1 = 10. Because q 6= p, we must have
q = 5. Hence (2, 5, 3) and its cyclic permutations are the only solutions.

4. Let N denote the set of positive integers. Find all functions f : N→ N
such that

f(m+ n)f(m− n) = f(m2)

for all m,n ∈ N.

Solution. Function f(n) = 1, for all n ∈ N, is the only function satisfying
the conditions of the problem.
Note that

f(1)f(2n− 1) = f(n2) and f(3)f(2n− 1) = f((n+ 1)2)
for n ≥ 3. Thus

f(3)

f(1)
=
f((n+ 1)2)

f(n2)
.

Setting f(3)
f(1) = k yields f(n2) = kn−3f(9) for n ≥ 3. Similarly, for all

h ≥ 1,
f(h+ 2)

f(h)
=
f((m+ 1)2)

f(m2)

for sufficiently large m and is thus also k. Hence f(2h) = kh−1f(2) and
f(2h+ 1) = khf(1).
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But
f(25)

f(9)
=
f(25)

f(23)
· · · f(11)

f(9)
= k8

and
f(25)

f(9)
=
f(25)

f(16)
· f(16)
f(9)

= k2,

so k = 1 and f(16) = f(9). This implies that f(2h+1) = f(1) = f(2) =
f(2j) for all j, h, so f is constant. From the original functional equation
it is then clear that f(n) = 1 for all n ∈ N.

5. Let a, b, c be real numbers in the interval (0, π2 ). Prove that

sin a sin(a− b) sin(a− c)
sin(b+ c)

+
sin b sin(b− c) sin(b− a)

sin(c+ a)

+
sin c sin(c− a) sin(c− b)

sin(a+ b)
≥ 0.

Solution. By the Product-to-sum formulas and the Double-angle for-
mulas, we have

sin(α− β) sin(α+ β) =
1

2
[cos 2β − cos 2α]

= sin2 α− sin2 β.
Hence, we obtain

sin a sin(a− b) sin(a− c) sin(a+ b) sin(a+ c)
= sin c(sin2 a− sin2 b)(sin2 a− sin2 c)

and its analogous forms. Therefore, it suffices to prove that

x(x2 − y2)(x2 − z2) + y(y2 − z2)(y2 − x2) + z(z2 − x2)(z2 − y2) ≥ 0,
where x = sin a, y = sin b, and z = sin c (hence x, y, z > 0). Since the
last inequality is symmetric with respect to x, y, z, we may assume that
x ≥ y ≥ z > 0. It suffices to prove that
x(y2 − x2)(z2 − x2) + z(z2 − x2)(z2 − y2) ≥ y(z2 − y2)(y2 − x2),

which is evident as

x(y2 − x2)(z2 − x2) ≥ 0
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and

z(z2 − x2)(z2 − y2) ≥ z(y2 − x2)(z2 − y2) ≥ y(z2 − y2)(y2 − x2).

Note. The key step of the proof is an instance of Schur’s Inequality with
r = 1

2 .

6. Let AH1, BH2, and CH3 be the altitudes of an acute scalene triangle
ABC. The incircle of triangle ABC is tangent to BC,CA, and AB
at T1, T2, and T3, respectively. For k = 1, 2, 3, let Pi be the point on
line HiHi+1 (where H4 = H1) such that HiTiPi is an acute isosceles
triangle with HiTi = HiPi. Prove that the circumcircles of triangles
T1P1T2, T2P2T3, T3P3T1 pass through a common point.

Note. We present three solutions. The first two are synthetic geometry
approaches based on the following Lemma. The third solution calculates
the exact position of the common point. In these solutions, all angles are
directed modulo 180◦. If reader is not familiar with the knowledge of
directed angles, please refer our proofs with attached Figures. The proofs of
the problem for other configurations can be developed in similar fashions.
Lemma. The circumcenters of triangles T2P2T3, T3P3T1, and T1P1T2
are the incenters of triangles AH2H3, BH3H1, and CH1H2, respectively.
Proof. We prove that the circumcenter of triangle T2P2T3 is the

incenter of triangle AH2H3; the other two are analogous. It suffices to
show that the perpendicular bisectors of T2T3 and T2P2 are the interior
angle bisectors of ∠H3AH2 and ∠AH2H3. For the first pair, notice that

H3

I

C

B

A

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1
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triangle AT2T3 is isosceles with AT2 = AT3 by equal tangents. Also,
because triangle ABC is acute, T2 is on ray AH2 and T3 is on ray AH3.
Therefore, the perpendicular bisector of T2T3 is the same as the interior
angle bisector of ∠T3AT2, which is the same as the interior angle bisector
of ∠H3AH2.
We prove the second pair similarly. Here, triangle H2T2P2 is isosceles

with H2T2 = H2P2 by assumption. Also, P2 is on lineH2H3 and T2 is on
line H2A. Because quadrilateral BH3H2C is cyclic, ∠AH2H3 = ∠B is
acute. Now, ∠T2H2P2 is also acute by assumption, so P2 is on ray H2H3
if and only if T2 is on rayH2A. In other words, ∠T2H2P2 either coincides
with ∠AH2H3 or is the vertical angle opposite it. In either case, we see
that the perpendicular bisector of T2P2 is the same as the interior angle
bisector of ∠T2H2P2, which is the same as the interior angle bisector of
∠AH2H3.
Let ω1,ω2,ω3 denote the circumcircles of triangles T2P2T3, T3P3T1,

T1P1T2, respectively. For i = 1, 2, 3, let Oi be center of ωi. By the Lemma,
O1, O2, O3 are the incenters of triangles AH2H3, BH3H1, CH1H2,
respectively. Let I , ω, and r be the incenter, incircle, and inradius of
triangle ABC, respectively.

First Solution. (By Po-Ru Loh) We begin by showing that points
O3, H2, T2, and O3 lie on a cyclic. We will prove this by establishing
∠O3O1H2 = ∠O3T2C = ∠O3T2H2. To find ∠O3O1H2, observe that
triangles H2AH3 and H2H1C are similar. Indeed, quadrilateral BH3H2C

H3

I

C

B

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1

D

A
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is cyclic so ∠H2H3A = ∠C, and likewise ∠CH1H2 = ∠A. Now, O1
and O3 are corresponding incenters of similar triangles, so it follows that
triangles H2AO1 and H2H1O3 are also similar, and hence are related by
a spiral similarity about H2. Thus,

AH2
H1H2

=
O1H2
O3H2

and

∠AH2H1 = ∠AH2O1 + ∠O1H2H1
= ∠O1H2H1 + ∠H1H2O3 = ∠O1H2O3.

It follows that another spiral similarity about H2 takes triangle H2AH1 to
triangle H2O1O3. Hence ∠O3O1H2 = ∠H1AH2 = 90◦ − ∠C.
We wish to show that ∠O3T2C = 90◦−∠C as well, or in other words,

T2O3 ⊥ BC. To do this, drop the altitude from O3 to BC and let it
intersect BC at D. Triangles ABC and H1H2C are similar as before,
with corresponding incenters I and O3. Furthermore, IT2 and O3D also
correspond. Hence, CT2/T2A = CD/DH1, and so T2D k AH1. Thus,
T2D ⊥ BC, and it follows that T2O3 ⊥ BC.

H3

I

C

B

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1

A

H
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Having shown thatO1H2T2O3 is cyclic, we may now write∠O1T2O3 =
∠O1H2O3. Since triangles H2AO1 and H2H1O3 are related by a spiral
similarity about H2, we have

∠O1H2O3 = ∠AH2H1 = 180◦ − ∠B,

by noting that ABH2H1 is cyclic. Likewise,

∠O2T3O1 = 180◦ − ∠C and ∠O3T1O2 = 180◦ − ∠A,

and so ∠O1T2O3+∠O2T3O1+∠O3T1O2 = 360◦. Therefore, ∠T3O1T2,
∠T1O2T3, and ∠T2O3T1 of hexagon O1T2O3T1O2T3 also sum to 360◦.
Now let H be the intersection of circles ω1 and ω2. Then ∠T2HT3 =
180◦ − 1

2∠T3O1T2 and ∠T3HT1 = 180◦ − 1
2∠T1O2T3. Therefore,

∠T1HT2 = 360◦ − ∠T2HT3 − ∠T3HT1
=
1

2
∠T3O1T2 +

1

2
∠T1O2T3 = 180◦ − 1

2
∠T1O3T2,

and so H lies on the circle ω3 as well. Hence, circles ω1, ω2, and ω3 share
a common point, as wanted.

Note. Readers might be nervous about the configurations, i.e., what if the
hexagon O1T2O3T1O2T3 is not convex? Indeed, it is convex. It suffices to
show that O1, O2, and O3 are inside triangles AT2T3, BT3T1, and CT1T2,
respectively. By symmetry, we only show that O1 is inside AT2T3. Let d
denote the distance from A to line T2T3. Then

d

AI
=

d

AT2
· AT2
AI

= cos2
∠A
2
.

On the other hand, triangles AH2H3 and ABC are similar with ratio
cos∠A. Hence

AO1
AI

= cos∠A = 2 cos2 ∠A
2
− 1 ≤ cos2 ∠A

2
=

d

AI
,

by the Double-angle formulas. We conclude that O1 is inside triangle
AT2T3. Our second proof is based on above arguments.

Second Solution. (By Anders Kaseorg) Note that AH2 = AB cos∠A
and AH3 = AC cos∠A, so triangles AH2H3 and ABC are similar
with ratio cos∠A. Thus, since O1 is the incircle of triangle AH2H3,
AO1 = AI cos∠A. If X1 is the intersection of segments AI and T2T3,
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H3

CB

P3

T3

T2

T1

P1

P2
H2

H1

O3

O2

O1

A

H
I

X

X1

we have ∠IX1T2 = ∠AT2I = 90◦, and so

X1I = T2I cos∠T2IA = AI cos2 ∠T2IA = AI sin2
∠A
2

= AI · 1− cos∠A
2

=
AI −AO1

2
=
O1I

2
.

Hence O1X1 = X1I , so O1 is the reflection of I across line T2T3,
and O1T2 = IT2 = IT3 = O1T3. Therefore, O1T2IT3, and similarly
O2T3IT1 and O3T1IT2, are rhombi with the same side length r, implying
that circles ω1,ω2,ω have the same radius r. We also conclude that
O1T2 = T3I = O2T1 and O1T2 k T3I k O2T1, and so O1O2T1T2 is
a parallelogram. Hence the midpoints of O1T1 and O2T2 (similarly O3T3)
are the same point P , and O1O2O3 is the reflection of T1T2T3 across P .
If H is the reflection of I across P , we have O1H = O2H = O3H = r,
that is, H is a common point of the three circumcircles.

Note. Tony Zhang suggested the following finish. Because O1 is the
reflection of I across line T2T3 and I is the circumcenter of triangle
T1T2T3, ∠T3O1T2 = ∠T2IT3 = 2∠T2T1T3. If H 0 is the orthocenter of
triangle T1T2T3, then

∠T2H 0T3 = 180◦ − ∠T2T1T3 = 180◦ − ∠T3O1T2
2

,

and so H 0 lies on ω1. Similarly, H 0 lies on ω2 and ω3.
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Third Solution. We use directed lengths (along line BC, with C to B as
the positive direction) and directed angles modulo 180◦ in this proof. (For
segments not lying on line BC, we assume its direction as the direction of
its projection on line BC.) We claim that ωi, i = 1, 2, 3, all pass through
H , the orthocenter of triangle T1T2T3. Without loss of generality, it suffices
to prove that T1P1T2H is cyclic. If AB = AC, then T1 = H1 = P1
and the case is trivial. Let AB = c, BC = a, CA = b, ∠BAC = α,
∠CBA = β, and ∠ACB = γ.

H3

T3

T2

T1

P1

H2

H1

I

A

B Q C

H

Let Q be the intersection of lines HP1 and BC. Note that

∠HT2T1 = 90◦ − ∠T2T1T3
= 90◦ − [180◦ − ∠T3T1B − ∠CT1T2]

= 90◦ −
∙
180◦ −

µ
90◦ − β

2

¶
−
µ
90◦ − C

2

¶¸
=
α

2
.

(Likewise, ∠T2T1H = β/2.) Thus to prove that T1P1T2H is cyclic is
equivalent to prove that ∠QP1T1 = α/2.
Let QH and QP be the respective feet of perpendiculars from H and

P1 to line BC. Because ∠AH1B = ∠AH2B = 90◦, ABH1H2 is cyclic,
and so ∠T1H1P1 = ∠BH1P1 = α. Thus triangles AT3T2 and H1T1P1
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are similar, implying that

∠QPP1T1 = 90◦ − ∠P1T1H1 = 90◦ −
µ
90◦ − ∠T1H1P1

2

¶
=
α

2
.

Therefore, to prove that ∠QP1T1 = α/2, we have now reduced to proving
that QP = QH , or

T1QP
T1H1

=
T1QH
T1H1

. (1)

Note that

T1H1 = P1H1 and
T1QP
T1H1

= 1− QPH1
T1H1

,

that is,

T1QP
T1H1

= 1− QPH1
P1H1

= 1− cos∠T1H1P1 = 1− cosα. (2)

On the other hand, applying the Law of Cosines to triangle ABC gives

T1H1 = T1C −H1C = a+ b− c
2

− b cos γ

=
a+ b− c

2
− a

2 + b2 − c2
2a

=
a(b− c)− (b2 − c2)

2a
,

or

T1H1 =
(b− c)(a− b− c)

2a
=
(c− b)(b+ c− a)

2a
. (3)

Now we calculate T1QH . BecauseH is the orthocenter of triangle T1T2T3,

∠T1HT2 = 180◦ − ∠HT2T1 − ∠T2T1H
= (90◦ − ∠HT2T1) + (90◦ − ∠T2T1H)
= ∠T2T1T3 + ∠T3T2T1 = 180◦ − ∠T1T3T2.

Applying the Law of Sines to triangle T1T2H and applying the Extended
Law of Sines to triangle T1T2T3 gives

T1H

sin∠HT2T1
=

T1T2
sin∠T1HT2

=
T1T2

sin∠T1T3T2
= 2r,

and consequently,

T1H = 2r sin∠HT2T1 = 2r sin
α

2
.
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Because

∠QHT1H = ∠CT1T2 + ∠T2T1H =
³
90◦ − γ

2

´
+
β

2

= 90◦ +
β − γ
2

,

we obtain

T1QH = T1H cos∠HT1QH = 2r sin
α

2
sin

γ − β
2

. (4)

Combining equations (1), (2), (3), and (4), we conclude that it suffices to
prove that

1− cosα = 4ar sin α
2 sin

γ−β
2

(c− b)(b+ c− a) . (5)

Applying the fact
sin α

2

cos α2
= tan

α

2
=

r

AT2
=

2r

b+ c− a,

and applying the Law of Sines to triangle ABC, (5) becomes

1− cosα = 2 sinα sin2 α2 sin
γ−β
2

cos α2 (sin γ − sinβ)
. (6)

By the Double-angle formulas, 1 − cosα = 2 sin2 α2 and sinα =

2 sin α
2 cos

α
2 and so (6) reads

sin γ − sinβ = 2 sin α
2
sin

γ − β
2

.

By the Difference-to-product formulas, the last equation reduces to

2 cos
β + γ

2
sin

γ − β
2

= 2 sin
α

2
sin

γ − β
2

,

which is evident.
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3 IMO
1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}.
Prove that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A} j = 1, 2, . . . , 100

are pairwise disjoint.

Note. The size |S| = 106 is unnecessarily large. See the second solution
for a proof of the following stronger statement:

If A is a k-element subset of S = {1, 2, . . . , n} and m is a
positive integer such that n > (m−1)

³¡
k
2

¢
+ 1
´
, then there exists

t1, t2, . . . , tm in S such that the sets Aj = {x + tj | x ∈ A},
j = 1, 2, . . . ,m are pairwise disjoint.

During the jury meeting, people decided to use the easier version as the
first problem on the contest.

First Solution. Consider the set D = {x − y | x, y ∈ A}. There are
at most 101 × 100 + 1 = 10101 elements in D (where the summand 1
represents the difference x − y = 0 for x = y). Two sets Ai and Aj
have nonempty intersection if and only if ti − tj is in D. It suffices to
choose 100 numbers t1, t2, . . . , t100 in such a way that we do not obtain
a difference from D.
We select these elements by induction. Choose one element arbitrarily.

Assume that k elements, k ≤ 99, have already been chosen. An element
x that is already chosen prevents us from selecting any element from the
set x + D = {x + d | d ∈ D}. Thus, after k elements are chosen, at
most 10101k ≤ 999999 elements are forbidden. Hence we can select one
more element. (Note that the numbers chosen are distinct because 0 is an
element in D.)

Second Solution. (By Anders Kaseorg) We construct the set {tj} one
element at a time using the following algorithm: Let t1 = 1 ∈ A. For each
j, 1 ≤ j ≤ 100, let tj be the smallest number in S that has not yet been
crossed out, and then cross out tj and all numbers of the form tj + |x− y|
(with x, y ∈ A, x 6= y) that are in S. At each step, we cross out at most
1 +

¡
101
2

¢
= 5051 new numbers. After picking t1 through t99, we have

crossed out at most 500049 numbers, so there are always numbers in S
that have not been crossed, so there are always candidates for tj in S. (In
fact, we will never need to pick a tj bigger than 500050.)
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Circles  and  intersect at  and .  and  are chords of  and , respectively, such that  is on segment 
and on ray . Lines  and  intersect at . Let the line through  parallel to  intersect  again at , and let the
line through  parallel to  intersect  again at . Prove  are collinear.

Solution

Let ,  be two nonincreasing sequences of reals such that ,
, ,  and

 For any real number , the number of pairs  such that
 is equal to the number of pairs  such that . Prove that  for .

Solution

For some ,  is irrational. If, for some positive integer ,  and  are both rational,

then show .

Solution

Are there two positive integers  such that, for each positive integer ,  is not divisible by ?

Solution

Let the tangents at  and  to the circumcircle of  meet at . Let the perpendicular to  at  meet ray  at .
Let  lie on  such that  and so that  lies between  and . Prove that

.

Solution

For any polynomial , let  be the remainder mod  from 0 to 1023, inclusive, of  for
. Call the set  the remainder sequence of . Call a remaidner

sequence complete if it is a permutation of . Show that the number of complete remainder sequences is at
most .
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USA Team Selection Test 2008
www.artofproblemsolving.com/community/c4638
by orl, dule 00, April, rrusczyk

Day 1

1 There is a set of n coins with distinct integer weights w1, w2, . . . , wn. It is known that if any coin
with weight wk , where 1 ≤ k ≤ n, is removed from the set, the remaining coins can be split into
two groups of the same weight. (The number of coins in the two groups can be different.) Find
all n for which such a set of coins exists.

2 Let P , Q, and R be the points on sides BC , CA, and AB of an acute triangle ABC such that
trianglePQR is equilateral and hasminimal area among all such equilateral triangles. Prove that
the perpendiculars from A to lineQR, fromB to lineRP , and from C to line PQ are concurrent.

3 For a pair A = (x1, y1) and B = (x2, y2) of points on the coordinate plane, let d(A,B) = |x1 −
x2|+|y1−y2|. We call a pair (A,B) of (unordered) points harmonic if 1 < d(A,B) ≤ 2. Determine
the maximum number of harmonic pairs among 100 points in the plane.

Day 2

4 Prove that for no integer n is n7 + 7 a perfect square.

5 Two sequences of integers, a1, a2, a3, . . . and b1, b2, b3, . . ., satisfy the equation

(an − an−1)(an − an−2) + (bn − bn−1)(bn − bn−2) = 0

for each integer n greater than 2. Prove that there is a positive integer k such that ak = ak+2008.

6 Determine the smallest positive real number k with the following property. LetABCD be a con-
vex quadrilateral, and let points A1, B1, C1, and D1 lie on sides AB, BC , CD, and DA, respec-
tively. Consider the areas of triangles AA1D1, BB1A1, CC1B1 and DD1C1; let S be the sum of
the two smallest ones, and let S1 be the area of quadrilateral A1B1C1D1. Then we always have
kS1 ≥ S.

Author: Zuming Feng and Oleg Golberg, USA

Day 3

7 Let ABC be a triangle with G as its centroid. Let P be a variable point on segment BC. Points
Q and R lie on sides AC and AB respectively, such that PQ ∥ AB and PR ∥ AC. Prove that, as

© 2022 AoPS Incorporated 1
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P varies along segment BC , the circumcircle of triangle AQR passes through a fixed point X
such that ∠BAG = ∠CAX.

8 Mr. Fat and Ms. Taf play a game. Mr. Fat chooses a sequence of positive integers k1, k2, . . . , kn.
Ms. Taf must guess this sequence of integers. She is allowed to give Mr. Fat a red card and a
blue card, each with an integer written on it. Mr. Fat replaces the number on the red card with k1
times the number on the red card plus the number on the blue card, and replaces the number on
the blue card with the number originally on the red card. He repeats this process with number
k2. (That is, he replaces the number on the red card with k2 times the number now on the red
card plus the number now on the blue card, and replaces the number on the blue card with the
number that was just placed on the red card.) He then repeats this process with each of the
numbers k3, . . . kn, in this order. After has has gone through the sequence of integers, Mr. Fat
then gives the cards back to Ms. Taf. How many times must Ms. Taf submit the red and blue
cards in order to be able to determine the sequence of integers k1, k2, . . . kn?

9 Let n be a positive integer. Given an integer coefficient polynomial f(x), define its [i]signature
modulo n[/i] to be the (ordered) sequence f(1), . . . , f(n) modulo n. Of the nn such n-term se-
quences of integers modulo n, how many are the signature of some polynomial f(x) if
a) n is a positive integer not divisible by the square of a prime.
b) n is a positive integer not divisible by the cube of a prime.

– https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy-
right © Mathematical Association of America (http://maa.org).
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USA Team Selection Test 2009
www.artofproblemsolving.com/community/c4639
by MellowMelon, rrusczyk

Day 1

1 Letm and n be positive integers.Mr. Fat has a setS containing every rectangular tile with integer
side lengths and area of a power of 2. Mr. Fat also has a rectangle R with dimensions 2m × 2n

and a 1× 1 square removed from one of the corners. Mr. Fat wants to choosem+n rectangles
from S, with respective areas 20, 21, . . . , 2m+n−1, and then tile R with the chosen rectangles.
Prove that this can be done in at most (m+ n)! ways.

Palmer Mebane.

2 Let ABC be an acute triangle. Point D lies on side BC. Let OB, OC be the circumcenters of
triangles ABD and ACD, respectively. Suppose that the points B,C,OB, OC lies on a circle
centered at X. Let H be the orthocenter of triangle ABC. Prove that ∠DAX = ∠DAH .

Zuming Feng.

3 For each positive integer n, let c(n) be the largest real number such that

c(n) ≤
∣∣∣∣f(a)− f(b)

a− b

∣∣∣∣
for all triples (f, a, b) such that

–f is a polynomial of degree n taking integers to integers, and
–a, b are integers with f(a) ̸= f(b).

Find c(n).

Shaunak Kishore.

Day 2

4 LetABP,BCQ,CAR be three non-overlapping triangles erected outside of acute triangleABC.
Let M be the midpoint of segment AP . Given that ∠PAB = ∠CQB = 45◦, ∠ABP = ∠QBC =
75◦, ∠RAC = 105◦, and RQ2 = 6CM2, compute AC2/AR2.

Zuming Feng.

© 2022 AoPS Incorporated 1
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5 Find all pairs of positive integers (m,n) such that mn− 1 divides (n2 − n+ 1)2.

Aaron Pixton.

6 Let N > M > 1 be fixed integers. There are N people playing in a chess tournament; each pair
of players plays each other once, with no draws. It turns out that for each sequence ofM+1 dis-
tinct players P0, P1, . . . PM such that Pi−1 beat Pi for each i = 1, . . . ,M , player P0 also beat PM .
Prove that the players can be numbered 1, 2, . . . , N in such a way that, whenever a ≥ b+M − 1,
player a beat player b.

Gabriel Carroll.

Day 3

7 Find all triples (x, y, z) of real numbers that satisfy the system of equations
x3 = 3x− 12y + 50,

y3 = 12y + 3z − 2,

z3 = 27z + 27x.

Razvan Gelca.

8 Fix a prime number p > 5. Let a, b, c be integers no two of which have their difference divisible
by p. Let i, j, k be nonnegative integers such that i+ j + k is divisible by p− 1. Suppose that for
all integers x, the quantity

(x− a)(x− b)(x− c)[(x− a)i(x− b)j(x− c)k − 1]

is divisible by p. Prove that each of i, j, k must be divisible by p− 1.

Kiran Kedlaya and Peter Shor.

9 Prove that for positive real numbers x, y, z,

x3(y2 + z2)2 + y3(z2 + x2)2 + z3(x2 + y2)2 ≥ xyz
[
xy(x+ y)2 + yz(y + z)2 + zx(z + x)2

]
.

Zarathustra (Zeb) Brady.

– https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy-
right © Mathematical Association of America (http://maa.org).
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USA Team Selection Test 2010
www.artofproblemsolving.com/community/c4640
by MellowMelon, rrusczyk

Day 1

1 Let P be a polynomial with integer coefficients such that P (0) = 0 and

gcd(P (0), P (1), P (2), . . .) = 1.

Show there are infinitely many n such that

gcd(P (n)− P (0), P (n+ 1)− P (1), P (n+ 2)− P (2), . . .) = n.

2 Let a, b, c be positive reals such that abc = 1. Show that

1

a5(b+ 2c)2
+

1

b5(c+ 2a)2
+

1

c5(a+ 2b)2
≥ 1

3
.

3 Let ha, hb, hc be the lengths of the altitudes of a triangle ABC from A,B,C respectively. Let P
be any point inside the triangle. Show that

PA

hb + hc
+

PB

ha + hc
+

PC

ha + hb
≥ 1.

Day 2

4 LetABC be a triangle. PointM andN lie on sidesAC andBC respectively such thatMN ||AB.
Points P andQ lie on sides AB and CB respectively such that PQ||AC. The incircle of triangle
CMN touches segmentAC at E. The incircle of triangleBPQ touches segmentAB at F . Line
EN and AB meet at R, and lines FQ and AC meet at S. Given that AE = AF , prove that the
incenter of triangle AEF lies on the incircle of triangle ARS.

5 Define the sequence a1, a2, a3, . . . by a1 = 1 and, for n > 1,

an = a⌊n/2⌋ + a⌊n/3⌋ + . . .+ a⌊n/n⌋ + 1.

Prove that there are infinitely many n such that an ≡ n (mod 22010).

© 2022 AoPS Incorporated 1



AoPS Community 2010 USA Team Selection Test

6 Let T be a finite set of positive integers greater than 1. A subset S of T is called good if for every
t ∈ T there exists some s ∈ S with gcd(s, t) > 1. Prove that the number of good subsets of T is
odd.

Day 3

7 In triangle ABC, let P and Q be two interior points such that ∠ABP = ∠QBC and ∠ACP =
∠QCB. PointD lies on segmentBC. Prove that ∠APB+∠DPC = 180◦ if and only if ∠AQC+
∠DQB = 180◦.

8 Letm,n be positive integers withm ≥ n, and let S be the set of all n-term sequences of positive
integers (a1, a2, . . . an) such that a1 + a2 + · · ·+ an = m. Show that∑

S

1a12a2 · · ·nan =

(
n

n

)
nm −

(
n

n− 1

)
(n− 1)m + · · ·+ (−1)n−2

(
n

2

)
2m + (−1)n−1

(
n

1

)
.

9 Determine whether or not there exists a positive integer k such that p = 6k + 1 is a prime and(
3k

k

)
≡ 1 (mod p).

– https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy-
right © Mathematical Association of America (http://maa.org).
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Team Selection Test for the 54th IMO

December 15, 2011

1. In acute triangle ABC, ∠A < ∠B and ∠A < ∠C. Let P be a variable point on side BC.
Points D and E lie on sides AB and AC, respectively, such that BP = PD and CP = PE.
Prove that as P moves along side BC, the circumcircle of triangle ADE passes through a fixed
point other than A.

2. Determine all functions f : R→ R such that for every pair of real numbers x and y,

f(x + y2) = f(x) + |yf(y)|.

3. Determine, with proof, whether or not there exist integers a, b, c > 2010 satisfying the equation

a3 + 2b3 + 4c3 = 6abc + 1.

4. There are 2010 students and 100 classrooms in the Olympiad High School. At the beginning,
each of the students is in one of the classrooms. Each minute, as long as not everyone is in the
same classroom, somebody walks from one classroom into a different classroom with at least as
many students in it (prior to his move). This process will terminate in M minutes. Determine
the maximum value of M .

Copyright © Mathematical Association of America
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February 1, 2012

1. Consider (3-variable) polynomials

Pn(x, y, z) = (x− y)2n(y − z)2n + (y − z)2n(z − x)2n + (z − x)2n(x− y)2n

and
Qn(x, y, z) = [(x− y)2n + (y − z)2n + (z − x)2n]2n.

Determine all positive integers n such that the quotient Qn(x, y, z)/Pn(x, y, z) is a (3-variable)
polynomial with rational coefficients.

2. In cyclic quadrilateral ABCD, diagonals AC and BD intersect at P . Let E and F be the
respective feet of the perpendiculars from P to lines AB and CD. Segments BF and CE meet
at Q. Prove that lines PQ and EF are perpendicular to each other.

3. Determine all positive integers n, n ≥ 2, such that the following statement is true:

If (a1, a2, . . . , an) is a sequence of positive integers with a1 + a2 + · · ·+ an = 2n− 1, then there
is block of (at least two) consecutive terms in the sequence with their (arithmetic) mean being
an integer.

4. Find all positive integers a, n ≥ 1 such that for all primes p dividing an − 1, there exists a
positive integer m < n such that p | am − 1.

Copyright © Mathematical Association of America
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December 13, 2012

1. A social club has 2k + 1 members, each of whom is fluent in the same k languages. Any
pair of members always talk to each other in only one language. Suppose that there were no
three members such that they use only one language among them. Let A be the number of
three-member subsets such that the three distinct pairs among them use different languages.
Find the maximum possible value of A.

2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

3. Let ABC be a scalene triangle with ∠BCA = 90◦, and let D be the foot of the altitude from C.
Let X be a point in the interior of the segment CD. Let K be the point on the segment AX
such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC.
The circumcircle of triangle DKL intersects segment AB at a second point T (other than D).
Prove that ∠ACT = ∠BCT .

4. Let f be a function from positive integers to positive integers, and let fm be f applied m
times. Suppose that for every positive integer n there exists a positive integer k such that
f2k(n) = n + k, and let kn be the smallest such k. Prove that the sequence k1, k2, . . . is
unbounded.

Copyright © Mathematical Association of America
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January 31, 2013

1. Two incongruent triangles ABC and XY Z are called a pair of pals if they satisfy the following
conditions:

(a) the two triangles have the same area;

(b) let M and W be the respective midpoints of sides BC and Y Z. The two sets of lengths
{AB,AM,AC} and {XY,XW,XZ} are identical 3-element sets of pairwise relatively
prime integers.

Determine if there are infinitely many pairs of triangles that are pals of each other.

2. Let ABC be an acute triangle. Circle ω1, with diameter AC, intersects side BC at F (other
than C). Circle ω2, with diameter BC, intersects side AC at E (other than C). Ray AF
intersects ω2 at K and M with AK < AM . Ray BE intersects ω1 at L and N with BL < BN .
Prove that lines AB, ML, NK are concurrent.

3. In a table with n rows and 2n columns where n is a fixed positive integer, we write either zero
or one into each cell so that each row has n zeros and n ones. For 1 ≤ k ≤ n and 1 ≤ i ≤ n,
we define ak,i so that the ith zero in the kth row is the athk,i column. Let F be the set of such
tables with a1,i ≥ a2,i ≥ · · · ≥ an,i for every i with 1 ≤ i ≤ n. We associate another n × 2n
table f(C) from C ∈ F as follows: for the kth row of f(C), we write n ones in the columns
an,k − k + 1, an−1,k − k + 2, . . . , a1,k − k + n (and we write zeros in the other cells in the row).

(a) Show that f(C) ∈ F .

(b) Show that f(f(f(f(f(f(C)))))) = C for any C ∈ F .

4. Determine if there exists a (three-variable) polynomial P (x, y, z) with integer coefficients
satisfying the following property: a positive integer n is not a perfect square if and only if there
is a triple (x, y, z) of positive integers such that P (x, y, z) = n.

Copyright © Mathematical Association of America
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Team Selection Test for the 55th International Mathematical Olympiad

United States of America

Day I

Thursday, December 12, 2013

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let ABC be an acute triangle, and let X be a variable interior point
on the minor arc BC of its circumcircle. Let P and Q be the feet of the perpendiculars
from X to lines CA and CB, respectively. Let R be the intersection of line PQ and the
perpendicular from B to AC. Let ` be the line through P parallel to XR. Prove that as
X varies along minor arc BC, the line ` always passes through a fixed point.

IMO TST 2. Let a1, a2, a3, …be a sequence of integers, with the property that every
consecutive group of ai’s averages to a perfect square. More precisely, for all positive
integers n and k, the quantity

an + an+1 + · · ·+ an+k−1

k

is always the square of an integer. Prove that the sequence must be constant (all ai are
equal to the same perfect square).

IMO TST 3. Let n be an even positive integer, and let G be an n-vertex (simple)
graph with exactly n2

4 edges. An unordered pair of distinct vertices {x, y} is said to be
amicable if they have a common neighbor (there is a vertex z such that xz and yz are
both edges). Prove that G has at least 2

(
n/2
2

)
pairs of vertices which are amicable.

1



Team Selection Test for the 55th International Mathematical Olympiad

United States of America

Day II

Thursday, January 23, 2014

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let n be a positive even integer, and let c1, c2, …, cn−1 be real numbers
satisfying

n−1∑
i=1

|ci − 1| < 1.

Prove that
2xn − cn−1x

n−1 + cn−2x
n−2 − · · · − c1x

1 + 2

has no real roots.

IMO TST 5. Let ABCD be a cyclic quadrilateral, and let E, F , G, and H be the
midpoints of AB, BC, CD, and DA respectively. Let W , X, Y and Z be the orthocenters
of triangles AHE, BEF , CFG and DGH, respectively. Prove that the quadrilaterals
ABCD and WXY Z have the same area.

IMO TST 6. For a prime p, a subset S of residues modulo p is called a sum-free
multiplicative subgroup of Fp if

• there is a nonzero residue α modulo p such that S =
{
1, α1, α2, . . .

}
(all considered

mod p), and
• there are no a, b, c ∈ S (not necessarily distinct) such that a+ b ≡ c (mod p).

Prove that for every integer N , there is a prime p and a sum-free multiplicative subgroup
S of Fp such that |S| ≥ N .
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USA TST 2014 Solution Notes
Evan Chen《陳誼廷》

30 September 2023

This is a compilation of solutions for the 2014 USA TST. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be an acute triangle, and let X be a variable interior point on the minor

arc BC of its circumcircle. Let P and Q be the feet of the perpendiculars from X
to lines CA and CB, respectively. Let R be the intersection of line PQ and the
perpendicular from B to AC. Let ` be the line through P parallel to XR. Prove
that as X varies along minor arc BC, the line ` always passes through a fixed point.

2. Let a1, a2, a3, . . .be a sequence of integers, with the property that every consecutive
group of ai’s averages to a perfect square. More precisely, for all positive integers n
and k, the quantity

an + an+1 + · · ·+ an+k−1

k

is always the square of an integer. Prove that the sequence must be constant (all
ai are equal to the same perfect square).

3. Let n be an even positive integer, and let G be an n-vertex (simple) graph with
exactly n2

4 edges. An unordered pair of distinct vertices {x, y} is said to be amicable
if they have a common neighbor (there is a vertex z such that xz and yz are both
edges). Prove that G has at least 2

(
n/2
2

)
pairs of vertices which are amicable.

4. Let n be a positive even integer, and let c1, c2, . . . , cn−1 be real numbers satisfying

n−1∑
i=1

|ci − 1| < 1.

Prove that
2xn − cn−1x

n−1 + cn−2x
n−2 − · · · − c1x

1 + 2

has no real roots.

5. Let ABCD be a cyclic quadrilateral, and let E, F , G, and H be the midpoints of
AB, BC, CD, and DA respectively. Let W , X, Y and Z be the orthocenters of
triangles AHE, BEF , CFG and DGH , respectively. Prove that the quadrilaterals
ABCD and WXY Z have the same area.

6. For a prime p, a subset S of residues modulo p is called a sum-free multiplicative
subgroup of Fp if

• there is a nonzero residue α modulo p such that S =
{
1, α1, α2, . . .

}
(all

considered mod p), and
• there are no a, b, c ∈ S (not necessarily distinct) such that a+ b ≡ c (mod p).

Prove that for every integer N , there is a prime p and a sum-free multiplicative
subgroup S of Fp such that |S| ≥ N .
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§1 Solutions to Day 1
§1.1 USA TST 2014/1
Available online at https://aops.com/community/p3332310.

Problem statement

Let ABC be an acute triangle, and let X be a variable interior point on the minor
arc BC of its circumcircle. Let P and Q be the feet of the perpendiculars from X
to lines CA and CB, respectively. Let R be the intersection of line PQ and the
perpendicular from B to AC. Let ` be the line through P parallel to XR. Prove
that as X varies along minor arc BC, the line ` always passes through a fixed point.

The fixed point is the orthocenter, since ` is a Simson line. See Lemma 4.4 of Euclidean
Geometry in Math Olympiads.

3
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§1.2 USA TST 2014/2, proposed by Victor Wang
Available online at https://aops.com/community/p3332299.

Problem statement

Let a1, a2, a3, . . .be a sequence of integers, with the property that every consecutive
group of ai’s averages to a perfect square. More precisely, for all positive integers n
and k, the quantity

an + an+1 + · · ·+ an+k−1

k

is always the square of an integer. Prove that the sequence must be constant (all ai
are equal to the same perfect square).

Let νp(n) denote the largest exponent of p dividing n. The problem follows from the
following proposition.

Proposition
Let (an) be a sequence of integers and let p be a prime. Suppose that every
consecutive group of ai’s with length at most p averages to a perfect square. Then
νp(ai) is independent of i.

We proceed by induction on the smallest value of νp(ai) as i ranges (which must be
even, as each of the ai are themselves a square). First we prove two claims.

Claim — If j ≡ k (mod p) then aj ≡ ak (mod p).

Proof. Taking groups of length p in our given, we find that p | aj + · · · + aj+p−1 and
p | aj+1 + · · ·+ aj+p for any j. So aj ≡ aj+p (mod p) and the conclusion follows.

Claim — If some ai is divisible by p then all of them are.

Proof. The case p = 2 is trivial so assume p ≥ 3. Without loss of generality (via shifting
indices) assume that a1 ≡ 0 (mod p), and define

Sn = a1 + a2 + · · ·+ an ≡ a2 + · · ·+ an (mod p).

Call an integer k with 2 ≤ k < p a pivot if 1− k−1 is a quadratic nonresidue modulo p.
We claim that for any pivot k, Sk ≡ 0 (mod p). If not, then

a1 + a2 + · · ·+ ak
k

and a2 + · · ·+ ak
k − 1

are both qudaratic residues. Division implies that k−1
k = 1− k−1 is a quadratic residue,

contradiction.
Next we claim that there is an integer m with Sm ≡ Sm+1 ≡ 0 (mod p), which implies

p | am+1. If 2 is a pivot, then we simply take m = 1. Otherwise, there are 1
2(p− 1) pivots,

one for each nonresidue (which includes neither 0 nor 1), and all pivots lie in [3, p− 1],
so we can find an m such that m and m+ 1 are both pivots.
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Repeating this procedure starting with am+1 shows that a2m+1, a3m+1, . . . must all be
divisible by p. Combined with the first claim and the fact that m < p, we find that all
the ai are divisible by p.

The second claim establishes the base case of our induction. Now assume all ai are
divisible by p and hence p2. Then all the averages in our proposition (with length at
most p) are divisible by p and hence p2. Thus the map ai 7→ 1

p2
ai gives a new sequence

satisfying the proposition, and our inductive hypothesis completes the proof.

Remark. There is a subtle bug that arises if one omits the condition that k ≤ p in the
proposition. When k = p2 the average a1+···+ap2

p2 is not necessarily divisible by p even if all
the ai are. Hence it is not valid to divide through by p. This is why the condition k ≤ p
was added.
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§1.3 USA TST 2014/3
Available online at https://aops.com/community/p3332307.

Problem statement

Let n be an even positive integer, and let G be an n-vertex (simple) graph with
exactly n2

4 edges. An unordered pair of distinct vertices {x, y} is said to be amicable
if they have a common neighbor (there is a vertex z such that xz and yz are both
edges). Prove that G has at least 2

(
n/2
2

)
pairs of vertices which are amicable.

First, we prove the following lemma. (https://en.wikipedia.org/wiki/Friendship_
paradox).

Lemma (On average, your friends are more popular than you)
For a vertex v, let a(v) denote the average degree of the neighbors of v (setting
a(v) = 0 if deg v = 0). Then∑

v

a(v) ≥
∑
v

deg v = 2#E.

Proof. Ignoring isolated vertices, we can write∑
v

a(v) =
∑
v

∑
w∼v degw
deg v

=
∑
v

∑
w∼v

degw
deg v

=
∑

edges vw

(
degw
deg v

+
deg v
degw

)
AM-GM
≥

∑
edges vw

2 = 2#E =
∑
v

deg v

as desired.

Corollary (On average, your most popular friend is more popular than you)
For a vertex v, let m(v) denote the maximum degree of the neighbors of v (setting
m(v) = 0 if deg v = 0). Then∑

v

m(v) ≥
∑
v

deg v = 2#E.

We can use this to count amicable pairs by noting that any particular vertex v is in at
least m(v)− 1 amicable pairs. So, the number of amicable pairs is at least

1

2

∑
v

(m(v)− 1) ≥ #E − 1

2
#V.
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Note that up until now we haven’t used any information about G. But now if we plug
in #E = n2/4, #V = n, then we get exactly the desired answer. (Equality holds for
G = Kn/2,n/2.)
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§2 Solutions to Day 2
§2.1 USA TST 2014/4
Available online at https://aops.com/community/p3476290.

Problem statement

Let n be a positive even integer, and let c1, c2, . . . , cn−1 be real numbers satisfying

n−1∑
i=1

|ci − 1| < 1.

Prove that
2xn − cn−1x

n−1 + cn−2x
n−2 − · · · − c1x

1 + 2

has no real roots.

We will prove the polynomial is positive for all x ∈ R. As ci > 0, the result is vacuous
for x ≤ 0, so we restrict attention to x > 0.

Then letting ci = 1− di for each i, the inequality we want to prove becomes

xn + 1 +
xn+1 + 1

x+ 1
>

n−1∑
1

dix
i given

∑
|di| < 1.

But obviously xn+1 > xi for any 1 ≤ i ≤ n−1 and x > 0. So in fact xn+1 >
∑n−1

1 |di|xi
holds for x > 0, as needed.
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§2.2 USA TST 2014/5, proposed by Po-Shen Loh
Available online at https://aops.com/community/p3476291.

Problem statement

Let ABCD be a cyclic quadrilateral, and let E, F , G, and H be the midpoints of
AB, BC, CD, and DA respectively. Let W , X, Y and Z be the orthocenters of
triangles AHE, BEF , CFG and DGH, respectively. Prove that the quadrilaterals
ABCD and WXY Z have the same area.

The following solution is due to Grace Wang.
We begin with:

Claim — Point W has coordinates 1
2(2a+ b+ d).

Proof. The orthocenter of 4DAB is d + a + b, and 4AHE is homothetic to 4DAB
through A with ratio 1/2. Hence w = 1

2(a+ (d+ a+ b)) as needed.

By symmetry, we have

w =
1

2
(2a+ b+ d)

x =
1

2
(2b+ c+ a)

y =
1

2
(2c+ d+ b)

z =
1

2
(2d+ a+ c).

We see that w − y = a − c, x − z = b − d. So the diagonals of WXY Z have the same
length as those of ABCD as well as the same directed angle between them. This implies
the areas are equal, too.
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§2.3 USA TST 2014/6
Available online at https://aops.com/community/p3476292.

Problem statement

For a prime p, a subset S of residues modulo p is called a sum-free multiplicative
subgroup of Fp if

• there is a nonzero residue α modulo p such that S =
{
1, α1, α2, . . .

}
(all

considered mod p), and

• there are no a, b, c ∈ S (not necessarily distinct) such that a+ b ≡ c (mod p).

Prove that for every integer N , there is a prime p and a sum-free multiplicative
subgroup S of Fp such that |S| ≥ N .

We first prove the following general lemma.

Lemma
If f, g ∈ Z[X] are relatively prime nonconstant polynomials, then for sufficiently
large primes p, they have no common root modulo p.

Proof. By Bézout Lemma, there exist polynomials a(X) and b(X) in Z[X] and a nonzero
constant c ∈ Z satisfying the identity

a(X)f(X) + b(X)g(X) ≡ c.

So, plugging in X = r we get p | c, so the set of permissible primes p is finite.

With this we can give the construction.

Claim — Suppose that

• n is a positive integer with n 6≡ 0 (mod 3);

• p is a prime which is 1 mod n; and

• α is a primitive n’th root of unity modulo p.

Then |S| = n and, if p is sufficiently large in n, is also sum-free.

Proof. The assertion |S| = n is immediate from the choice of α. As for sum-free, assume
for contradiction that

1 + αk ≡ αm (mod p)

for some integers k,m ∈ Z. This means (X + 1)n − 1 and Xn − 1 have common root
X = αk.

But
gcd
Z[x]

(
(X + 1)n − 1, Xn − 1

)
= 1 ∀n 6≡ 0 (mod 3)
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because when 3 - n the two polynomials have no common complex roots. (Indeed, if
|ω| = |1 + ω| = 1 then ω = −1

2 ±
√
3
2 i.)

Thus p is bounded by the lemma, as desired.
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Team Selection Test for the 56th International Mathematical Olympiad

United States of America

Day I

Thursday, December 11, 2014

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let ABC be a scalene triangle with incenter I whose incircle is tangent
to BC, CA, AB at D, E, F , respectively. Denote by M the midpoint of BC and let P
be a point in the interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q
be a point on the incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦ or
∠PQF = 90◦.

IMO TST 2. Prove that for every positive integer n, there exists a set S of n positive
integers such that for any two distinct a, b ∈ S, a − b divides a and b but none of the
other elements of S.

IMO TST 3. A physicist encounters 2015 atoms called usamons. Each usamon either
has one electron or zero electrons, and the physicist can’t tell the difference. The
physicist’s only tool is a diode. The physicist may connect the diode from any usamon A
to any other usamon B. (This connection is directed.) When she does so, if usamon A
has an electron and usamon B does not, then the electron jumps from A to B. In any
other case, nothing happens. In addition, the physicist cannot tell whether an electron
jumps during any given step. The physicist’s goal is to isolate two usamons that she is
100% sure are currently in the same state. Is there any series of diode usage that makes
this possible?
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Team Selection Test for the 56th International Mathematical Olympiad

United States of America

Day II

Thursday, January 22, 2015

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let f : Q → Q be a function such that for any x, y ∈ Q, the number
f(x+ y)− f(x)− f(y) is an integer. Decide whether there must exist a constant c such
that f(x)− cx is an integer for every rational number x.

IMO TST 5. Fix a positive integer n. A tournament on n vertices has all its edges
colored by χ colors, so that any two directed edges u → v and v → w have different
colors. Over all possible tournaments on n vertices, determine the minimum possible
value of χ.

IMO TST 6. Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the
midpoints of the sides BC, CA, AB, respectively. Let S be a point lying on the Euler
line. Denote by X, Y , Z the second intersections of MaS, MbS, McS with the nine-point
circle. Prove that AX, BY , CZ are concurrent.
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This is a compilation of solutions for the 2015 USA TST. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be a scalene triangle with incenter I whose incircle is tangent to BC,

CA, AB at D, E, F , respectively. Denote by M the midpoint of BC and let P be
a point in the interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q
be a point on the incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦

or ∠PQF = 90◦.

2. Prove that for every positive integer n, there exists a set S of n positive integers
such that for any two distinct a, b ∈ S, a− b divides a and b but none of the other
elements of S.

3. A physicist encounters 2015 atoms called usamons. Each usamon either has one
electron or zero electrons, and the physicist can’t tell the difference. The physicist’s
only tool is a diode. The physicist may connect the diode from any usamon A to
any other usamon B. (This connection is directed.) When she does so, if usamon
A has an electron and usamon B does not, then the electron jumps from A to B.
In any other case, nothing happens. In addition, the physicist cannot tell whether
an electron jumps during any given step. The physicist’s goal is to isolate two
usamons that she is 100% sure are currently in the same state. Is there any series
of diode usage that makes this possible?

4. Let f : Q → Q be a function such that for any x, y ∈ Q, the number f(x + y) −
f(x)− f(y) is an integer. Decide whether there must exist a constant c such that
f(x)− cx is an integer for every rational number x.

5. Fix a positive integer n. A tournament on n vertices has all its edges colored by χ
colors, so that any two directed edges u → v and v → w have different colors. Over
all possible tournaments on n vertices, determine the minimum possible value of χ.

6. Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the midpoints of the
sides BC, CA, AB, respectively. Let S be a point lying on the Euler line. Denote
by X, Y , Z the second intersections of MaS, MbS, McS with the nine-point circle.
Prove that AX, BY , CZ are concurrent.
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§1 Solutions to Day 1
§1.1 USA TST 2015/1, proposed by Evan Chen
Available online at https://aops.com/community/p3683109.

Problem statement

Let ABC be a scalene triangle with incenter I whose incircle is tangent to BC, CA,
AB at D, E, F , respectively. Denote by M the midpoint of BC and let P be a
point in the interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q be
a point on the incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦ or
∠PQF = 90◦.

We present two solutions.

¶ Official solution Assume without loss of generality that AB < AC; we show ∠PQE =
90◦.

A

B C

I

D

E

F

M

P

Q

N

T

S

First, we claim that D, P , E are collinear. Let N be the midpoint of AB. It is
well-known that the three lines MN , DE, AI are concurrent at a point (see for example
problem 6 of USAJMO 2014). Let P ′ be this intersection point, noting that P ′ actually
lies on segment DE. Then P ′ lies inside 4ABC and moreover

4DP ′M ∼ 4DEC

so MP ′ = MD. Hence P ′ = P , proving the claim.
Let S be the point diametrically opposite D on the incircle, which is also the second

intersection of AQ with the incircle. Let T = AQ ∩BC. Then T is the contact point of
the A-excircle; consequently,

MD = MP = MT

and we obtain a circle with diameter DT . Since ∠DQT = ∠DQS = 90◦ we have Q on
this circle as well.
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As SD is tangent to the circle with diameter DT , we obtain

∠PQD = ∠SDP = ∠SDE = ∠SQE.

Since ∠DQS = 90◦, ∠PQE = 90◦ too.

¶ Solution using spiral similarity We will ignore for now the point P . As before define
S, T and note AQST collinear, as well as DPQT cyclic on circle ω with diameter DT .

Let τ be the spiral similarity at Q sending ω to the incircle. We have τ(T ) = D,
τ(D) = S, τ(Q) = Q. Now

I = DD ∩QQ =⇒ τ(I) = SS ∩QQ

and hence we conclude τ(I) is the pole of ASQT with respect to the incircle, which lies
on line EF .

Then since AI ⊥ EF too, we deduce τ sends line AI to line EF , hence τ(P ) must be
either E or F as desired.

¶ Authorship comments Written April 2014. I found this problem while playing with
GeoGebra. Specifically, I started by drawing in the points A, B, C, I, D, M , T , common
points. I decided to add in the circle with diameter DT , because of the synergy it had
with the rest of the picture. After a while of playing around, I intersected ray AI with the
circle to get P , and was surprised to find that D, P , E were collinear, which I thought
was impossible since the setup should have been symmetric. On further reflection, I
realized it was because AI intersected the circle twice, and set about trying to prove this.
I noticed the relation ∠PQE = 90◦ in my attempts to prove the result, even though this
ended up being a corollary rather than a useful lemma.
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§1.2 USA TST 2015/2, proposed by Iurie Boreico
Available online at https://aops.com/community/p3683110.

Problem statement

Prove that for every positive integer n, there exists a set S of n positive integers
such that for any two distinct a, b ∈ S, a− b divides a and b but none of the other
elements of S.

The idea is to look for a sequence d1, . . . , dn−1 of “differences” such that the following
two conditions hold. Let si = d1 + · · ·+ di−1, and ti,j = di + · · ·+ dj−1 for i ≤ j.

(i) No two of the ti,j divide each other.

(ii) There exists an integer a satisfying the CRT equivalences

a ≡ −si (mod ti,j) ∀i ≤ j

Then the sequence a+ s1, a+ s2, . . . , a+ sn will work. For example, when n = 3 we can
take (d1, d2) = (2, 3) giving

10

5︷ ︸︸ ︷︸︷︷︸
2

12 ︸︷︷︸
3

15

because the only conditions we need satisfy are

a ≡ 0 (mod 2)

a ≡ 0 (mod 5)

a ≡ −2 (mod 3).

But with this setup we can just construct the di inductively. To go from n to n+ 1,
take a d1, . . . , dn−1 and let p be a prime not dividing any of the di. Moreover, let M
be a multiple of

∏
i≤j ti,j coprime to p. Then we claim that d1M,d2M, . . . , dn−1M,p is

such a difference sequence. For example, the previous example extends as follows with
M = 300 and p = 7.

a

1507︷ ︸︸ ︷
︸︷︷︸
600

b

907︷ ︸︸ ︷︸︷︷︸
900

c ︸︷︷︸
7

d

The new numbers p, p+Mdn−1, p+Mdn−2, . . .are all relatively prime to everything else.
Hence (i) still holds. To see that (ii) still holds, just note that we can still get a family of
solutions for the first n terms, and then the last (n+ 1)st term can be made to work by
Chinese Remainder Theorem since all the new p+Mdk are coprime to everything.
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§1.3 USA TST 2015/3, proposed by Linus Hamilton
Available online at https://aops.com/community/p3683111.

Problem statement

A physicist encounters 2015 atoms called usamons. Each usamon either has one
electron or zero electrons, and the physicist can’t tell the difference. The physicist’s
only tool is a diode. The physicist may connect the diode from any usamon A to
any other usamon B. (This connection is directed.) When she does so, if usamon A
has an electron and usamon B does not, then the electron jumps from A to B. In
any other case, nothing happens. In addition, the physicist cannot tell whether an
electron jumps during any given step. The physicist’s goal is to isolate two usamons
that she is 100% sure are currently in the same state. Is there any series of diode
usage that makes this possible?

The answer is no. Call the usamons U1, . . . , Um (here m = 2015). Consider models Mk

of the following form: U1, . . . , Uk are all charged for some 0 ≤ k ≤ m and the other
usamons are not charged. Note that for any pair there’s a model where they are different
states, by construction.

We can consider the physicist as acting on these m + 1 models simultaneously, and
trying to reach a state where there’s a pair in all models which are all the same charge.
(This is a necessary condition for a winning strategy to exist.)

But we claim that any diode operation Ui → Uj results in the m+ 1 models being an
isomorphic copy of the previous set. If i < j then the diode operation can be interpreted
as just swapping Ui with Uj , which doesn’t change anything. Moreover if i > j the
operation never does anything. The conclusion follows from this.

Remark. This problem is not a “standard” olympiad problem, so I can’t say it’s trivial.
But the idea is pretty natural I think.

You can motivate it as follows: there’s a sequence of diode operations you can do which
forces the situation to be one of the Mk above: first, use the diode into U1 for all other
Ui’s, so that either no electrons exist at all or U1 has an electron. Repeat with the other Ui.
This leaves us at the situation described at the start of the problem. Then you could guess
the answer was “no” just based on the fact that it’s impossible for n = 2, 3 and that there
doesn’t seem to be a reasonable strategy.

In this way it’s possible to give a pretty good description of what it’s possible to do.
One possible phrasing: “the physicist can arrange the usamons in a line such that all the
charged usamons are to the left of the un-charged usamons, but can’t determine the number
of charged usamons”.
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§2 Solutions to Day 2
§2.1 USA TST 2015/4, proposed by Victor Wang
Available online at https://aops.com/community/p4628083.

Problem statement

Let f : Q → Q be a function such that for any x, y ∈ Q, the number f(x + y) −
f(x)− f(y) is an integer. Decide whether there must exist a constant c such that
f(x)− cx is an integer for every rational number x.

No, such a constant need not exist.
One possible solution is as follows: define a sequence by x0 = 1 and

2x1 = x0

2x2 = x1 + 1

2x3 = x2

2x4 = x3 + 1

2x5 = x4

2x6 = x5 + 1

...

Set f(2−k) = xk and f(2k) = 2k for k = 0, 1, . . . . Then, let

f

(
a · 2k + b

c

)
= af

(
2k
)
+

b

c

for odd integers a, b, c. One can verify this works.
A second shorter solution (given by the proposer) is to set, whenever gcd(p, q) = 1 and

q > 0,

f

(
p

q

)
=

p

q
(1! + 2! + · · ·+ q!) .

Remark. Silly note: despite appearances, f(x) = bxc is not a counterexample since one
can take c = 0.
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§2.2 USA TST 2015/5, proposed by Po-Shen Loh
Available online at https://aops.com/community/p4628085.

Problem statement

Fix a positive integer n. A tournament on n vertices has all its edges colored by χ
colors, so that any two directed edges u → v and v → w have different colors. Over
all possible tournaments on n vertices, determine the minimum possible value of χ.

The answer is
χ = dlog2 ne .

First, we prove by induction on n that χ ≥ log2 n for any coloring and any tournament.
The base case n = 1 is obvious. Now given any tournament, consider any used color c.
Then it should be possible to divide the tournament into two subsets A and B such that
all c-colored edges point from A to B (for example by letting A be all vertices which are
the starting point of a c-edge).

A B

all edges colored c

One of A and B has size at least n/2, say A. Since A has no c edges, and uses at least
log2 |A| colors other than c, we get

χ ≥ 1 + log2(n/2) = log2 n

completing the induction.
One can read the construction off from the argument above, but here is a concrete

description. For each integer n, consider the tournament whose vertices are the binary
representations of S = {0, . . . , n− 1}. Instantiate colors c1, c2, . . . . Then for v, w ∈ S,
we look at the smallest order bit for which they differ; say the kth one. If v has a zero in
the kth bit, and w has a one in the kth bit, we draw v → w. Moreover we color the edge
with color ck. This works and uses at most dlog2 ne colors.

Remark (Motivation). The philosophy “combinatorial optimization” applies here. The idea
is given any color c, we can find sets A and B such that all c-edges point A to B. Once you
realize this, the next insight is to realize that you may as well color all the edges from A
to B by c; after all, this doesn’t hurt the condition and makes your life easier. Hence, if f
is the answer, we have already a proof that f(n) = 1 + max (f(|A|), f(|B|)) and we choose
|A| ≈ |B|. This optimization also gives the inductive construction.

8
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§2.3 USA TST 2015/6
Available online at https://aops.com/community/p4628087.

Problem statement

Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the midpoints of the
sides BC, CA, AB, respectively. Let S be a point lying on the Euler line. Denote
by X, Y , Z the second intersections of MaS, MbS, McS with the nine-point circle.
Prove that AX, BY , CZ are concurrent.

We assume now and forever that ABC is scalene since the problem follows by symmetry
in the isosceles case. We present four solutions.

¶ First solution by barycentric coordinates (Evan Chen) Let AX meet MbMc at D,
and let X reflected over MbMc’s midpoint be X ′. Let Y ′, Z ′, E, F be similarly defined.

X

Y

Z

Ma

Mb Mc

A

BC

S

D D′

E

E′
F

F ′

By Cevian Nest Theorem it suffices to prove that MaD, MbE, McF are concurrent.
Taking the isotomic conjugate and recalling that MaMbAMc is a parallelogram, we see
that it suffices to prove MaX

′, MbY
′, McZ

′ are concurrent.
We now use barycentric coordinates on 4MaMbMc. Let

S =
(
a2SA + t : b2SB + t : c2SC + t

)
(possibly t = ∞ if S is the centroid). Let v = b2SB + t, w = c2SC + t. Hence

X =
(
−a2vw : (b2w + c2v)v : (b2w + c2v)w

)
.

Consequently,

X ′ =
(
a2vw : −a2vw + (b2w + c2v)w : −a2vw + (b2w + c2v)v

)
We can compute

b2w + c2v = (bc)2(SB + SC) + (b2 + c2)t = (abc)2 + (b2 + c2)t.

9
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Thus

−a2v + b2w + c2v = (b2 + c2)t+ (abc)2 − (ab)2SB − a2t = SA((ab)
2 + t).

Finally

X ′ =
(
a2vw : SA(c

2SC + t)
(
(ab)2 + 2t

)
: SA(b

2SB + t)
(
(ac)2 + 2t

))
and from this it’s evident that AX ′, BY ′, CZ ′ are concurrent.

¶ Second solution by moving points (Anant Mudgal) Let Ha, Hb, Hc be feet of
altitudes, and let γ denote the nine-point circle. The main claim is that:

Claim — Lines XHa, Y Hb, ZHc are concurrent,

Proof. In fact, we claim that the concurrence point lies on the Euler line `. This gives us
a way to apply the moving points method: fix triangle ABC and animate S ∈ `; then
the map

` → γ → `

S 7→ X 7→ Sa := ` ∩HaX

is projective, because it consists of two perspectivities. So we want the analogous maps
S 7→ Sb, S 7→ Sc to coincide. For this it suffices to check three positions of S; since you’re
such a good customer here are four.

• If S is the orthocenter of 4MaMbMc (equivalently the circumcenter of 4ABC)
then Sa coincides with the circumcenter of MaMbMc (equivalently the nine-point
center of 4ABC). By symmetry Sb and Sc are too.

• If S is the circumcenter of 4MaMbMc (equivalently the nine-point center of 4ABC)
then Sa coincides with the de Longchamps point of 4MaMbMc (equivalently
orthocenter of 4ABC). By symmetry Sb and Sc are too.

• If S is either of the intersections of the Euler line with γ, then S = Sa = Sb = Sc

(as S = X = Y = Z).

This concludes the proof.

X

Y

Z

Ma

Mb Mc

A

BC

S

Ha

Hb

Hc
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We now use Trig Ceva to carry over the concurrence. By sine law,

sin∠McAX

sin∠AMcX
=

McX

AX

and a similar relation for Mb gives that

sin∠McAX

sin∠MbAX
=

sin∠AMcX

sin∠AMbX
· McX

MbX
=

sin∠AMcX

sin∠AMbX
· sin∠XMaMc

sin∠XMaMb
.

Thus multiplying cyclically gives∏
cyc

sin∠McAX

sin∠MbAX
=

∏
cyc

sin∠AMcX

sin∠AMbX

∏
cyc

sin∠XMaMc

sin∠XMaMb
.

The latter product on the right-hand side equals 1 by Trig Ceva on 4MaMbMc with
cevians MaX, MbY , McZ. The former product also equals 1 by Trig Ceva for the
concurrence in the previous claim (and the fact that ∠AMcX = ∠HcHaX). Hence the
left-hand side equals 1, implying the result.

¶ Third solution by moving points (Gopal Goel) In this solution, we will instead use
barycentric coordinates with resect to 4ABC to bound the degrees suitably, and then
verify for seven distinct choices of S.

We let R denote the radius of 4ABC, and N the nine-point center.
First, imagine solving for X in the following way. Suppose ~X = (1 − ta) ~Ma + ta~S.

Then, using the dot product (with |~v|2 = ~v · ~v in general)

1

4
R2 =

∣∣∣ ~X − ~N
∣∣∣2

=
∣∣∣ta(~S − ~Ma) + ~Ma − ~N

∣∣∣2
=

∣∣∣ta(~S − ~Ma)
∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+
∣∣∣ ~Ma − ~N

∣∣∣2
= t2a

∣∣∣(~S − ~Ma)
∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+

1

4
R2

Since ta 6= 0 we may solve to obtain

ta = −2( ~Ma − ~N) · (~S − ~Ma)∣∣∣~S − ~Ma

∣∣∣2 .

Now imagine S varies along the Euler line, meaning there should exist linear functions
α, β, γ : R → R such that

S = (α(s), β(s), γ(s)) s ∈ R

with α(s) + β(s) + γ(s) = 1. Thus ta = fa
ga

= fa(s)
ga(s)

is the quotient of a linear function
fa(s) and a quadratic function ga(s).

So we may write:

X = (1− ta)

(
0,

1

2
,
1

2

)
+ ta (α, β, γ)

=

(
taα,

1

2
(1− ta) + taβ,

1

2
(1− ta) + taγ

)

11
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= (2faα : ga − fa + 2faβ : ga − fa + 2faγ) .

Thus the coordinates of X are quadratic polynomials in s when written in this way.
In a similar way, the coordinates of Y and Z should be quadratic polynomials in s.

The Ceva concurrence condition∏
cyc

ga − fa + 2faβ

ga − fa + 2faγ
= 1

is thus a polynomial in s of degree at most six. Our goal is to verify it is identically zero,
thus it suffices to check seven positions of S.

• If S is the circumcenter of 4MaMbMc (equivalently the nine-point center of 4ABC)
then AX, BY , CZ are altitudes of 4ABC.

• If S is the centroid of 4MaMbMc (equivalently the centroid of 4ABC), then AX,
BY , CZ are medians of 4ABC.

• If S is either of the intersections of the Euler line with γ, then S = X = Y = Z
and all cevians concur at S.

• If S lies on the MaMb, then Y = Ma, X = Mc, and thus AX ∩BY = C, which is
of course concurrent with CZ (regardless of Z). Similarly if S lies on the other
sides of 4MaMbMc.

Thus we are also done.

¶ Fourth solution using Pascal (official one) We give a different proof of the claim
that XHa, Y Hb, ZHc are concurrent (and then proceed as in the end of the second
solution).

Let H denote the orthocenter, N the nine-point center, and moreover let Na, Nb, Nc

denote the midpoints of AH, BH, CH, which also lie on the nine-point circle (and are
the antipodes of Ma, Mb, Mc).

• By Pascal’s theorem on MbNbHbMcNcHc, the point P = McHb ∩MbHc is collinear
with N = MbNb ∩McNc, and H = NbHb ∩NcHc. So P lies on the Euler line.

• By Pascal’s theorem on MbY HbMcZHc, the point Y Hb ∩ ZHc is collinear with
S = MbY ∩McZ and P = MbHc ∩McHb. Hence Y Hb and ZHc meet on the Euler
line, as needed.

12



Team Selection Test for the 57th International Mathematical Olympiad

United States of America

Day I

Thursday, December 10, 2015

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let S = {1, . . . , n}. Given a bijection f : S → S an orbit of f is a set
of the form {x, f(x), f(f(x)), . . . } for some x ∈ S. We denote by c(f) the number of
distinct orbits of f . For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two
orbits are {1, 2} and {3}, hence c(f) = 2.
Given k bijections f1, …, fk from S to itself, prove that

c(f1) + · · ·+ c(fk) ≤ n(k − 1) + c(f)

where f : S → S is the composed function f1 ◦ · · · ◦ fk.

IMO TST 2. Let ABC be a scalene triangle with circumcircle Ω, and suppose the
incircle of ABC touches BC at D. The angle bisector of ∠A meets BC and Ω at K and
M . The circumcircle of 4DKM intersects the A-excircle at S1, S2, and Ω at T 6= M .
Prove that line AT passes through either S1 or S2.

IMO TST 3. Let p be a prime number. Let Fp denote the integers modulo p, and let
Fp[x] be the set of polynomials with coefficients in Fp. Define Ψ: Fp[x] → Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi .

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).

1



Team Selection Test for the 57th International Mathematical Olympiad

United States of America

Day II

Thursday, January 21, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let
√
3 = 1.b1b2b3 . . .(2) be the binary representation of

√
3. Prove that

for any positive integer n, at least one of the digits bn, bn+1, . . . , b2n equals 1.

IMO TST 5. Let n ≥ 4 be an integer. Find all functions W : {1, . . . , n}2 → R such
that for every partition [n] = A ∪B ∪ C into disjoint sets,∑

a∈A

∑
b∈B

∑
c∈C

W (a, b)W (b, c) = |A||B||C|.

IMO TST 6. Let ABC be an acute scalene triangle and let P be a point in its interior.
Let A1, B1, C1 be projections of P onto triangle sides BC, CA, AB, respectively. Find
the locus of points P such that AA1, BB1, CC1 are concurrent and ∠PAB + ∠PBC +
∠PCA = 90.
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§0 Problems
1. Let S = {1, . . . , n}. Given a bijection f : S → S an orbit of f is a set of the form

{x, f(x), f(f(x)), . . . } for some x ∈ S. We denote by c(f) the number of distinct
orbits of f . For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits
are {1, 2} and {3}, hence c(f) = 2.
Given k bijections f1, . . . , fk from S to itself, prove that

c(f1) + · · ·+ c(fk) ≤ n(k − 1) + c(f)

where f : S → S is the composed function f1 ◦ · · · ◦ fk.

2. Let ABC be a scalene triangle with circumcircle Ω, and suppose the incircle of
ABC touches BC at D. The angle bisector of ∠A meets BC and Ω at K and M .
The circumcircle of 4DKM intersects the A-excircle at S1, S2, and Ω at T 6= M .
Prove that line AT passes through either S1 or S2.

3. Let p be a prime number. Let Fp denote the integers modulo p, and let Fp[x] be
the set of polynomials with coefficients in Fp. Define Ψ: Fp[x] → Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi .

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).

4. Let
√
3 = 1.b1b2b3 . . .(2) be the binary representation of

√
3. Prove that for any

positive integer n, at least one of the digits bn, bn+1, . . . , b2n equals 1.

5. Let n ≥ 4 be an integer. Find all functions W : {1, . . . , n}2 → R such that for every
partition [n] = A ∪B ∪ C into disjoint sets,∑

a∈A

∑
b∈B

∑
c∈C

W (a, b)W (b, c) = |A||B||C|.

6. Let ABC be an acute scalene triangle and let P be a point in its interior. Let A1,
B1, C1 be projections of P onto triangle sides BC, CA, AB, respectively. Find the
locus of points P such that AA1, BB1, CC1 are concurrent and ∠PAB+∠PBC +
∠PCA = 90◦.
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§1 Solutions to Day 1
§1.1 USA TST 2016/1, proposed by Maria Monks
Available online at https://aops.com/community/p5679356.

Problem statement

Let S = {1, . . . , n}. Given a bijection f : S → S an orbit of f is a set of the form
{x, f(x), f(f(x)), . . . } for some x ∈ S. We denote by c(f) the number of distinct
orbits of f . For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits
are {1, 2} and {3}, hence c(f) = 2.

Given k bijections f1, . . . , fk from S to itself, prove that

c(f1) + · · ·+ c(fk) ≤ n(k − 1) + c(f)

where f : S → S is the composed function f1 ◦ · · · ◦ fk.

Most motivated solution is to consider n−c(f) and show this is the transposition distance.
Dumb graph theory works as well.
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§1.2 USA TST 2016/2, proposed by Evan Chen
Available online at https://aops.com/community/p5679361.

Problem statement

Let ABC be a scalene triangle with circumcircle Ω, and suppose the incircle of ABC
touches BC at D. The angle bisector of ∠A meets BC and Ω at K and M . The
circumcircle of 4DKM intersects the A-excircle at S1, S2, and Ω at T 6= M . Prove
that line AT passes through either S1 or S2.

We present an angle-chasing solution, and then a more advanced alternative finish.

¶ First solution (angle chasing) Assume for simplicity AB < AC. Let E be the
contact point of the A-excircle on BC; also let ray TD meet Ω again at L. From the
fact that ∠MTL = ∠MTD = 180◦ − ∠MKD, we can deduce that ∠MTL = ∠ACM ,
meaning that L is the reflection of A across the perpendicular bisector ` of BC. If we
reflect T , D, L over `, we deduce A, E and the reflection of T across ` are collinear,
which implies that ∠BAT = ∠CAE.

Now, consider the reflection point E across line AI, say S. Since ray AI passes through
the A-excenter, S lies on the A-excircle. Since ∠BAT = ∠CAE, S also lies on ray AT .
But the circumcircles of triangles DKM and KME are congruent (from DM = EM),
so S lies on the circumcircle of 4DKM too. Hence S is the desired intersection point.

A

B C
DK

M

E

IA

S

T
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¶ Second solution (advanced) It’s known that T is the touch-point of the A-mixtilinear
incircle. Let E be contact point of A-excircle on BC. Now the circumcircles of 4DKM
and 4KME are congruent, since DM = ME and the angles at K are supplementary.
Let S be the reflection of E across line KM , which by the above the above comment lies
on the circumcircle of 4DKM . Since KM passes through the A-excenter, S also lies
on the A-excircle. But S also lies on line AT , since lines AT and AE are isogonal (the
mixtilinear cevian is isogonal to the Nagel line). Thus S is the desired intersection point.

¶ Authorship comments This problem comes from an observation of mine: let ABC
be a triangle, let the ∠A bisector meet BC and (ABC) at E and M . Let W be the
tangency point of the A-mixtilinear excircle with the circumcircle of ABC. Then A-
Nagel line passed through a common intersection of the circumcircle of 4MEW and the
A-mixtilinear incircle.

This problem is the inverted version of this observation.
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§1.3 USA TST 2016/3, proposed by Mark Sellke
Available online at https://aops.com/community/p5679392.

Problem statement

Let p be a prime number. Let Fp denote the integers modulo p, and let Fp[x] be the
set of polynomials with coefficients in Fp. Define Ψ: Fp[x] → Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi .

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).

Observe that Ψ is also a linear map of Fp vector spaces, and that Ψ(xP ) = Ψ(P )p for
any P ∈ Fp[x]. (In particular, Ψ(1) = x, not 1, take caution!)

¶ First solution (Ankan Bhattacharya) We start with:

Claim — If P | Q then Ψ(P ) | Ψ(Q).

Proof. Set Q = PR, where R =
∑k

i=0 rix
i. Then

Ψ(Q) = Ψ

(
P

k∑
i=0

rix
i

)
=

k∑
i=0

Ψ
(
P · rixi

)
=

k∑
i=0

riΨ(P )p
i

which is divisible by Ψ(P ).

This already implies
Ψ(gcd(F,G)) | gcd(Ψ(F ),Ψ(G)).

For the converse, by Bezout there exists A,B ∈ Fp[x] such that AF +BG = gcd(F,G),
so taking Ψ of both sides gives

Ψ(AF ) + Ψ(BG) = Ψ (gcd(F,G)) .

The left-hand side is divisible by gcd(Ψ(F ),Ψ(G)) since the first term is divisible by
Ψ(F ) and the second term is divisible by Ψ(G). So gcd(Ψ(F ),Ψ(G)) | Ψ(gcd(F,G)) and
noting both sides are monic we are done.

¶ Second solution Here is an alternative (longer but more conceptual) way to finish
without Bezout lemma. Let i ⊆ Fp[x] denote the set of polynomials in the image of Ψ,
thus Ψ: Fp[x] → i is a bijection on the level of sets.

Claim — If A,B ∈ i then gcd(A,B) ∈ i.

6
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Proof. It suffices to show that if A and B are monic, and degA > degB, then the
remainder when A is divided by B is in i. Suppose degA = pk and B = xp

k−1 −
c2x

pk−2 − · · · − ck. Then

xp
k ≡

(
c2x

pk−2
+ c3x

pk−3
+ · · ·+ ck

)p
(mod B)

≡ c2x
pk−1

+ c3x
pk−2 · · ·+ ck (mod B)

since exponentiation by p commutes with addition in Fp. This is enough to imply the
conclusion. The proof if degB is smaller less than pk−1 is similar.

Thus, if we view Fp[x] and i as partially ordered sets under polynomial division,
then gcd is the “greatest lower bound” or “meet” in both partially ordered sets. We
will now prove that Ψ is an isomorphism of the posets. We have already seen that
P | Q =⇒ Ψ(P ) | Ψ(Q) from the first solution. For the converse:

Claim — If Ψ(P ) | Ψ(Q) then P | Q.

Proof. Suppose Ψ(P ) | Ψ(Q), but Q = PA + B where degB < degP . Thus Ψ(P ) |
Ψ(PA) + Ψ(B), hence Ψ(P ) | Ψ(B), but degΨ(P ) > degΨ(B) hence Ψ(B) = 0 =⇒
B = 0.

This completes the proof.

Remark. In fact Ψ: Fp[x] → i is a ring isomorphism if we equip i with function composition
as the ring multiplication. Indeed in the proof of the first claim (that P | Q =⇒ Ψ(P ) |
Ψ(Q)) we saw that

Ψ(RP ) =

k∑
i=0

riΨ(P )p
i

= Ψ(R) ◦Ψ(P ).
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§2 Solutions to Day 2
§2.1 USA TST 2016/4, proposed by Iurie Boreico
Available online at https://aops.com/community/p6368201.

Problem statement

Let
√
3 = 1.b1b2b3 . . .(2) be the binary representation of

√
3. Prove that for any

positive integer n, at least one of the digits bn, bn+1, . . . , b2n equals 1.

Assume the contrary, so that for some integer k we have

k < 2n−1
√
3 < k +

1

2n+1
.

Squaring gives

k2 < 3 · 22n−2 < k2 +
k

2n
+

1

22n+2

≤ k2 +
2n−1

√
3

2n
+

1

22n+2

= k2 +

√
3

2
+

1

22n+2

≤ k2 +

√
3

2
+

1

16
< k2 + 1

and this is a contradiction.
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§2.2 USA TST 2016/5, proposed by Zilin Jiang
Available online at https://aops.com/community/p6368185.

Problem statement

Let n ≥ 4 be an integer. Find all functions W : {1, . . . , n}2 → R such that for every
partition [n] = A ∪B ∪ C into disjoint sets,∑

a∈A

∑
b∈B

∑
c∈C

W (a, b)W (b, c) = |A||B||C|.

Of course, W (k, k) is arbitrary for k ∈ [n]. We claim that W (a, b) = ±1 for any a 6= b,
with the sign fixed. (These evidently work.)

First, let Xabc = W (a, b)W (b, c) for all distinct a, b, c, so the given condition is∑
a,b,c∈A×B×C

Xabc = |A||B||C|.

Consider the given equation with the particular choices

• A = {1}, B = {2}, C = {3, 4, . . . , n}.

• A = {1}, B = {3}, C = {2, 4, . . . , n}.

• A = {1}, B = {2, 3}, C = {4, . . . , n}.

This gives

X123 +X124 + · · ·+X12n = n− 2

X132 +X134 + · · ·+X13n = n− 2

(X124 + · · ·+X12n) + (X134 + · · ·+X13n) = 2(n− 3).

Adding the first two and subtracting the last one gives X123 + X132 = 2. Similarly,
X123 + X321 = 2, and in this way we have X321 = X132. Thus W (3, 2)W (2, 1) =
W (1, 3)W (3, 2), and since W (3, 2) 6= 0 (clearly) we get W (2, 1) = W (3, 2).

Analogously, for any distinct a, b, c we have W (a, b) = W (b, c). For n ≥ 4 this is
enough to imply W (a, b) = ±1 for a 6= b where the choice of sign is the same for all a
and b.

Remark. Surprisingly, the n = 3 case has “extra” solutions for W (1, 2) = W (2, 3) =
W (3, 1) = ±1, W (2, 1) = W (3, 2) = W (1, 3) = ∓1.

Remark (Intuition). It should still be possible to solve the problem with Xabc in place of
W (a, b)W (b, c), because we have about far more equations than variables Xa,b,c so linear
algebra assures us we almost certainly have a unique solution.
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§2.3 USA TST 2016/6, proposed by Ivan Borsenco
Available online at https://aops.com/community/p6368189.

Problem statement

Let ABC be an acute scalene triangle and let P be a point in its interior. Let A1, B1,
C1 be projections of P onto triangle sides BC, CA, AB, respectively. Find the locus
of points P such that AA1, BB1, CC1 are concurrent and ∠PAB+∠PBC+∠PCA =
90◦.

In complex numbers with ABC the unit circle, it is equivalent to solving the following
two cubic equations in p and q = p:

(p− a)(p− b)(p− c) = (abc)2(q − 1/a)(q − 1/b)(q − 1/c)

0 =
∏
cyc

(p+ c− b− bcq) +
∏
cyc

(p+ b− c− bcq).

Viewing this as two cubic curves in (p, q) ∈ C2, by Bézout’s Theorem it follows there
are at most nine solutions (unless both curves are not irreducible, but it’s easy to check
the first one cannot be factored). Moreover it is easy to name nine solutions (for ABC
scalene): the three vertices, the three excenters, and I, O, H. Hence the answer is just
those three triangle centers I, O and H.

Remark. On the other hand it is not easy to solve the cubics by hand; I tried for an
hour without success. So I think this solution is only feasible with knowledge of algebraic
geometry.

Remark. These two cubics have names:

• The locus of ∠PAB + ∠PBC + ∠PCA = 90◦ is the McCay cubic, which is the
locus of points P for which P , P ∗, O are collinear.

• The locus of the pedal condition is the Darboux cubic, which is the locus of points
P for which P , P ∗, L are collinear, L denoting the de Longchamps point.

Assuming P 6= P ∗, this implies P and P ∗ both lie on the Euler line of 4ABC, which is
possible only if P = O or P = H.

Some other synthetic solutions are posted at https://aops.com/community/c6h1243902p6368189.
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Team Selection Test for the 58th International Mathematical Olympiad

United States of America

Day I

Thursday, December 8, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. In a sports league, each team uses a set of at most t signature colors. A
set S of teams is color-identifiable if one can assign each team in S one of their signature
colors, such that no team in S is assigned any signature color of a different team in S.
For all positive integers n and t, determine the maximum integer g(n, t) such that: In
any sports league with exactly n distinct colors present over all teams, one can always
find a color-identifiable set of size at least g(n, t).

IMO TST 2. Let ABC be an acute scalene triangle with circumcenter O, and let
T be on line BC such that ∠TAO = 90◦. The circle with diameter AT intersects the
circumcircle of 4BOC at two points A1 and A2, where OA1 < OA2. Points B1, B2, C1,
C2 are defined analogously.
(a) Prove that AA1, BB1, CC1 are concurrent.
(b) Prove that AA2, BB2, CC2 are concurrent on the Euler line of triangle ABC.

IMO TST 3. Let P,Q ∈ R[x] be relatively prime nonconstant polynomials. Show that
there can be at most three real numbers λ such that P +λQ is the square of a polynomial.

1



Team Selection Test for the 58th International Mathematical Olympiad

United States of America

Day II

Thursday, January 19, 2017

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. You are cheating at a trivia contest. For each question, you can peek at
each of the n > 1 other contestant’s guesses before writing your own. For each question,
after all guesses are submitted, the emcee announces the correct answer. A correct guess
is worth 0 points. An incorrect guess is worth −2 points for other contestants, but only
−1 point for you, because you hacked the scoring system. After announcing the correct
answer, the emcee proceeds to read out the next question. Show that if you are leading
by 2n−1 points at any time, then you can surely win first place.

IMO TST 5. Let ABC be a triangle with altitude AE. The A-excircle touches BC
at D, and intersects the circumcircle at two points F and G. Prove that one can select
points V and N on lines DG and DF such that quadrilateral EV AN is a rhombus.

IMO TST 6. Prove that there are infinitely many triples (a, b, p) of integers, with p
prime and 0 < a ≤ b < p, for which p3 divides (a+ b)p − ap − bp.
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Note that in this solutions file, we present slightly stronger versions of problems 4 and
6 on the January TST than actually appeared on the exams.
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§0 Problems
1. In a sports league, each team uses a set of at most t signature colors. A set S of

teams is color-identifiable if one can assign each team in S one of their signature
colors, such that no team in S is assigned any signature color of a different team in
S. For all positive integers n and t, determine the maximum integer g(n, t) such
that: In any sports league with exactly n distinct colors present over all teams, one
can always find a color-identifiable set of size at least g(n, t).

2. Let ABC be an acute scalene triangle with circumcenter O, and let T be on line BC
such that ∠TAO = 90◦. The circle with diameter AT intersects the circumcircle of
4BOC at two points A1 and A2, where OA1 < OA2. Points B1, B2, C1, C2 are
defined analogously.
(a) Prove that AA1, BB1, CC1 are concurrent.
(b) Prove that AA2, BB2, CC2 are concurrent on the Euler line of triangle ABC.

3. Let P,Q ∈ R[x] be relatively prime nonconstant polynomials. Show that there can
be at most three real numbers λ such that P + λQ is the square of a polynomial.

4. You are cheating at a trivia contest. For each question, you can peek at each of the
n > 1 other contestant’s guesses before writing your own. For each question, after
all guesses are submitted, the emcee announces the correct answer. A correct guess
is worth 0 points. An incorrect guess is worth −2 points for other contestants, but
only −1 point for you, because you hacked the scoring system. After announcing
the correct answer, the emcee proceeds to read out the next question. Show that if
you are leading by 2n−1 points at any time, then you can surely win first place.

5. Let ABC be a triangle with altitude AE. The A-excircle touches BC at D, and
intersects the circumcircle at two points F and G. Prove that one can select points
V and N on lines DG and DF such that quadrilateral EV AN is a rhombus.

6. Prove that there are infinitely many triples (a, b, p) of integers, with p prime and
0 < a ≤ b < p, for which p5 divides (a+ b)p − ap − bp.
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§1 Solutions to Day 1
§1.1 USA TST 2017/1, proposed by Po-Shen Loh
Available online at https://aops.com/community/p7389115.

Problem statement

In a sports league, each team uses a set of at most t signature colors. A set S of
teams is color-identifiable if one can assign each team in S one of their signature
colors, such that no team in S is assigned any signature color of a different team
in S. For all positive integers n and t, determine the maximum integer g(n, t) such
that: In any sports league with exactly n distinct colors present over all teams, one
can always find a color-identifiable set of size at least g(n, t).

Answer: dn/te.
To see this is an upper bound, note that one can easily construct a sports league with

that many teams anyways.
A quick warning:

Remark (Misreading the problem). It is common to misread the problem by ignoring the
word “any”. Here is an illustration.

Suppose we have two teams, MIT and Harvard; the colors of MIT are red/grey/black,
and the colors of Harvard are red/white. (Thus n = 4 and t = 3.) The assignment of MIT
to grey and Harvard to red is not acceptable because red is a signature color of MIT, even
though not the one assigned.

We present two proofs of the lower bound.

¶ Approach by deleting teams (Gopal Goel) Initially, place all teams in a set S. Then
we repeat the following algorithm:

If there is a team all of whose signature colors are shared by some other team
in S already, then we delete that team.

(If there is more than one such team, we pick arbitrarily.)
At the end of the process, all n colors are still present at least once, so at least dn/te

teams remain. Moreover, since the algorithm is no longer possible, the remaining set S is
already color-identifiable.

Remark (Gopal Goel). It might seem counter-intuitive that we are deleting teams from the
full set when the original problem is trying to get a large set S.

This is less strange when one thinks of it instead as “safely deleting useless teams”.
Basically, if one deletes such a team, the problem statement implies that the task must
still be possible, since g(n, t) does not depend on the number of teams: n is the number
of colors present, and deleting a useless team does not change this. It turns out that this
optimization is already enough to solve the problem.

¶ Approach by adding colors For a constructive algorithmic approach, the idea is to
greedy pick by color (rather than by team), taking at each step the least used color.
Select the color C1 with the fewest teams using it, and a team T1 using it. Then delete
all colors T1 uses, and all teams which use C1. Note that
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• By problem condition, this deletes at most t teams total.

• Any remaining color C still has at least one user. Indeed, if not, then C had the
same set of teams as C1 did (by minimality of C), but then it should have deleted
as a color of T1.

Now repeat this algorithm with C2 and T2, and so on. This operations uses at most t
colors each time, so we select at least dn/te colors.

Remark. A greedy approach by team does not work. For example, suppose we try to “grab
teams until no more can be added”.

As before, assume our league has teams, MIT and Harvard; the colors of MIT are
red/grey/black, and the colors of Harvard are red/white. (Thus n = 4 and t = 3.) If we start
by selecting MIT and red, then it is impossible to select any more teams; but g(n, t) = 2.
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§1.2 USA TST 2017/2, proposed by Evan Chen
Available online at https://aops.com/community/p7389108.

Problem statement

Let ABC be an acute scalene triangle with circumcenter O, and let T be on line BC
such that ∠TAO = 90◦. The circle with diameter AT intersects the circumcircle of
4BOC at two points A1 and A2, where OA1 < OA2. Points B1, B2, C1, C2 are
defined analogously.

(a) Prove that AA1, BB1, CC1 are concurrent.

(b) Prove that AA2, BB2, CC2 are concurrent on the Euler line of triangle ABC.

Let triangle ABC have circumcircle Γ. Let 4XY Z be the tangential triangle of 4ABC
(hence Γ is the incircle of 4XY Z), and denote by Ω its circumcircle. Suppose the
symmedian AX meets Γ again at D, and let M be the midpoint of AD. Finally, let K
be the Miquel point of quadrilateral ZBCY , meaning it is the intersection of Ω and the
circumcircle of 4BOC (other than X).

A

B C

O

X

Y

Z

T

D

M

L

K

We first claim that M and K are A1 and A2. In that case OM < OA < OK, so
M = A1, K = A2.

To see that M = A1, note that ∠OMX = 90◦, and moreover that TA, TD are tangents
to Γ, whence we also have M = TO ∩AD. Thus M lies on both (BOC) and (AT ). This
solves part (a) of the problem: the concurrency point is the symmedian point of 4ABC.

Now, note that since K is the Miquel point,
ZK

YK
=

ZB

Y C
=

ZA

Y A

and hence KA is an angle bisector of ∠ZKY . Thus from (TA;Y Z) = −1 we obtain
∠TKA = 90◦.
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It remains to show AK passes through a fixed point on the Euler line. We claim it
is the exsimilicenter of Γ and Ω. Let L be the midpoint of the arc Y Z of 4XY Z not
containing X. Then we know that K, A, L are collinear. Now the positive homothety
sending Γ to Ω maps A to L; this proves the claim. Finally, it is well-known that the
line through O and the circumcenter of 4XY Z coincides with the Euler line of 4ABC;
hence done.

A second approach to (b) presented by many contestants is to take an inversion around
the circumcircle of ABC. In that situation, the part reduces to the following known
lemma: if AHa, BHb, CHc are the altitudes of a triangle, then the circumcircles of
triangles OAHa, BOHb, COHc are coaxial, and the radical axis coincides with the Euler
line. Indeed one simply observes that the orthocenter has equal power to all three circles.

¶ Authorship comments This problem was inspired by the fact that K, A, L are
collinear in the figure, which was produced by one of my students (Ryan Kim) in a
solution to a homework problem. I realized for example that this implied that line AK
passed through the X56 point of 4XY Z (which lies on the Euler line of 4ABC).

This problem was the result of playing around with the resulting very nice picture: all
the power comes from the “magic” point K.
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§1.3 USA TST 2017/3, proposed by Alison Miller
Available online at https://aops.com/community/p7389123.

Problem statement

Let P,Q ∈ R[x] be relatively prime nonconstant polynomials. Show that there can
be at most three real numbers λ such that P + λQ is the square of a polynomial.

This is true even with R replaced by C, and it will be necessary to work in this generality.

¶ First solution using transformations We will prove the claim in the following form:

Claim — Assume P,Q ∈ C[x] are relatively prime. If αP + βQ is a square for four
different choices of the ratio [α : β] then P and Q must be constant.

Call pairs (P,Q) as in the claim bad; so we wish to show the only bad pairs are pairs
of constant polynomials. Assume not, and take a bad pair with degP + degQ minimal.

By a suitable Möbius transformation, we may transform (P,Q) so that the four ratios
are [1 : 0], [0 : 1], [1 : −1] and [1 : −k], so we find there are polynomials A and B such
that

A2 −B2 = C2

A2 − kB2 = D2

where A2 = P + λ1Q, B2 = P + λ2Q, say. Of course gcd(A,B) = 1.
Consequently, we have C2 = (A + B)(A − B) and D2 = (A + µB)(A − µB) where

µ2 = k. Now gcd(A,B) = 1, so A+B, A−B, A+ µB and A− µB are squares; id est
(A,B) is bad. This is a contradiction, since degA+ degB < degP + degQ.

¶ Second solution using derivatives (by Zack Chroman) We will assume without loss
of generality that degP 6= degQ; if not, then one can replace (P,Q) with (P + cQ,Q)
for a suitable constant c.

Then, there exist λi ∈ C and polynomials Ri for i = 1, 2, 3, 4 such that

P + λiQ = R2
i

=⇒ P ′ + λiQ
′ = 2RiR

′
i

=⇒ Ri | Q′(P + λiQ)−Q(P ′ + λiQ
′) = Q′P −QP ′.

On the other hand by Euclidean algorithm it follows that Ri are relatively prime to each
other. Therefore

R1R2R3R4 | Q′P −QP ′.

However, we have

4∑
1

degRi ≥
3max(degP, degQ) + min(degP, degQ)

2
≥ degP+degQ > deg(Q′P−QP ′).

This can only occur if Q′P − QP ′ = 0 or (P/Q)′ = 0 by the quotient rule! But P/Q
can’t be constant, the end.
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Remark. The result is previously known; see e.g. Lemma 1.6 of http://math.mit.edu/
~ebelmont/ec-notes.pdf or Exercise 6.5.L(a) of Vakil’s notes.
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§2 Solutions to Day 2
§2.1 USA TST 2017/4, proposed by Linus Hamilton
Available online at https://aops.com/community/p7732191.

Problem statement

You are cheating at a trivia contest. For each question, you can peek at each of the
n > 1 other contestant’s guesses before writing your own. For each question, after
all guesses are submitted, the emcee announces the correct answer. A correct guess
is worth 0 points. An incorrect guess is worth −2 points for other contestants, but
only −1 point for you, because you hacked the scoring system. After announcing
the correct answer, the emcee proceeds to read out the next question. Show that if
you are leading by 2n−1 points at any time, then you can surely win first place.

We will prove the result with 2n−1 replaced even by 2n−2 + 1.
We first make the following reductions. First, change the weights to be +1, −1, 0

respectively (rather than 0, −2, −1); this clearly has no effect. Also, WLOG that all
contestants except you initially have score zero (and that your score exceeds 2n−2).
WLOG ignore rounds in which all answers are the same. Finally, ignore rounds in which
you get the correct answer, since that leaves you at least as well off as before — in other
words, we’ll assume your score is always fixed, but you can pick any group of people with
the same answers and ensure they lose 1 point, while some other group gains 1 point.

The key observation is the following. Consider two rounds R1 and R2 such that:

• In round R1, some set S of contestants gains a point.

• In round R2, the set S of contestants all have the same answer.

Then, if we copy the answers of contestants in S during R2, then the sum of the scorings
in R1 and R2 cancel each other out. In other words we can then ignore R1 and R2 forever.

We thus consider the following strategy. We keep a list L of subsets of {1, . . . , n},
initially empty. Now do the following strategy:

• On a round, suppose there exists a set S of people with the same answer such that
S ∈ L. (If multiple exist, choose one arbitrarily.) Then, copy the answer of S,
causing them to lose a point. Delete S from L. (Importantly, we do not add any
new sets to L.)

• Otherwise, copy any set T of contestants, selecting |T | ≥ n/2 if possible. Let S be
the set of contestants who answer correctly (if any), and add S to the list L. Note
that |S| ≤ n/2, since S is disjoint from T .

By construction, L has no duplicate sets. So the score of any contestant c is bounded
above by the number of times that c appears among sets in L. The number of such sets
is clearly at most 1

2 · 2n−1. So, if you lead by 2n−2 + 1 then you ensure victory. This
completes the proof!

Remark. Several remarks are in order. First, we comment on the bound 2n−2 + 1 itself.
The most natural solution using only the list idea gives an upper bound of (2n−2)+1, which
is the number of nonempty proper subsets of {1, . . . , n}. Then, there are two optimizations
one can observe:
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• In fact we can improve to the number of times any particular contestant c appears in
some set, rather than the total number of sets.

• When adding new sets S to L, one can ensure |S| ≤ n/2.

Either observation alone improves the bound from 2n − 1 to 2n−1, but both together give
the bound 2n−2 + 1. Additionally, when n is odd the calculation of subsets actually gives
2n−2− 1

2

(n−1
n−1
2

)
+1. This gives the best possible value at both n = 2 and n = 3. It seems likely

some further improvements are possible, and the true bound is suspected to be polynomial
in n.

Secondly, the solution is highly motivated by considering a true/false contest in which
only two distinct answers are given per question. However, a natural mistake (which graders
assessed as a two-point deduction) is to try and prove that in fact one can “WLOG” we are
in the two-question case. The proof of this requires substantially more care than expected.
For instance, set n = 3. If L = {{1}, {2}, {3}} then it becomes impossible to prevent a
duplicate set from appearing in L if all contestants give distinct answers. One might attempt
to fix this by instead adding to L the complement of the set T described above. The example
L = {{1, 2}, {2, 3}, {3, 1}} (followed again by a round with all distinct answers) shows that
this proposed fix does not work either. This issue affects all variations of the above approach.

Because the USA TST did not have any solution-writing process at this time, this issue
was not noticed until January 15 (less than a week before the exam). When it was brought
up by email by Evan, every organizer who had testsolved the problem had apparently made
the same error.

Remark. Here are some motivations for the solution:

1. The exponential bound 2n suggests looking at subsets.

2. The n = 2 case suggests the idea of “repeated rounds”. (I think this n = 2 case is
actually really good.)

3. The “two distinct answers” case suggests looking at rounds as partitions (even though
the WLOG does not work, at least not without further thought).

4. There’s something weird about this problem: it’s a finite bound over unbounded time.
This is a hint to not worry excessively about the actual scores, which turn out to be
almost irrelevant.
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§2.2 USA TST 2017/5, proposed by Danielle Wang, Evan Chen
Available online at https://aops.com/community/p7732197.

Problem statement

Let ABC be a triangle with altitude AE. The A-excircle touches BC at D, and
intersects the circumcircle at two points F and G. Prove that one can select points
V and N on lines DG and DF such that quadrilateral EV AN is a rhombus.

Let I denote the incenter, J the A-excenter, and L the midpoint of AE. Denote by IY ,
IZ the tangents from I to the A-excircle. Note that lines BC, GF , Y Z then concur at
H (unless AB = AC, but this case is obvious), as it’s the radical center of cyclic hexagon
BICY JZ, the circumcircle and the A-excircle.

A

B C

I

M

J

DE
F

G

L VN

H

Y

Z

T

Now let HD and HT be the tangents from H to the A-excircle. It follows that DT is
the symmedian of 4DZY , hence passes through I = Y Y ∩ZZ. Moreover, it’s well known
that DI passes through L, the midpoint of the A-altitude (for example by homothety).
Finally, (DT ;FG) = −1, hence project through D onto the line through L parallel to
BC to obtain (∞L;V N) = −1 as desired.

¶ Authorship comments This is a joint proposal with Danielle Wang (mostly by her).
The formulation given was that the tangents to the A-excircle at F and G was on line
DI; I solved this formulation using the radical axis argument above. I then got the
idea to involve the point L, already knowing it was on DI. Observing the harmonic
quadrilateral, I took perspectivity through M onto the line through L parallel to BC
(before this I had tried to use the A-altitude with little luck). This yields the rhombus in
the problem.
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§2.3 USA TST 2017/6, proposed by Noam Elkies
Available online at https://aops.com/community/p7732203.

Problem statement

Prove that there are infinitely many triples (a, b, p) of integers, with p prime and
0 < a ≤ b < p, for which p5 divides (a+ b)p − ap − bp.

The key claim is that if p ≡ 1 (mod 3), then

p(x2 + xy + y2)2 divides (x+ y)p − xp − yp

as polynomials in x and y. Since it’s known that one can select a and b such that
p2 | a2+ab+ b2, the conclusion follows. (The theory of quadratic forms tells us we can do
it with p2 = a2+ab+ b2; Thue’s lemma lets us do it by solving x2+x+1 ≡ 0 (mod p2).)

To prove this, it is the same to show that

(x2 + x+ 1)2 divides F (x) := (x+ 1)p − xp − 1.

since the binomial coefficients
(
p
k

)
are clearly divisible by p. Let ζ be a third root of unity.

Then F (ζ) = (1+ ζ)p− ζp−1 = −ζ2− ζ−1 = 0. Moreover, F ′(x) = p(x+1)p−1−pxp−1,
so F ′(ζ) = p− p = 0. Hence ζ is a double root of F as needed.

(Incidentally, p = 2017 works!)

Remark. One possible motivation for this solution is the case p = 7. It is nontrivial even to
prove that p2 can divide the expression if we exclude the situation a+ b = p (which provably
never achieves p3). As p = 3, 5 fails considering the p = 7 polynomial gives

(x+ 1)7 − x7 − 1 = 7x(x+ 1)
(
x4 + 2x3 + 3x2 + 2x+ 1

)
.

The key is now to notice that the last factor is (x2 + x + 1)2, which suggests the entire
solution.

In fact, even if p ≡ 2 (mod 3), the polynomial x2 + x+ 1 still divides (x+ 1)p − xp − 1.
So even the p = 5 case can motivate the main idea.
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Team Selection Test for the 59th International Mathematical Olympiad

United States of America

Day I

Thursday, December 7, 2017

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, December 11 at noon Eastern time.

IMO TST 1. Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the
positive divisors of n. Prove that the nth smallest positive integer relatively prime to n
is at least σ(n), and determine for which n equality holds.

IMO TST 2. Find all functions f : Z2 → [0, 1] such that for any integers x and y,

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

IMO TST 3. At a university dinner, there are 2017 mathematicians who each order
two distinct entrées, with no two mathematicians ordering the same pair of entrées. The
cost of each entrée is equal to the number of mathematicians who ordered it, and the
university pays for each mathematician’s less expensive entrée (ties broken arbitrarily).
Over all possible sets of orders, what is the maximum total amount the university could
have paid?
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Team Selection Test for the 59th International Mathematical Olympiad

United States of America

Day II

Thursday, January 18, 2018

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, January 22 at noon Eastern time.

IMO TST 4. Let n be a positive integer and let S ⊆ {0, 1}n be a set of binary strings
of length n. Given an odd number x1, . . . , x2k+1 ∈ S of binary strings (not necessarily
distinct), their majority is defined as the binary string y ∈ {0, 1}n for which the ith bit
of y is the most common bit among the ith bits of x1, . . . , x2k+1. (For example, if n = 4
the majority of 0000, 0000, 1101, 1100, 0101 is 0100.)

Suppose that for some positive integer k, S has the property Pk that the majority of any
2k + 1 binary strings in S (possibly with repetition) is also in S. Prove that S has the
same property Pk for all positive integers k.

IMO TST 5. Let ABCD be a convex cyclic quadrilateral which is not a kite, but
whose diagonals are perpendicular and meet at H. Denote by M and N the midpoints
of BC and CD. Rays MH and NH meet AD and AB at S and T , respectively. Prove
there exists a point E, lying outside quadrilateral ABCD, such that

• ray EH bisects both angles ∠BES, ∠TED, and

• ∠BEN = ∠MED.

IMO TST 6. Alice and Bob play a game. First, Alice secretly picks a finite set S
of lattice points in the Cartesian plane. Then, for every line ` in the plane which is
horizontal, vertical, or has slope +1 or −1, she tells Bob the number of points of S that
lie on `. Bob wins if he can then determine the set S.

Prove that if Alice picks S to be of the form

S =
{

(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n
}

for some positive integers m and n, then Bob can win. (Bob does not know in advance
that S is of this form.)
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§0 Problems
1. Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the positive divisors

of n. Prove that the nth smallest positive integer relatively prime to n is at least
σ(n), and determine for which n equality holds.

2. Find all functions f : Z2 → [0, 1] such that for any integers x and y,

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

3. At a university dinner, there are 2017 mathematicians who each order two distinct
entrées, with no two mathematicians ordering the same pair of entrées. The cost
of each entrée is equal to the number of mathematicians who ordered it, and
the university pays for each mathematician’s less expensive entrée (ties broken
arbitrarily). Over all possible sets of orders, what is the maximum total amount
the university could have paid?

4. Let n be a positive integer and let S ⊆ {0, 1}n be a set of binary strings of length n.
Given an odd number x1, . . . , x2k+1 ∈ S of binary strings (not necessarily distinct),
their majority is defined as the binary string y ∈ {0, 1}n for which the ith bit of
y is the most common bit among the ith bits of x1, . . . , x2k+1. (For example, if
n = 4 the majority of 0000, 0000, 1101, 1100, 0101 is 0100.)
Suppose that for some positive integer k, S has the property Pk that the majority
of any 2k + 1 binary strings in S (possibly with repetition) is also in S. Prove that
S has the same property Pk for all positive integers k.

5. Let ABCD be a convex cyclic quadrilateral which is not a kite, but whose diagonals
are perpendicular and meet at H. Denote by M and N the midpoints of BC and
CD. Rays MH and NH meet AD and AB at S and T , respectively. Prove there
exists a point E, lying outside quadrilateral ABCD, such that

• ray EH bisects both angles ∠BES, ∠TED, and
• ∠BEN = ∠MED.

6. Alice and Bob play a game. First, Alice secretly picks a finite set S of lattice points
in the Cartesian plane. Then, for every line ` in the plane which is horizontal,
vertical, or has slope +1 or −1, she tells Bob the number of points of S that lie on
`. Bob wins if he can then determine the set S.
Prove that if Alice picks S to be of the form

S =
{
(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n

}
for some positive integers m and n, then Bob can win. (Bob does not know in
advance that S is of this form.)

2
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§1 Solutions to Day 1
§1.1 USA TST 2018/1, proposed by Ashwin Sah
Available online at https://aops.com/community/p9513094.

Problem statement

Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the positive divisors
of n. Prove that the nth smallest positive integer relatively prime to n is at least
σ(n), and determine for which n equality holds.

The equality case is n = pe for p prime and a positive integer e. It is easy to check that
this works.

¶ First solution In what follows, by [a, b] we mean {a, a+1, . . . , b}. First, we make the
following easy observation.

Claim — If a and d are positive integers, then precisely ϕ(d) elements of [a, a+d−1]
are relatively prime to d.

Let d1, d2, . . . , dk denote denote the divisors of n in some order. Consider the intervals

I1 = [1, d1],

I2 = [d1 + 1, d1 + d2]

...
Ik = [d1 + · · ·+ dk−1 + 1, d1 + · · ·+ dk].

of length d1, . . . , dk respectively. The jth interval will have exactly ϕ(dj) elements which
are relatively prime dj , hence at most ϕ(dj) which are relatively prime to n. Consequently,
in I =

⋃k
j=1 Ik there are at most

k∑
j=1

ϕ(dj) =
∑
d|n

ϕ(d) = n

integers relatively prime to n. On the other hand I = [1, σ(n)] so this implies the
inequality.

We see that the equality holds for n = pe. Assume now p < q are distinct primes
dividing n. Reorder the divisors di so that d1 = q. Then p, q ∈ I1, and so I1 should
contain strictly fewer than ϕ(d1) = q − 1 elements relatively prime to n, hence the
inequality is strict.

¶ Second solution (Ivan Borsenco and Evan Chen) Let n = pe11 . . . pekk , where p1 <
p2 < . . . . We are going to assume k ≥ 2, since the k = 1 case was resolved in the very
beginning, and prove the strict inequality.

For a general N , the number of relatively prime integers in [1, N ] is given exactly by

f(N) = N −
∑
i

⌊
N

pi

⌋
+
∑
i<j

⌊
N

pipj

⌋
− . . .

3
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according to the inclusion-exclusion principle. So, we wish to show that f(σ(n)) < n (as
k ≥ 2). Discarding the error terms from the floors (noting that we get at most 1 from
the negative floors) gives

f(N) < 2k−1 +N −
∑
i

N

pi
+
∑
i<j

N

pipj
− . . .

= 2k−1 +N
∏
i

(
1− p−1

i

)
= 2k−1 +

∏
i

(
1− p−1

i

) (
1 + pi + p2i + · · ·+ peii

)
= 2k−1 +

∏
i

(
peii − p−1

i

)
.

The proof is now divided into two cases. If k = 2 we have

f(N) < 2 +
(
pe11 − p−1

1

) (
pe22 − p−1

2

)
= 2 + n− pe22

p1
− pe11

p2
+

1

p1p2

≤ 2 + n− p2
p1

− p1
p2

+
1

p1p2

= n+
1− (p1 − p2)

2

p1p2
≤ n.

On the other hand if k ≥ 3 we may now write

f(N) < 2k−1 +

[
k−1∏
i=2

(peii )

] (
pe11 − p−1

1

)
= 2k−1 + n−

pe22 . . . pekk
p1

≤ 2k−1 + n− p2p3 . . . pk
p1

.

If p1 = 2, then one can show by induction that p2p3 . . . pk ≥ 2k+1 − 1, which implies the
result. If p1 > 2, then one can again show by induction p3 . . . pk ≥ 2k − 1 (since p3 ≥ 7),
which also implies the result.

4
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§1.2 USA TST 2018/2, proposed by Michael Kural, Yang Liu
Available online at https://aops.com/community/p9513099.

Problem statement

Find all functions f : Z2 → [0, 1] such that for any integers x and y,

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

We claim that the only functions f are constant functions. (It is easy to see that they
work.)

¶ First solution (hands-on) First, iterating the functional equation relation to the nth
level shows that

f(x, y) =
1

2n

n∑
i=0

(
n

i

)
f(x− i, y − (n− i)).

In particular,

|f(x, y)− f(x− 1, y + 1)| = 1

2n

∣∣∣∣∣
n+1∑
i=0

f(x− i, y − (n− i)) ·
((

n

i

)
−
(

n

i− 1

))∣∣∣∣∣
≤ 1

2n

n+1∑
i=0

∣∣∣∣(ni
)
−

(
n

i− 1

)∣∣∣∣
=

1

2n
· 2
(

n

bn/2c

)
where we define

(
n

n+1

)
=

(
n
−1

)
= 0 for convenience. Since(

n

bn/2c

)
= o(2n)

it follows that f must be constant.

Remark. A very similar proof extends to d dimensions.

¶ Second solution (random walks, Mark Sellke) We show that if x+ y = x′ + y′ then
f(x, y) = f(x′, y′). Let Zn, Z ′

n be random walks starting at (x, y) and (x′, y′) and moving
down/left. Then f(Zn) is a martingale so we have

E[f(Zn)] = f(x, y), E[f(Z ′
n)] = f(x′, y′).

We’ll take Zn, Z ′
n to be independent until they hit each other, after which they will stay

together. Then
|E[f(Zn)− f(Z ′

n)]| ≤ E[|f(Zn)− f(Z ′
n)|] ≤ pn

where pn is the probability that Zn, Z ′
n never collide. But the distance between Zn, Z ′

n is
essentially a 1-dimensional random walk, so they will collide with probability 1, meaning
limn→∞ pn = 0. Hence

|f(x, y)− f(x′, y′)| = |E[f(Zn)− f(Z ′
n)]| = o(1)

as desired.

5
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Remark. If the problem were in Zd for large d, this solution wouldn’t work as written
because the independent random walks wouldn’t hit each other. However, this isn’t a
serious problem because Zn, Z ′

n don’t have to be independent before hitting each other.
Indeed, if every time Zn, Z

′
n agree on a new coordinate we force them to agree on that

coordinate forever, we can make the two walks individually have the distribution of a
coordinate-decreasing random walk but make them intersect eventually with probability 1.
The difference in each coordinate will be a 1-dimensional random walk which gets stuck at 0.

¶ Third solution (martingales) Imagine starting at (x, y) and taking a random walk
down and to the left. This is a martingale. As f is bounded, this martingale converges
with probability 1. Let X1, X2, . . . each be random variables that represent either down
moves or left moves with equal probability. Note that by the Hewitt-Savage 0-1 law, we
have that for any real numbers a < b,

Pr
[

lim
n→∞

f((x, y) +X1 +X2 + · · ·+Xn) ∈ [a, b]
]
∈ {0, 1}.

Hence, there exists a single value v such that with probability 1,

Pr
[

lim
n→∞

f((x, y) +X1 +X2 + · · ·+Xn) = v
]
= 1.

Obviously, this value v must equal f(x, y). Now, we show this value v is the same for all
(x, y). Note that any two starting points have a positive chance of meeting. Therefore,
we are done.

6
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§1.3 USA TST 2018/3, proposed by Evan Chen
Available online at https://aops.com/community/p9513105.

Problem statement

At a university dinner, there are 2017 mathematicians who each order two distinct
entrées, with no two mathematicians ordering the same pair of entrées. The cost
of each entrée is equal to the number of mathematicians who ordered it, and
the university pays for each mathematician’s less expensive entrée (ties broken
arbitrarily). Over all possible sets of orders, what is the maximum total amount the
university could have paid?

In graph theoretic terms: we wish to determine the maximum possible value of

S(G) :=
∑
e=vw

min (deg v, degw)

across all graphs G with 2017 edges. We claim the answer is 63 ·
(
64
2

)
+ 1 = 127009.

¶ First solution (combinatorial, Evan Chen) First define Lk to consist of a clique on
k vertices, plus a single vertex connected to exactly one vertex of the clique. Hence Lk

has k+ 1 vertices,
(
k
2

)
+ 1 edges, and S(Lk) = (k− 1)

(
k
2

)
+ 1. In particular, L64 achieves

the claimed maximum, so it suffices to prove the upper bound.

Lemma
Let G be a graph such that either

• G has
(
k
2

)
edges for some k ≥ 3 or

• G has
(
k
2

)
+ 1 edges for some k ≥ 4.

Then there exists a graph G∗ with the same number of edges such that S(G∗) ≥ S(G),
and moreover G∗ has a universal vertex (i.e. a vertex adjacent to every other vertex).

Proof. Fix k and the number m of edges. We prove the result by induction on the number
n of vertices in G. Since the lemma has two parts, we will need two different base cases:

1. Suppose n = k and m =
(
k
2

)
. Then G must be a clique so pick G∗ = G.

2. Suppose n = k+1 and m =
(
k
2

)
+1. If G has no universal vertex, we claim we may

take G∗ = Lk. Indeed each vertex of G has degree at most k − 1, and the average
degree is

2m

n
=

k2 − k + 1

k + 1
< k − 1

using here k ≥ 4. Thus there exists a vertex w of degree 1 ≤ d ≤ k − 2. The edges
touching w will have label at most d and hence

S(G) ≤ (k − 1)(m− d) + d2 = (k − 1)m− d(k − 1− d)

≤ (k − 1)m− (k − 2) = (k − 1)

(
k

2

)
+ 1 = S(G∗).

7
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Now we settle the inductive step. Let w be a vertex with minimal degree 0 ≤ d < k − 1,
with neighbors w1, . . . , wd. By our assumption, for each wi there exists a vertex vi for
which viwi /∈ E. Now, we may delete all edges wwi and in their place put viwi, and then
delete the vertex w. This gives a graph G′, possibly with multiple edges (if vi = wj and
wj = vi), and with one fewer vertex.

w

G G′ G′′

We then construct a graph G′′ by taking any pair of double edges, deleting one of
them, and adding any missing edge of G′′ in its place. (This is always possible, since
when m =

(
k
2

)
we have n− 1 ≥ k and when m =

(
k
2

)
+ 1 we have n− 1 ≥ k + 1.)

Thus we have arrived at a simple graph G′′ with one fewer vertex. We also observe
that we have S(G′′) ≥ S(G); after all every vertex in G′′ has degree at least as large as
it did in G, and the d edges we deleted have been replaced with new edges which will
have labels at least d. Hence we may apply the inductive hypothesis to the graph G′′ to
obtain G∗ with S(G∗) ≥ S(G′′) ≥ S(G).

The problem then is completed once we prove the following:

Claim — For any graph G,

• If G has
(
k
2

)
edges for k ≥ 3, then S(G) ≤

(
k
2

)
· (k − 1).

• If G has
(
k
2

)
+ 1 edges for k ≥ 4, then S(G) ≤

(
k
2

)
· (k − 1) + 1.

Proof. We prove both parts at once by induction on k, with the base case k = 3 being
plain (there is nothing to prove in the second part for k = 3). Thus assume k ≥ 4. By the
earlier lemma, we may assume G has a universal vertex v. For notational convenience,
we say G has

(
k
2

)
+ ε edges for ε ∈ {0, 1}, and G has p+ 1 vertices, where p ≥ k − 1 + ε.

Let H be the subgraph obtained when v is deleted. Then m =
(
k
2

)
+ ε − p is the

number of edges in H; from p ≥ k − 1 + ε we have m ≤
(
k−1
2

)
and so we may apply the

inductive hypothesis to H to deduce S(H) ≤
(
k−1
2

)
· (k − 2).

. . .
w1 w2 wp

v

H

Now the labels of edges vwi have sum

p∑
i=1

min (degG v, degGwi) =

p∑
i=1

degGwi =

p∑
i=1

(degH wi + 1) = 2m+ p.

8
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For each of the edges contained in H, the label on that edge has increased by exactly 1,
so those edges contribute S(H) +m. In total,

S(G) = 2m+ p+ (S(H) +m) = (m+ p) + 2m+ S(H)

≤
(
k

2

)
+ ε+ 2

(
k − 1

2

)
+

(
k − 1

2

)
(k − 2) =

(
k

2

)
(k − 1) + ε.

¶ Second solution (algebraic, submitted by contestant James Lin) We give a different
proof of S(G) ≤ 127009. The proof proceeds using the following two claims, which will
show that S(G) ≤ 127010 for all graphs G. Then a careful analysis of the equality cases
will show that this bound is not achieved for any graph G. Since the example L64 earlier
has S(L64) = 127009, this will solve the problem.

Lemma (Combinatorial bound)
Let G be a graph with 2017 edges and let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence
of the graph (thus n ≥ 65). Then

S(G) ≤ d2 + 2d3 + 3d4 + · · ·+ 63d64 + d65.

Proof. Let v1, . . . , vn be the corresponding vertices. For any edge e = {vi, vj} with i < j,
we consider associating each edge e with vj , and computing the sum S(G) indexing over
associated vertices. To be precise, if we let ai denote the number of edges associated to
vi, we now have ai ≤ i− 1,

∑
ai = 2017, and

S(G) =

n∑
i=1

aidi.

The inequality
∑

aidi ≤ d2 + 2d3 + 3d4 + · · ·+ 63d64 + d65 then follows for smoothing
reasons (by “smoothing” the ai), since the di are monotone. This proves the given
inequality.

Once we have this property, we handle the bounding completely algebraically.

Lemma (Algebraic bound)
Let x1 ≥ x2 ≥ · · · ≥ x65 be any nonnegative integers such that

∑65
i=1 xi ≤ 4034.

Then
x2 + 2x3 + · · ·+ 63x64 + x65 ≤ 127010.

Moreover, equality occurs if and only if x1 = x2 = x3 = · · · = x64 = 63 and x65 = 2.

Proof. Let A denote the left-hand side of the inequality. We begin with a smoothing
argument.

• Suppose there are indices 1 ≤ i < j ≤ 64 such that xi > xi+1 ≥ xj−1 > xj . Then
replacing (xi, xj) by (xi − 1, xj + 1) strictly increases A preserving all conditions.
Thus we may assume all numbers in {x1, . . . , x64} differ by at most 1.

• Suppose x65 ≥ 4. Then we can replace (x1, x2, x3, x4, x65) by (x1 + 1, x2 + 1, x3 +
1, x4 + 1, x65 − 4) and strictly increase A. Hence we may assume x65 ≤ 3.

9
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We will also tacitly assume
∑

xi = 4034, since otherwise we can increase x1. These two
properties leave only four sequences to examine:

• x1 = x2 = x3 = · · · = x63 = 63, x64 = 62, and x65 = 3, which gives A = 126948.

• x1 = x2 = x3 = · · · = x63 = x64 = 63 and x65 = 2, which gives A = 127010.

• x1 = 64, x2 = x3 = · · · = x63 = x64 = 63 and x65 = 1, which gives A = 127009.

• x1 = x2 = 64, x3 = · · · = x63 = x64 = 63 and x65 = 0, which gives A = 127009.

This proves that A ≤ 127010. To see that equality occurs only in the second case above,
note that all the smoothing operations other than incrementing x1 were strict, and that
x1 could not have been incremented in this way as x1 = x2 = 63.

This shows that S(G) ≤ 127010 for all graphs G, so it remains to show equality never
occurs. Retain the notation di and ai of the combinatorial bound now; we would need to
have d1 = · · · = d64 = 63 and d65 = 2 (in particular, deleting isolated vertices from G,
we may assume n = 65). In that case, we have ai ≤ i− 1 but also a65 = 2 by definition
(the last vertex gets all edges associated to it). Finally,

S(G) =

n∑
i=1

aidi = 63(a1 + · · ·+ a64) + a65

= 63(2017− a65) + a65 ≤ 63 · 2015 + 2 = 126947

completing the proof.

Remark. Another way to finish once S(G) ≤ 127010 is note there is a unique graph (up
to isomorphism and deletion of universal vertices) with degree sequence (d1, . . . , d65) =
(63, . . . , 63, 2). Indeed, the complement of the graph has degree sequence (1, . . . , 1, 63), and
so it must be a 63-star plus a single edge. One can then compute S(G) explicitly for this
graph.

¶ Some further remarks

Remark. Interestingly, the graph C4 has
(
3
2

)
+1 = 4 edges and S(C4) = 8, while S(L3) = 7.

This boundary case is visible in the combinatorial solution in the base case of the first claim.
It also explains why we end up with the bound S(G) ≤ 127010 in the second algebraic
solution, and why it is necessary to analyze the equality cases so carefully; observe in k = 3
the situation d1 = d2 = d3 = d4 = 2.

Remark. Some comments about further context for this problem:

• The obvious generalization of 2017 to any constant was resolved in September 2018
by Mehtaab Sawhney and Ashwin Sah. The relevant paper is On the discrepancy
between two Zagreb indices, published in Discrete Mathematics, Volume 341, Issue 9,
pages 2575-2589. The arXiv link is https://arxiv.org/pdf/1801.02532.pdf.

• The quantity
S(G) =

∑
e=vw

min (deg v, degw)

in the problem has an interpretation: it can be used to provide a bound on the number
of triangles in a graph G. To be precise, #E(G) ≤ 1

3S(G), since an edge e = vw is
part of at most min(deg v, degw) triangles.

• For planar graphs it is known S(G) ≤ 18n− 36 and it is conjectured that for n large

10

https://arxiv.org/pdf/1801.02532.pdf


USA IMO TST 2018 Solutions Evan Chen《陳誼廷》

enough, S(G) ≤ 18n− 72. See https://mathoverflow.net/a/273694/70654.

¶ Authorship comments I came up with the quantity S(G) in a failed attempt to
provide a bound on the number of triangles in a graph, since this is natural to consider
when you do a standard double-counting via the edges of the triangle. I think the problem
was actually APMO 1989, and I ended up not solving the problem (the solution is much
simpler), but the quantity S(G) stuck in my head for a while after that.

Later on that month I was keeping Danielle company while she was working on art
project (flower necklace), and with not much to do except doodle on tables I began
thinking about S(G) again. I did have the sense that S(G) should be maximized at a
graph close to a complete graph. But to my frustration I could not prove it for a long
time. Finally after many hours of trying various approaches I was able to at least show
that S(G) was maximized for complete graphs if the number of edges was a triangular
number.

I had come up with this in March 2016, which would have been perfect since 2016 is
a triangular number, but it was too late to submit it to any contest (the USAMO and
IMO deadlines were long past). So on December 31, 2016 I finally sat down and solved it
for the case 2017, which took another few hours of thought, then submitted it to that
year’s IMO. To my dismay it was rejected, but I passed it along to the USA TST after
that, thus making it just in time for the close of the calendar year.
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§2 Solutions to Day 2
§2.1 USA TST 2018/4, proposed by Josh Brakensiek
Available online at https://aops.com/community/p9735607.

Problem statement

Let n be a positive integer and let S ⊆ {0, 1}n be a set of binary strings of length n.
Given an odd number x1, . . . , x2k+1 ∈ S of binary strings (not necessarily distinct),
their majority is defined as the binary string y ∈ {0, 1}n for which the ith bit of y is
the most common bit among the ith bits of x1, . . . , x2k+1. (For example, if n = 4
the majority of 0000, 0000, 1101, 1100, 0101 is 0100.)

Suppose that for some positive integer k, S has the property Pk that the majority
of any 2k + 1 binary strings in S (possibly with repetition) is also in S. Prove that
S has the same property Pk for all positive integers k.

Let M denote the majority function (of any length).

¶ First solution (induction) We prove all Pk are equivalent by induction on n ≥ 2,
with the base case n = 2 being easy to check by hand. (The case n = 1 is also vacuous;
however, the inductive step is not able to go from n = 1 to n = 2.)

For the inductive step, we proceed by contradiction; assume S satisfies P`, but not
Pk, so there exist x1, . . . , x2k+1 ∈ S whose majority y = M(x1, . . . , xk) is not in S. We
contend that:

Claim — Let yi be the string which differs from y only in the ith bit. Then yi ∈ S.

Proof. For a string s ∈ S we let ŝ denote the string s with the ith bit deleted (hence with
n− 1 bits). Now let

T = {ŝ | s ∈ S} .

Since S satisfies P`, so does T ; thus by the induction hypothesis on n, T satisfies Pk.
Consequently, T 3 M(x̂1, . . . , x̂2k+1) = ŷ. Thus there exists s ∈ S such that ŝ = ŷ.

This implies s = y or s = yi. But since we assumed y /∈ S it follows yi ∈ S instead.

Now take any 2` + 1 copies of the yi, about equally often (i.e. the number of times
any two yi are taken differs by at most 1). We see the majority of these is y itself,
contradiction.

¶ Second solution (circuit construction) Note that Pk =⇒ P1 for any k, since

M(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
k

, c) = M(a, b, c)

for any a, b, c.
We will now prove P1 + Pk =⇒ Pk+1 for any k, which will prove the result. Actually,

we will show that the majority of any 2k + 3 strings x1, . . . , x2k+3 can be expressed by
3 and (2k + 1)-majorities. WLOG assume that M(x1, . . . , x2k+3) = 0 . . . 0, and let �
denote binary AND.
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Claim — We have M(x1, x2,M(x3, . . . , x2k+3)) = x1 � x2.

Proof. Consider any particular bit. The result is clear if the bits are equal. Otherwise, if
they differ, the result follows from the original hypothesis that M(x1, . . . , x2k+3) = 0 . . . 0
(removing two differing bits does not change the majority).

By analogy we can construct any xi � xj . Finally, note that

M(x1 � x2, x2 � x3, . . . , x2k+1 � x2k+2) = 0 . . . 0,

as desired. (Indeed, if we look at any index, there were at most k+1 1’s in the xi strings,
and hence there will be at most k 1’s among xi � xi+1 for i = 1, . . . , 2k + 1.)

Remark. The second solution can be interpreted in circuit language as showing that all
“2k + 1-majority gates” are equivalent. See also https://cstheory.stackexchange.com/
a/21399/48303, in which Valiant gives a probabilistic construction to prove that one can
construct (2k+1)-majority gates from a polynomial number of 3-majority gates. No explicit
construction is known for this.
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§2.2 USA TST 2018/5, proposed by Evan Chen
Available online at https://aops.com/community/p9735608.

Problem statement

Let ABCD be a convex cyclic quadrilateral which is not a kite, but whose diagonals
are perpendicular and meet at H. Denote by M and N the midpoints of BC and
CD. Rays MH and NH meet AD and AB at S and T , respectively. Prove there
exists a point E, lying outside quadrilateral ABCD, such that

• ray EH bisects both angles ∠BES, ∠TED, and

• ∠BEN = ∠MED.

The main claim is that E is the intersection of (ABCD) with the circle with diameter
AH.

A

B D

F

H

E

C

M N

S

T

P

The following observation can be quickly made without reference to E.

Lemma
We have ∠HSA = ∠HTA = 90◦. Consequently, quadrilateral BTSD is cyclic.

Proof. This is direct angle chasing. In fact, HM passes through the circumcenter of
4BHC and 4HAD ∼ 4HCB, so HS ought to be the altitude of 4HAD.

From here it follows that E is the Miquel point of cyclic quadrilateral BTSD. Define
F to be the point diametrically opposite A, so that E, H, F are collinear, CF ‖ BD. By
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now we already have

]BEH = ]BEF = ]BAF = ]CAD = ]HAS = ]HES

so EH bisects ∠BES, and ∠TED. Hence it only remains to show ∠BEM = ∠NED;
we present several proofs below.

¶ First proof (original solution) Let P be the circumcenter of BTSD. The properties
of the Miquel point imply P lies on the common bisector EH already, and it also lies on
the perpendicular bisector of BD, hence it must be the midpoint of HF .

We now contend quadrilaterals BMPS and DNPT are cyclic. Obviously MP is the
external angle bisector of ∠BMS, and PB = PS, so P is the arc midpoint of (BMS).
The proof for DNPT is analogous.

It remains to show ∠BEN = ∠MED, or equivalently ∠BEM = ∠NED. By proper-
ties of Miquel point we have E ∈ (BMPS) ∩ (TPND), so

]BEM = ]BPM = ]PBD = ]BDP = ]NPD = ]NED

as desired.

¶ Second proof (2011 G4) By 2011 G4, the circumcircle of 4EMN is tangent to the
circumcircle of ABCD. Hence if we extend EM and EN to meet (ABCD) again at X
and Y , we get XY ‖ MN ‖ BD. Thus ]BEM = ]BEX = ]Y ED = ]NED.

¶ Third proof (involutions, submitted by Daniel Liu) Let G = BN ∩MD denote the
centroid of 4BCD, and note that it lies on EHF .

Now consider the dual of Desargues involution theorem on complete quadrilateral
BMDNCG at point E. We get

(EB,ED), (EM,EN), (EC,EG)

form an involutive pairing.
However, the bisector of ∠BED, say `, is also the angle bisector of ∠CEF (since

CF ‖ BD). So the involution we found must coincide with reflection across `. This
means ∠MEN is bisected by ` as well, as desired.

¶ Authorship comments This diagram actually comes from the inverted picture in
IMO 2014/3 (which I attended). I had heard for many years that one could solve this
problem quickly by inversion at H afterwards. But when I actually tried to do it during
an OTIS class years later, I ended up with the picture in the TST problem, and couldn’t
see why it was true! In the process of trying to reconstruct this rumored solution, I ended
up finding most of the properties that ended up in the January TST problem (but were
overkill for the original IMO problem).

Let us make the equivalence explicit by deducing the IMO problem from our work.
Let rays EM and EN meet the circumcircles of 4BHC and 4BNC again at X and

Y , with EM < EX and EN < EY . As above we concluded EM/EX = EN/EY and
so MN ‖ XY =⇒ XY ⊥ AHC.

Now consider an inversion at H which swaps B ↔ D and A ↔ C. The point E goes to
E∗ diametrically opposite A. Points X and Y go to points on X∗ ∈ AD and Y ∗ ∈ AB.
Since the reflection of E across PX is supposed to lie on (BAE), it follows that the
circumcenter of 4HX∗E∗ lies on AD. Consequently X∗ plays the role of point “T” in
the IMO problem. Then Y ∗ plays the role of point “S” in the IMO problem.

Now the fact that (HX∗Y ∗) is tangent to BD is equivalent to XY ⊥ AHC which we
already knew.
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§2.3 USA TST 2018/6, proposed by Mark Sellke
Available online at https://aops.com/community/p9735613.

Problem statement

Alice and Bob play a game. First, Alice secretly picks a finite set S of lattice points
in the Cartesian plane. Then, for every line ` in the plane which is horizontal,
vertical, or has slope +1 or −1, she tells Bob the number of points of S that lie on `.
Bob wins if he can then determine the set S.

Prove that if Alice picks S to be of the form

S =
{
(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n

}
for some positive integers m and n, then Bob can win. (Bob does not know in
advance that S is of this form.)

Clearly Bob can compute the number N of points.
The main claim is that:

Claim — Fix m and n as in the problem statement. Among all sets T ⊆ Z2 with
N points, the set S is the unique one which maximizes the value of

F (T ) :=
∑

(x,y)∈T

(x2 + y2)(m+ n− (x2 + y2)).

Proof. Indeed, the different points in T do not interact in this sum, so we simply want the
points (x, y) with x2 + y2 as close as possible to m+n

2 which is exactly what S does.

As a result of this observation, it suffices to show that Bob has enough information to
compute F (S) from the data given. (There is no issue with fixing m and n, since Bob
can find an upper bound on the magnitude of the points and then check all pairs (m,n)
smaller than that.) The idea is that he knows the full distribution of each of X, Y ,
X + Y , X − Y and hence can compute sums over T of any power of a single one of those
linear functions. By taking linear combinations we can hence compute F (S).

Let us make the relations explicit. For ease of exposition we take Z = (X,Y ) to be
a uniformly random point from the set S. The information is precisely the individual
distributions of X, Y , X + Y , and X − Y . Now compute

F (S)

N
= E

[
(m+ n)(X2 + Y 2)− (X2 + Y 2)2

]
= (m+ n)

(
E[X2] + E[Y 2]

)
− E[X4]− E[Y 4]− 2E[X2Y 2].

On the other hand,

E[X2Y 2] =
E[(X + Y )4] + E[(X − Y )4]− 2E[X4]− 2E[Y 4]

12
.

Thus we have written F (S) in terms of the distributions of X, Y , X − Y , X + Y which
completes the proof.

16

https://aops.com/community/p9735613


USA IMO TST 2018 Solutions Evan Chen《陳誼廷》

Remark (Mark Sellke). • This proof would have worked just as well if we allowed
arbitrary [0, 1]-valued weights on points with finitely many weights non-zero. There
is an obvious continuum generalization one can make concerning the indicator func-
tion for an annulus. It’s a simpler but fun problem to characterize when just the
vertical/horizontal directions determine the distribution.

• An obstruction to purely combinatorial arguments is that if you take an octagon
with points (±a,±b) and (±b,±a) then the two ways to pick every other point (going
around clockwise) are indistinguishable by Bob. This at least shows that Bob’s task
is far from possible in general, and hints at proving an inequality.

• A related and more standard fact (among a certain type of person) is that given a
probability distribution µ on Rn, if I tell you the distribution of all 1-dimensional
projections of µ, that determines µ uniquely. This works because this information
gives me the Fourier transform µ̂, and Fourier transforms are injective.
For the continuum version of this problem, this connection gives a much larger family
of counterexamples to any proposed extension to arbitrary non-annular shapes. Indeed,
take a fast-decaying smooth function f : R2 → R which vanishes on the four lines

x = 0, y = 0, x+ y = 0, x− y = 0.

Then the Fourier transform f̂ will have mean 0 on each line ` as in the problem
statement. Hence the positive and negative parts of f̂ will not be distinguishable by
Bob.
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Evan Chen

59th IMO 2018 Romania

§1 Summary of scores for TST 2018
N 35
µ 14.06
σ 9.64

1st Q 7
Median 10

3rd Q 22

Max 36
Top 3 29
Top 6 23

§2 Problem statistics for TST 2018

P1 P2 P3 P4 P5 P6
0 15 26 16 12 12 31

1 6 0 16 1 1 2

2 1 0 0 0 4 0

3 0 0 2 0 0 0

4 0 0 0 0 0 0

5 0 0 0 1 0 0

6 0 0 0 2 0 1

7 13 9 1 19 18 1

Avg 2.83 1.80 0.83 4.31 3.86 0.43

QM 4.30 3.55 1.54 5.42 5.07 1.58
#5+ 13 9 1 22 18 2
%5+ %37.1 %25.7 %2.9 %62.9 %51.4 %5.7
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§3 Rankings for TST 2018
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 1 1 2.86%
35 1 2 5.71%
34 0 2 5.71%
33 0 2 5.71%
32 0 2 5.71%
31 0 2 5.71%
30 0 2 5.71%
29 1 3 8.57%

Sc Num Cu Per
28 0 3 8.57%
27 0 3 8.57%
26 0 3 8.57%
25 2 5 14.29%
24 0 5 14.29%
23 1 6 17.14%
22 5 11 31.43%
21 2 13 37.14%
20 0 13 37.14%
19 0 13 37.14%
18 0 13 37.14%
17 0 13 37.14%
16 0 13 37.14%
15 4 17 48.57%

Sc Num Cu Per
14 0 17 48.57%
13 0 17 48.57%
12 0 17 48.57%
11 0 17 48.57%
10 1 18 51.43%
9 2 20 57.14%
8 5 25 71.43%
7 4 29 82.86%
6 1 30 85.71%
5 0 30 85.71%
4 0 30 85.71%
3 0 30 85.71%
2 2 32 91.43%
1 1 33 94.29%
0 2 35 100.00%

§4 Histogram for TST 2018
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Team Selection Test for the 60th International Mathematical Olympiad

United States of America

Day I

Thursday, December 6, 2018

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, December 10 at noon Eastern time.

IMO TST 1. Let ABC be a triangle and let M and N denote the midpoints of AB
and AC, respectively. Let X be a point such that AX is tangent to the circumcircle of
triangle ABC. Denote by ωB the circle through M and B tangent to MX, and by ωC

the circle through N and C tangent to NX. Show that ωB and ωC intersect on line BC.

IMO TST 2. Let Z/nZ denote the set of integers considered modulo n (hence Z/nZ
has n elements). Find all positive integers n for which there exists a bijective function
g : Z/nZ→ Z/nZ, such that the 101 functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.

IMO TST 3. A snake of length k is an animal which occupies an ordered k-tuple
(s1, . . . , sk) of cells in an n×n grid of square unit cells. These cells must be pairwise distinct,
and si and si+1 must share a side for i = 1, . . . , k− 1. If the snake is currently occupying
(s1, . . . , sk) and s is an unoccupied cell sharing a side with s1, the snake can move to
occupy (s, s1, . . . , sk−1) instead. The snake has turned around if it occupied (s1, s2, . . . , sk)
at the beginning, but after a finite number of moves occupies (sk, sk−1, . . . , s1) instead.

Determine whether there exists an integer n > 1 such that one can place some snake of
length at least 0.9n2 in an n× n grid which can turn around.

1



Team Selection Test for the 60th International Mathematical Olympiad

United States of America

Day II

Thursday, January 17, 2019

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, January 21 at noon Eastern time.

IMO TST 4. We say a function f : Z≥0 × Z≥0 → Z is great if for any nonnegative
integers m and n,

f(m + 1, n + 1)f(m,n)− f(m + 1, n)f(m,n + 1) = 1.

If A = (a0, a1, . . . ) and B = (b0, b1, . . . ) are two sequences of integers, we write A ∼ B
if there exists a great function f satisfying f(n, 0) = an and f(0, n) = bn for every
nonnegative integer n (in particular, a0 = b0).

Prove that if A, B, C, and D are four sequences of integers satisfying A ∼ B, B ∼ C,
and C ∼ D, then D ∼ A.

IMO TST 5. Let n be a positive integer. Tasty and Stacy are given a circular necklace
with 3n sapphire beads and 3n turquoise beads, such that no three consecutive beads
have the same color. They play a cooperative game where they alternate turns removing
three consecutive beads, subject to the following conditions:

• Tasty must remove three consecutive beads which are turquoise, sapphire, and
turquoise, in that order, on each of his turns.

• Stacy must remove three consecutive beads which are sapphire, turquoise, and
sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with Tasty
going first, they can also win with Stacy going first.

IMO TST 6. Let ABC be a triangle with incenter I, and let D be a point on line
BC satisfying ∠AID = 90◦. Let the excircle of triangle ABC opposite the vertex A be
tangent to BC at point A1. Define points B1 on CA and C1 on AB analogously, using
the excircles opposite B and C, respectively.

Prove that if quadrilateral AB1A1C1 is cyclic, then AD is tangent to the circumcircle of
4DB1C1.
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§0 Problems
1. Let ABC be a triangle and let M and N denote the midpoints of AB and AC,

respectively. Let X be a point such that AX is tangent to the circumcircle of
triangle ABC. Denote by ωB the circle through M and B tangent to MX, and by
ωC the circle through N and C tangent to NX. Show that ωB and ωC intersect
on line BC.

2. Let Z/nZ denote the set of integers considered modulo n (hence Z/nZ has n
elements). Find all positive integers n for which there exists a bijective function
g : Z/nZ → Z/nZ, such that the 101 functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.

3. A snake of length k is an animal which occupies an ordered k-tuple (s1, . . . , sk) of
cells in an n × n grid of square unit cells. These cells must be pairwise distinct,
and si and si+1 must share a side for i = 1, . . . , k − 1. If the snake is currently
occupying (s1, . . . , sk) and s is an unoccupied cell sharing a side with s1, the snake
can move to occupy (s, s1, . . . , sk−1) instead. The snake has turned around if
it occupied (s1, s2, . . . , sk) at the beginning, but after a finite number of moves
occupies (sk, sk−1, . . . , s1) instead.
Determine whether there exists an integer n > 1 such that one can place some
snake of length at least 0.9n2 in an n× n grid which can turn around.

4. We say a function f : Z≥0 ×Z≥0 → Z is great if for any nonnegative integers m and
n,

f(m+ 1, n+ 1)f(m,n)− f(m+ 1, n)f(m,n+ 1) = 1.

If A = (a0, a1, . . . ) and B = (b0, b1, . . . ) are two sequences of integers, we write
A ∼ B if there exists a great function f satisfying f(n, 0) = an and f(0, n) = bn
for every nonnegative integer n (in particular, a0 = b0).
Prove that if A, B, C, and D are four sequences of integers satisfying A ∼ B,
B ∼ C, and C ∼ D, then D ∼ A.

5. Let n be a positive integer. Tasty and Stacy are given a circular necklace with 3n
sapphire beads and 3n turquoise beads, such that no three consecutive beads have
the same color. They play a cooperative game where they alternate turns removing
three consecutive beads, subject to the following conditions:

• Tasty must remove three consecutive beads which are turquoise, sapphire, and
turquoise, in that order, on each of his turns.

• Stacy must remove three consecutive beads which are sapphire, turquoise, and
sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with
Tasty going first, they can also win with Stacy going first.

6. Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying
∠AID = 90◦. Let the excircle of triangle ABC opposite the vertex A be tangent
to BC at point A1. Define points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively.
Prove that if quadrilateral AB1A1C1 is cyclic, then AD is tangent to the circumcircle
of 4DB1C1.
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§1 Solutions to Day 1
§1.1 USA TST 2019/1, proposed by Merlijn Staps
Available online at https://aops.com/community/p11419585.

Problem statement

Let ABC be a triangle and let M and N denote the midpoints of AB and AC,
respectively. Let X be a point such that AX is tangent to the circumcircle of triangle
ABC. Denote by ωB the circle through M and B tangent to MX, and by ωC the
circle through N and C tangent to NX. Show that ωB and ωC intersect on line BC.

We present four solutions, the second of which shows that M and N can be replaced by
any two points on AB and AC satisfying AM/AB +AN/AC = 1.

¶ First solution using symmedians (Merlijn Staps) Let XY be the other tangent from
X to (AMN).

Claim — Line XM is tangent to (BMY ); hence Y lies on ωB.

A

B C

M
N

X
Y

Z

Proof. Let Z be the midpoint of AY . Then MX is the M -symmedian in triangle AMY .
Since MZ ‖ BY , it follows that ]AMX = ]ZMY = ]BYM . We conclude that XM
is tangent to the circumcircle of triangle BMY .

Similarly, ωC is the circumcircle of triangle CNY . As AMYN is cyclic too, it follows
that ωB and ωC intersect on BC, by Miquel’s theorem.

Remark. The converse of Miquel’s theorem is true, which means the problem is equivalent
to showing that the second intersection of the ωB and ωC moves along (AMN). Thus the
construction of Y above is not so unnatural.

3

https://aops.com/community/p11419585


USA IMO TST 2019 Solutions Evan Chen《陳誼廷》

¶ Second solution (Jetze Zoethout) Let ωB intersect BC again at S and let MS
intersect AC again at Y . Angle chasing gives ]XMY = ]XMS = ]MBS = ]ABC =
]XAC = ]XAY , so Y is on the circumcircle of triangle AMX. Furthermore, from
]XMY = ]ABC and ]ACB = ]XAB = ]XYM it follows that 4ABC ∼ 4XMY
and from ]XAY = ]MBS and ]Y XA = ]YMA = ]BMS it follows that 4AXY ∼
4BMS.

A

B C

M N

X

Y

S

We now find

AN

AX
=

AN/BM

AX/BM
=

AC/AB

MS/XY
=

AB/AB

MS/XM
=

XM

MS
,

which together with ∠XMS = ∠XAN yields 4XMS ∼ 4XAN . From ]XSY =
]XSM = ]XNA = ]XNY we now have that S is on the circumcircle of triangle XNY .
Finally, we have ]XNS = ]XY S = ]XYM = ]ACB = ]NCS so XN is tangent to
the circle through C, N , and S, as desired.

¶ Third solution by moving points method Fix triangle ABC and animate X along
the tangent at A. We let D denote the second intersection point of ωC with line BC.

Claim — The composed map X 7→ D is a fractional linear transformation (i.e. a
projective map) in terms of a real coordinate on line AA, BC.

Proof. Let ` denote the perpendicular bisector of CN , also equipped with a real coordinate.
We let P denote the intersection of XM with `, S the circumcenter of 4CMD. Let T
denote the midpoint of BD.

We claim that the composed map

AA → ` → ` → BC → BC

by X 7→ P 7→ S 7→ T 7→ D

is projective, by showing each individual map is projective.

4
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A

B C

M N

X
S

TD

P

• The map X 7→ P is projective since it is a perspectivity through N from AA to `.

• The map P 7→ S is projective since it is equivalent to a negative inversion on ` at
the midpoint of NC with radius 1

2NC. (Note ∠PNS = 90◦ is fixed.)

• The map S 7→ T is projective since it is a perspectivity ` → BC through the point
at infinity perpendicular to BC (in fact, it is linear).

• The map T 7→ D is projective (in fact, linear) since it is a homothety through C
with fixed ratio 2.

Thus the composed map is projective as well.

Similarly, if we define D′ so that XM is tangent to (BMD′), the map X 7→ D′ is
projective as well. We aim to show D = D′, and since the maps correspond to fractional
linear transformations in projective coordinates, it suffices to verify it for three distinct
choices of X. We do so:

• If X = AA ∩MN , then D and D′ satisfy MB = MD′, NC = ND. This means
they are the feet of the A-altitude on BC.

• As X approaches A the points D and D′ approach the infinity point along BC.

• If X is a point at infinity along AA, then D and D′ coincide with the midpoint of
BC.

This completes the solution.

Remark (Anant Mudgal). An alternative (shorter) way to show X 7→ D is projective is to
notice ]XND is a constant angle. I left the longer “original” proof for instructional reasons.

¶ Fourth solution by isogonal conjugates (Anant Mudgal) Let Y be the isogonal
conjugate of X in 4AMN and Z be the reflection of Y in MN . As AX is tangent to
the circumcircle of 4AMN , it follows that AY ‖ MN . Thus Z lies on BC since MN
bisects the strip made by AY and BC.

5
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A

B C

M
N

X

Y

Z

Finally,

]ZMX = ]ZMN + ]NMX = ]NMY + ]YMA = ]NMA = ]ZBM

so XM is tangent to the circumcircle of 4ZMB, hence Z lies on ωB. Similarly, Z lies
on ωC and we’re done.

6
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§1.2 USA TST 2019/2, proposed by Ashwin Sah, Yang Liu
Available online at https://aops.com/community/p11419598.

Problem statement

Let Z/nZ denote the set of integers considered modulo n (hence Z/nZ has n
elements). Find all positive integers n for which there exists a bijective function
g : Z/nZ → Z/nZ, such that the 101 functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.

Call a function g valiant if it obeys this condition. We claim the answer is all numbers
relatively prime to 101!.

The construction is to just let g be the identity function.
Before proceeding to the converse solution, we make a long motivational remark.

Remark (Motivation for both parts). The following solution is dense, and it is easier to
think about some small cases first, to motivate the ideas. We consider the result where 101
is replaced by 2 or 3.

• If we replaced 101 with 2, you can show 2 - n easily: write∑
x

x ≡
∑
x

g(x) ≡
∑
x

(g(x) + x) (mod n)

which implies
0 ≡

∑
x

x =
1

2
n(n+ 1) (mod n)

which means 1
2n(n+ 1) ≡ 0 (mod n), hence n odd.

• If we replaced 101 with 3, then you can try a similar approach using squares, since

0 ≡
∑
x

[
(g(x) + 2x)

2 − 2 (g(x) + x)
2
+ g(x)2

]
(mod n)

=
∑
x

2x2 = 2 · n(n+ 1)(2n+ 1)

6

which is enough to force 3 - n.

We now present several different proofs of the converse, all of which generalize the ideas
contained here. In everything that follows we assume n > 1 for convenience.

¶ First solution (original one) The proof is split into two essentially orthogonal claims,
which we state as lemmas.

7
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Lemma (Lemma I: elimination of g)
Assume valiant g : Z/nZ → Z/nZ exists. Then

k!
∑

x∈Z/nZ

xk ≡ 0 (mod n)

for k = 0, 1, . . . , 100.

Proof. Define gx(T ) = g(x)+Tx for any integer T . If we view gx(T )
k as a polynomial in

Z[T ] of degree k with leading coefficient xk, then taking the kth finite difference implies
that, for any x,

k!xk =

(
k

0

)
gx(k)

k −
(
k

1

)
gx(k − 1)k +

(
k

2

)
gx(k − 2)k − · · ·+ (−1)k

(
k

k

)
gx(0)

k.

On the other hand, for any 1 ≤ k ≤ 100 we should have∑
x

gx(0)
k ≡

∑
x

gx(1)
k ≡ · · · ≡

∑
x

gx(k)
k

≡ Sk := 0k + · · ·+ (n− 1)k (mod n)

by the hypothesis. Thus we find

k!
∑
x

xk ≡
[(

k

0

)
−

(
k

1

)
+

(
k

2

)
− · · ·

]
Sk ≡ 0 (mod n)

for any 1 ≤ k ≤ 100, but also obviously for k = 0.

We now prove the following self-contained lemma.

Lemma (Lemma II: power sum calculation)
Let p be a prime, and let n, M be positive integers such that

M divides 1k + 2k + · · ·+ nk

for k = 0, 1, . . . , p− 1. If p | n then νp(M) < νp(n).

Proof. The hypothesis means that that any polynomial f(T ) ∈ Z[T ] with deg f ≤ p− 1
will have

∑n
x=1 f(x) ≡ 0 (mod M). In particular, we have

0 ≡
n∑

x=1

(x− 1)(x− 2) · · · (x− (p− 1))

= (p− 1)!

n∑
x=1

(
x− 1

p− 1

)
= (p− 1)!

(
n

p

)
(mod M).

But now νp(M) ≤ νp(
(
n
p

)
) = νp(n)− 1.

Now assume for contradiction that valiant g : Z/nZ → Z/nZ exists, and p ≤ 101
is the smallest prime dividing n. Lemma I implies that k!

∑
x x

k ≡ 0 (mod n) for
k = 1, . . . , p− 1 and hence

∑
x x

k ≡ 0 (mod n) too. Thus M = n holds in the previous
lemma, impossible.

8



USA IMO TST 2019 Solutions Evan Chen《陳誼廷》

¶ A second solution Both lemmas above admit variations where we focus on working
modulo pe rather than working modulo n.

Lemma (Lemma I’)
Assume valiant g : Z/nZ → Z/nZ exists. Let p ≤ 101 be a prime, and e = νp(n).
Then ∑

x∈Z/nZ

xk ≡ 0 (mod pe)

for k = 0, 1, . . . , p− 1.

Proof. This is weaker than Lemma I, but we give an independent specialized proof. Begin
by writing ∑

x

(g(x) + Tx)k ≡
∑
x

xk (mod pe).

Both sides are integer polynomials in T , which vanish at T = 0, 1, . . . , p−1 by hypothesis
(since p− 1 ≤ 100).

We now prove the following more general fact: if f(T ) ∈ Z[T ] is an integer polynomial
with deg f ≤ p− 1, such that f(0) ≡ · · · ≡ f(p− 1) ≡ 0 (mod pe), then all coefficients of
f are divisible by pe. The proof is by induction on e ≥ 1. When e = 1, this is just the
assertion that the polynomial has at most deg f roots modulo p. When e ≥ 2, we note
that the previous result implies all coefficients are divisible by p, and then we divide all
coefficients by p.

Applied here, we have that all coefficients of

f(T ) :=
∑
x

(g(x) + Tx)k −
∑
x

xk

are divisible by pe. The leading T k coefficient is
∑

k x
k as desired.

Lemma (Lemma II’)
If e ≥ 1 is an integer, and p is a prime, then

νp
(
1p−1 + 2p−1 + · · ·+ (pe − 1)p−1

)
= e− 1.

Proof. First, note that the cases where p = 2 or e = 1 are easy; since if p = 2 we have∑2e−1
x=0 x ≡ 2e−1(2e−1) ≡ −2e−1 (mod 2e), while if e = 1 we have 1p−1+· · ·+(p−1)p−1 ≡

−1 (mod p). Henceforth assume that p > 2, e > 1.
Let g be an integer which is a primitive root modulo pe. Then, we can sum the terms

which are relatively prime to p as

S0 :=
∑

gcd(x,p)=1

xp−1 ≡
ϕ(pe)∑
i=1

g(p−1)·i ≡ gp
e−1(p−1)2 − 1

gp−1 − 1
(mod pe)

which implies νp(S0) = e− 1, by lifting the exponent. More generally, for r ≥ 1 we may
set

Sr :=
∑

νp(x)=r

xp−1 ≡ (pr)p−1

ϕ(pe−r)∑
i=1

g(p−1)·i
r (mod pe)

9
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where gr is a primitive root modulo pe−r. Repeating the exponent-lifting calculation
shows that νp(Sr) = r(p− 1) + ((e− r)− 1) > e, as needed.

Assume to the contrary that p ≤ 101 is a prime dividing n, and a valiant g : Z/nZ →
Z/nZ exists. Take k = p− 1 in Lemma I’ to contradict Lemma II’

¶ A third remixed solution We use Lemma I and Lemma II’ from before. As before,
assume g : Z/nZ → Z/nZ is valiant, and n has a prime divisor p ≤ 101. Also, let
e = νp(n).

Then (p− 1)!
∑

x x
p−1 ≡ 0 (mod n) by Lemma I, and now

0 ≡
∑
x

xp−1 (mod pe)

≡ n

pe

pe−1∑
x=1

xp−1 6≡ 0 (mod pe)

by Lemma II’, contradiction.

¶ A fourth remixed solution We also can combine Lemma I’ and Lemma II. As before,
assume g : Z/nZ → Z/nZ is valiant, and let p be the smallest prime divisor of n.

Assume for contradiction p ≤ 101. By Lemma I’ we have∑
x

xk ≡ 0 (mod pe)

for k = 0, . . . , p− 1. This directly contradicts Lemma II with M = pe.

10



USA IMO TST 2019 Solutions Evan Chen《陳誼廷》

§1.3 USA TST 2019/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p11419601.

Problem statement

A snake of length k is an animal which occupies an ordered k-tuple (s1, . . . , sk) of
cells in an n × n grid of square unit cells. These cells must be pairwise distinct,
and si and si+1 must share a side for i = 1, . . . , k − 1. If the snake is currently
occupying (s1, . . . , sk) and s is an unoccupied cell sharing a side with s1, the snake
can move to occupy (s, s1, . . . , sk−1) instead. The snake has turned around if it
occupied (s1, s2, . . . , sk) at the beginning, but after a finite number of moves occupies
(sk, sk−1, . . . , s1) instead.

Determine whether there exists an integer n > 1 such that one can place some
snake of length at least 0.9n2 in an n× n grid which can turn around.

The answer is yes (and 0.9 is arbitrary).

¶ First grid-based solution The following solution is due to Brian Lawrence. For
illustration reasons, we give below a figure of a snake of length 89 turning around in an
11× 11 square (which generalizes readily to odd n). We will see that a snake of length
(n − 1)(n − 2) − 1 can turn around in an n × n square, so this certainly implies the
problem.

Figure 1 Figure 2 Figure 3 Figure 4

Figure 5 Figure 6 Figure 7 Figure 8

Figure 9 Figure 10 Figure 11 Figure 12

Use the obvious coordinate system with (1, 1) in the bottom left. Start with the snake as
shown in Figure 1, then have it move to (2, 1), (2, n), (n, n − 1) as in Figure 2. Then,
have the snake shift to the position in Figure 3; this is possible since the snake can just
walk to (n, n), then start walking to the left and then follow the route; by the time it
reaches the ith row from the top its tail will have vacated by then. Once it achieves
Figure 3, move the head of the snake to (3, n) to achieve Figure 4.

In Figure 5 and 6, the snake begins to “deform” its loop continuously. In general, this
deformation by two squares is possible in the following way. The snake walks first to
(1, n) then retraces the steps left by its tail, except when it reaches (n− 1, 3) it makes a

11
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brief detour to (n− 2, 3), (n− 2, 4), (n− 1, 4) and continues along its way; this gives the
position in Figure 5. Then it retraces the entire loop again, except that when it reaches
(n− 4, 4) it turns directly down, and continues retracing its path; thus at the end of this
second revolution, we arrive at Figure 6.

By repeatedly doing perturbations of two cells, we can move move all the “bumps” in
the path gradually to protrude from the right; Figure 7 shows a partial application of
the procedure, with the final state as shown in Figure 8.

In Figure 9, we stretch the bottom-most bump by two more cells; this shortens the
“tail” by two units, which is fine. Doing this for all (n − 3)/2 bumps arrives at the
situation in Figure 10, with the snake’s head at (3, n). We then begin deforming the
turns on the bottom-right by two steps each as in Figure 11, which visually will increase
the length of the head. Doing this arrives finally at the situation in Figure 12. Thus the
snake has turned around.

¶ Second solution phrased using graph theory (Nikolai Beluhov) Let G be any
undirected graph. Consider a snake of length k lying within G, with each segment of the
snake occupying one vertex, consecutive segments occupying adjacent vertices, and no
two segments occupying the same vertex. One move of the snake consists of the snake’s
head advancing to an adjacent empty vertex and segment i advancing to the vertex of
segment i− 1 for i = 2, 3, . . ., k.

The solution proceeds in two stages. First we construct a planar graph G such that it
is possible for a snake that occupies nearly all of G to turn around inside G. Then we
construct a subgraph H of a grid adjacency graph such that H is isomorphic to G and
H occupies nearly all of the grid.

For the first stage of the solution, we construct G as follows.
Let r and ` be positive integers. Start with r disjoint main paths p1, p2, . . ., pr, each of

length at least `, with pi leading from Ai to Bi for i = 1, 2, . . ., r. Add to those r linking
paths, one leading from Bi to Ai+1 for each i = 1, 2, . . ., r − 1, and one leading from
Br to A1. Finally, add to those two families of transit paths, with one family containing
one transit path joining A1 to each of A2, A3, . . ., Ar and the other containing one
path joining Br to each of B1, B2, . . ., Br−1. We require that all paths specified in the
construction have no interior vertices in common, with the exception of transit paths in
the same family.

We claim that a snake of length (r − 1)` can turn around inside G.
To this end, let the concatenation A1B1A2B2 . . . ArBr of all main and linking paths

be the great cycle. We refer to A1B1A2B2 . . . ArBr as the counterclockwise orientation
of the great cycle, and to BrArBr−1Ar−1 . . . B1A1 as its clockwise orientation.

Place the snake so that its tail is at A1 and its body extends counterclockwise along
the great cycle. Then let the snake manoeuvre as follows. (We track only the snake’s
head, as its movement uniquely determines the movement of the complete body of the
snake.)

At phase 1, advance counterclockwise along the great cycle to Br−1, take a detour
along a transit path to Br, and advance clockwise along the great cycle to Ar.

For i = 2, 3, . . ., r − 1, at phase i, take a detour along a transit path to A1, advance
counterclockwise along the great cycle to Br−i, take a detour along a transit path to Br,
and advance clockwise along the great cycle to Ar−i+1.

At phase r, simply advance clockwise along the great cycle to A1.
For the second stage of the solution, let n be a sufficiently large positive integer.

Consider an n× n grid S. Number the columns of S from 1 to n from left to right, and
its rows from 1 to n from bottom to top.

12
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Let a1, a2, . . ., ar+1 be cells of S such that all of a1, a2, . . ., ar+1 lie in column 2,
a1 lies in row 2, ar+1 lies in row n− 1, and a1, a2, . . ., ar+1 are approximately equally
spaced. Let b1, b2, . . ., br be cells of S such that all of b1, b2, . . ., br lie in column n− 2
and bi lies in the row of ai+1 for i = 1, 2, . . ., r.

Construct H as follows. For i = 1, 2, . . ., r, let the main path from ai to bi fill up the
rectangle bounded by the rows and columns of ai and bi nearly completely. Then every
main path is of length approximately 1

rn
2.

For i = 1, 2, . . ., r− 1, let the linking path that leads from bi to ai+1 lie inside the row
of bi and ai+1 and let the linking path that leads from br to a1 lie inside row n, column
n, and row 1.

Lastly, let the union of the first family of transit paths be column 1 and let the
union of the second family of transit paths be column n− 1, with the exception of their
bottommost and topmost squares.

As in the first stage of the solution, by this construction a snake of length k approxi-
mately equal to r−1

r n2 can turn around inside an n× n grid S. When r is fixed and n

tends to infinity, k
n2 tends to r−1

r . Furthermore, when r tends to infinity, r−1
r tends to 1.

This gives the answer.

13
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§2 Solutions to Day 2
§2.1 USA TST 2019/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p11625808.

Problem statement

We say a function f : Z≥0 × Z≥0 → Z is great if for any nonnegative integers m and
n,

f(m+ 1, n+ 1)f(m,n)− f(m+ 1, n)f(m,n+ 1) = 1.

If A = (a0, a1, . . . ) and B = (b0, b1, . . . ) are two sequences of integers, we write
A ∼ B if there exists a great function f satisfying f(n, 0) = an and f(0, n) = bn for
every nonnegative integer n (in particular, a0 = b0).

Prove that if A, B, C, and D are four sequences of integers satisfying A ∼ B,
B ∼ C, and C ∼ D, then D ∼ A.

We present two solutions. In what follows, we say (A,B) form a great pair if A ∼ B.

¶ First solution (Nikolai Beluhov) Let k = a0 = b0 = c0 = d0. We let f , g, h be great
functions for (A,B), (B,C), (C,D) and write the following infinite array:

...
... b3

...
...

· · · g(2, 2) g(2, 1) b2 f(1, 2) f(2, 2) · · ·
· · · g(1, 2) g(1, 1) b1 f(1, 1) f(2, 1) · · ·
c3 c2 c1 k a1 a2 a3

· · · h(2, 1) h(1, 1) d1

· · · h(2, 2) h(1, 2) d2

...
... d3

. . .


The greatness condition is then equivalent to saying that any 2×2 sub-grid has determinant
±1 (the sign is +1 in two quadrants and −1 in the other two), and we wish to fill in the
lower-right quadrant. To this end, it suffices to prove the following.

Lemma
Suppose we have a 3× 3 sub-grid a b c

x y z
p q


satisfying the determinant conditions. Then we can fill in the ninth entry in the
lower right with an integer while retaining greatness.

Proof. We consider only the case where the 3 × 3 is completely contained inside the
bottom-right quadrant, since the other cases are exactly the same (or even by flipping
the signs of the top row or left column appropriately).
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If y = 0 we have −1 = bz = bx = xq, hence qz = −1, and we can fill in the entry
arbitrarily.

Otherwise, we have bx ≡ xq ≡ bz ≡ −1 (mod y). This is enough to imply qz ≡ −1
(mod y), and so we can fill in the integer qz+1

y .

Remark. In this case (of all +1 determinants), I think it turns out the bottom entry is
exactly equal to qza− cyp− c− p, which is obviously an integer.

¶ Second solution (Ankan Bhattacharya) We will give an explicit classification of
great sequences:

Lemma
The pair (A,B) is great if and only if a0 = b0, a0 | a1b1 + 1, and an | an−1 + an+1

and bn | bn−1 + bn+1 for all n.

Proof of necessity. It is clear that a0 = b0. Then a0f(1, 1)− a1b1 = 1, i.e. a0 | a1b1 + 1.
Now, focus on six entries f(x, y) with x ∈ {n − 1, n, n + 1} and y ∈ {0, 1}. Let

f(n− 1, 1) = u, f(n, 1) = v, and f(n+ 1, 1) = w, so

van−1 − uan = 1,

wan − van+1 = 1.

Then
u+ w =

v(an−1 + an+1)

an

and from above gcd(v, an) = 1, so an | an−1 + an+1; similarly for bn. (If an = 0, we have
van−1 = 1 and van+1 = −1, so this is OK.)

Proof of sufficiency. Now consider two sequences a0, a1, . . . and b0, b1, . . . satisfying our
criteria. We build a great function f by induction on (x, y). More strongly, we will
assume as part of the inductive hypothesis that any two adjacent entries of f are relatively
prime and that for any three consecutive entries horizontally or vertically, the middle
one divides the sum of the other two.

First we set f(1, 1) so that a0f(1, 1) = a1b1 + 1, which is possible.
Consider an uninitialized f(s, t); without loss of generality suppose s ≥ 2. Then we

know five values of f and wish to set a sixth one z, as in the matrix below:

u x
v y
w z

(We imagine a-indices to increase southwards and b-indices to increase eastwards.) If
v 6= 0, then the choice y · u+w

v − x works as uy − vx = 1. If v = 0, it easily follows that
{u,w} = {1,−1} and y = w as yw = 1. Then we set the uninitialized entry to anything.

Now we verify that this is compatible with the inductive hypothesis. From the
determinant 1 condition, it easily follows that gcd(w, z) = gcd(v, z) = 1. The proof that
y | x+ z is almost identical to a step performed in the “necessary” part of the lemma
and we do not repeat it here. By induction, a desired great function f exists.
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We complete the solution. Let A, B, C, and D be integer sequences for which (A,B),
(B,C), and (C,D) are great. Then a0 = b0 = c0 = d0, and each term in each sequence
(after the zeroth term) divides the sum of its neighbors. Since a0 divides all three of
a1b1 + 1, b1c1 + 1, and c1d1 + 1, it follows a0 divides d1a1 + 1, and thus (D,A) is great
as desired.

Remark. To simplify the problem, we may restrict the codomain of great functions and
elements in great pairs of sequences to Z>0. This allows the parts of the solution dealing
with zero entries to be ignored.

Remark. Of course, this solution also shows that any odd path (in the graph induced by the
great relation on sequences) completes to an even cycle. If we stipulate that great functions
must have f(0, 0) = ±1, then even paths complete to cycles as well. Alternatively, we could
change the great functional equation to

f(x+ 1, y + 1)f(x, y)− f(x+ 1, y)f(x, y + 1) = −1.

A quick counterexample to transitivity of ∼ as is without the condition f(0, 0) = 1, for
concreteness: let an = cn = 3 + n and bn = 3 + 2n for n ≥ 0.
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§2.2 USA TST 2019/5, proposed by Yannick Yao
Available online at https://aops.com/community/p11625809.

Problem statement

Let n be a positive integer. Tasty and Stacy are given a circular necklace with 3n
sapphire beads and 3n turquoise beads, such that no three consecutive beads have
the same color. They play a cooperative game where they alternate turns removing
three consecutive beads, subject to the following conditions:

• Tasty must remove three consecutive beads which are turquoise, sapphire, and
turquoise, in that order, on each of his turns.

• Stacy must remove three consecutive beads which are sapphire, turquoise, and
sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with
Tasty going first, they can also win with Stacy going first.

In the necklace, we draw a divider between any two beads of the same color. Unless
there are no dividers, this divides the necklace into several zigzags in which the beads in
each zigzag alternate. Each zigzag has two endpoints (adjacent to dividers).

Observe that the condition about not having three consecutive matching beads is
equivalent to saying there are no zigzags of lengths 1.

T

S

S

T

T
S T T

S

T

T

S

S

T

S

T

S
STS

S

T

S

T

The main claim is that the game is winnable (for either player going first) if and only
if there are at most 2n dividers. We prove this in two parts, the first part not using the
hypothesis about three consecutive letters.

Claim — The game cannot be won with Tasty going first if there are more than 2n
dividers.

Proof. We claim each move removes at most one divider, which proves the result.
Consider removing a TST in some zigzag (necessarily of length at least 3). We illustrate

the three possibilities in the following table, with Tasty’s move shown in red.
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Before After Change
. . . ST | TST | TS . . . . . . ST | TS . . . One less divider; two zigzags merge
. . . ST | TSTST . . . . . . STST . . . One less divider; two zigzags merge
. . . STSTS . . . . . . S | S . . . One more divider; a zigzag splits in two

The analysis for Stacy’s move is identical.

Claim — If there are at most 2n dividers and there are no zigzags of length 1 then
the game can be won (with either player going first).

Proof. By symmetry it is enough to prove Tasty wins going first.
At any point if there are no dividers at all, then the necklace alternates TSTST . . .

and the game can be won. So we will prove that on each of Tasty’s turns, if there exists
at least one divider, then Tasty and Stacy can each make a move at an endpoint of
some zigzag (i.e. the first two cases above). As we saw in the previous proof, such moves
will (a) decrease the number of dividers by exactly one, (b) not introduce any singleton
zigzags (because the old zigzags merge, rather than split). Since there are fewer than 2n
dividers, our duo can eliminate all dividers and then win.

Note that as the number of S and T ’s are equal, there must be an equal number of

• zigzags of odd length (≥ 3) with T at the endpoints (i.e. one more T than S), and

• zigzags of odd length (≥ 3) with S at the endpoints (i.e. one more S than T ).

Now iff there is at least one of each, then Tasty removes a TST from the end of such a
zigzag while Stacy removes an STS from the end of such a zigzag.

Otherwise suppose all zigzags have even size. Then Tasty finds any zigzag of length
≥ 4 (which must exist since the average zigzag length is 3) and removes TST from the
end containing T . The resulting merged zigzag is odd and hence S endpoints, hence
Stacy can move as well.

Remark. There are many equivalent ways to phrase the solution. For example, the number
of dividers is equal to the number of pairs of two consecutive letters (rather than singleton
letters). So the win condition can also be phrased in terms of the number of adjacent pairs
of letters being at least 2n, or equivalently the number of differing pairs being at least 4n.

If one thinks about the game as a process, this is a natural “monovariant” to consider
anyways, so the solution is not so unmotivated.

Remark. The constraint of no three consecutive identical beads is actually needed: a
counterexample without this constraint is TTSTSTSTTSSS. (They win if Tasty goes first and
lose if Stacy goes first.)

Remark (Why induction is unlikely to work). Many contestants attempted induction.
However, in doing so they often implicitly proved a different problem: “prove that if they
can win with Tasty going first without ever creating a triplet, they can also win in such a
way with Stacy going first”. This essentially means nearly all induction attempts fail.

Amusingly, even the modified problem (which is much more amenable to induction) sill
seems difficult without some sort of global argument. Consider a position in which Tasty
wins going first, with the sequence of winning moves being Tasty’s first move in red below
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and Stacy’s second move in blue below:

. . . TTSSTT S
Tasty︷︸︸︷
TST TS︸ ︷︷ ︸
Stacy

STTSST . . . .

There is no “nearby” STS that Stacy can remove instead on her first turn, without
introducing a triple-T and also preventing Tasty from taking a TST . So it does not seem
possible to easily change a Tasty-first winning sequence to a Stacy-first one, even in the
modified version.
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§2.3 USA TST 2019/6, proposed by Ankan Bhattachrya
Available online at https://aops.com/community/p11625814.

Problem statement

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying
∠AID = 90◦. Let the excircle of triangle ABC opposite the vertex A be tangent
to BC at point A1. Define points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively.

Prove that if quadrilateral AB1A1C1 is cyclic, then AD is tangent to the circum-
circle of 4DB1C1.

We present two solutions.

¶ First solution using spiral similarity (Ankan Bhattacharya) First, we prove the part
of the problem which does not depend on the condition AB1A1C1 is cyclic.

Lemma
Let ABC be a triangle and define I, D, B1, C1 as in the problem. Moreover, let
M denote the midpoint of AD. Then AD is tangent to (AB1C1), and moreover
B1C1 ‖ IM .

Proof. Let E and F be the tangency points of the incircle. Denote by Z the Miquel point
of BFEC, i.e. the second intersection of the circle with diameter AI and the circumcircle.

Note that A, Z, D are collinear, by radical axis on (ABC), (AFIE), (BIC).

A

B C

I

E

B1
F

C1

Z

D

M

Then the spiral similarity gives us

ZF

ZE
=

BF

CE
=

AC1

AB1

20
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which together with ]FZE = ]FAE = ]BAC implies that 4ZFE and 4AC1B1

are (directly) similar. (See IMO Shortlist 2006 G9 for a similar application of spiral
similarity.)

Now the remainder of the proof is just angle chasing. First, since

]DAC1 = ]ZAF = ]ZEF = ]AB1C1

we have AD is tangent to (AB1C1). Moreover, to see that IM ‖ B1C1, write

](AI,B1C1) = ]IAC + ]AB1C1 = ]BAI + ]ZEF = ]FAI + ]ZAF

= ]ZAI = ]MAI = ]AIM

the last step since 4AID is right with hypotenuse AD, and median IM .

Now we return to the present problem with the additional condition.

A

B C

I

A1 = V

B1

C1

D

E

FM

Z

Claim — Given the condition, we actually have ∠AB1A1 = ∠AC1A1 = 90◦.

Proof. Let IA, IB and IC be the excenters of 4ABC. Then the perpendiculars to BC,
CA, AB from A1, B1, C1 respectively meet at the so-called Bevan point V (which is the
circumcenter of 4IAIBIC).

Now 4AB1C1 has circumdiameter AV . We are given A1 lies on this circle, so if V 6= A1

then AA1 ⊥ A1V . But A1V ⊥ BC by definition, which would imply AA1 ‖ BC, which
is absurd.

Claim — Given the condition the points B1, I, C1 are collinear (hence with M).

Proof. By Pappus theorem on IBAIC and BA1C after the previous claim.

To finish, since DMA was tangent to the circumcircle of 4AB1C1, we have MD2 =
MA2 = MC1 ·MB1, implying the required tangency.

Remark. The triangles satisfying the problem hypothesis are exactly the ones satisfying
rA = 2R, where R and rA denote the circumradius and A-exradius.

Remark. If P is the foot of the A-altitude then this should also imply AB1PC1 is harmonic.
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¶ Second solution by inversion and mixtilinears (Anant Mudgal) As in the end of the
preceding solution, we have ∠AB1A1 = ∠AC1A1 = 90◦ and I ∈ B1C1. Let M be the
midpoint of minor arc BC and N be the midpoint of arc ’BAC. Let L be the intouch
point on BC. Let O be the circumcenter of 4ABC. Let K = AI ∩BC.

B

O

M

I

A

D L

B1C1

G

V

N

Z

T A′

X

CK

Claim — We have ∠(AI,B1C1) = ∠IAD.

Proof. Let Z lie on (ABC) with ∠AZI = 90◦. By radical axis theorem on (AIZ), (BIC),
and (ABC), we conclude that D lies on AZ. Let NI meet (ABC) again at T 6= N .

Inversion in (BIC) maps AI to KI and (ABC) to BC. Thus, Z maps to L, so Z,L,M
are collinear. Since BL = CV and OI = OV , we see that MLIN is a trapezoid with
IL ‖ MN . Thus, ZT ‖ MN .

It is known that AT and AA1 are isogonal in angle BAC. Since AV is a circumdiameter
in (AB1C1), so AT ⊥ B1C1. So ]ZAI = ]NMT = 90◦ − ]TAI = ](AI,B1C1).

Let X be the midpoint of AD and G be the reflection of I in X. Since AIDG is
a rectangle, we have ]AIG = ]ZAI = ](AI,B1C1), by the previous claim. So IG
coincides with B1C1. Now AI bisects ∠B1AC1 and ∠IAG = 90◦, so (IG;B1C1) = −1.

Since ∠IDG = 90◦, we see that DI and DG are bisectors of angle B1DC1. Now
∠XDI = ∠XID =⇒ ∠XDC1 = ∠XID − ∠IDB1 = ∠DB1C1, so XD is tangent to
(DB1C1).
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Evan Chen

60th IMO 2019 United Kingdom

§1 Summary of scores for TST 2019
N 26
µ 15.31
σ 8.59

1st Q 12
Median 14

3rd Q 21

Max 35
Top 3 27
Top 6 21

§2 Problem statistics for TST 2019

P1 P2 P3 P4 P5 P6
0 8 19 25 6 19 16

1 0 1 0 0 1 2

2 0 1 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 1 1 0 0 1 0

6 0 0 0 8 0 0

7 17 4 1 12 5 8

Avg 4.77 1.38 0.27 5.08 1.58 2.23

QM 5.74 2.95 1.37 5.80 3.23 3.89
#5+ 18 5 1 20 6 8
%5+ %69.2 %19.2 %3.8 %76.9 %23.1 %30.8

1



USA IMO TST 2019 Statistics Evan Chen

§3 Rankings for TST 2019
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 0 0 0.00%
35 1 1 3.85%
34 0 1 3.85%
33 0 1 3.85%
32 0 1 3.85%
31 0 1 3.85%
30 0 1 3.85%
29 0 1 3.85%

Sc Num Cu Per
28 1 2 7.69%
27 2 4 15.38%
26 0 4 15.38%
25 0 4 15.38%
24 0 4 15.38%
23 0 4 15.38%
22 1 5 19.23%
21 2 7 26.92%
20 2 9 34.62%
19 1 10 38.46%
18 0 10 38.46%
17 0 10 38.46%
16 0 10 38.46%
15 0 10 38.46%

Sc Num Cu Per
14 7 17 65.38%
13 2 19 73.08%
12 1 20 76.92%
11 0 20 76.92%
10 0 20 76.92%
9 0 20 76.92%
8 1 21 80.77%
7 2 23 88.46%
6 0 23 88.46%
5 0 23 88.46%
4 0 23 88.46%
3 0 23 88.46%
2 0 23 88.46%
1 0 23 88.46%
0 3 26 100.00%

§4 Histogram for TST 2019
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Team Selection Test for the 61st International Mathematical Olympiad

United States of America

Day I

Thursday, December 12, 2019

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, December 16 at noon Eastern time.

IMO TST 1. Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n.

What are the possible values of r across all possible choices of the sequence (bn)?

IMO TST 2. Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting
at T . Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and B
intersects Γ1 again at C and Γ2 again at D, such that quadrilateral ABCD is convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at point Y .
Show that T , X, Y are collinear.

IMO TST 3. Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based
game on an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite
number of cells to be flooded. Hephaestus is building a levee, which is a subset of unit
edges of the grid (called walls) forming a connected, non-self-intersecting path or loop∗.

The game then begins with Hephaestus moving first. On each of Hephaestus’s turns, he
adds one or more walls to the levee, as long as the total length of the levee is at most
αn after his nth turn. On each of Poseidon’s turns, every cell which is adjacent to an
already flooded cell and with no wall between them becomes flooded as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained
in the interior of the loop — hence stopping the flood and saving the world. For which α
can Hephaestus guarantee victory in a finite number of turns no matter how Poseidon
chooses the initial cells to flood?

∗More formally, there must exist lattice points A0, A1, . . . , Ak, pairwise distinct except possibly
A0 = Ak, such that the set of walls is exactly {A0A1, A1A2, . . . , Ak−1Ak}. Once a wall is built it
cannot be destroyed; in particular, if the levee is a closed loop (i.e. A0 = Ak) then Hephaestus cannot
add more walls. Since each wall has length 1, the length of the levee is k.

1



Team Selection Test for the 61st International Mathematical Olympiad

United States of America

Day II

Thursday, January 23, 2020

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, January 27 at noon Eastern time.

IMO TST 4. For a finite simple∗ graph G, we define G′ to be the graph on the same
vertex set as G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and
only if u and v have a common neighbor in G.

Prove that if G is a finite simple graph which is isomorphic to (G′)′, then G is also
isomorphic to G′.

IMO TST 5. Find all integers n ≥ 2 for which there exists an integer m and a
polynomial P (x) with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;

• the numbers P (0), P 2(0), . . . , Pm−1(0) are not divisible by n; and

• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

IMO TST 6. Let P1P2 · · ·P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define
Qi as the intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.

Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove that
the points Q1, Q2, . . . , Q100 are concyclic.

∗A finite simple graph G = (V,E) is a finite set V of vertices, together with a set E of edges, where
each edge in E is a set of two distinct vertices of V . If v is a vertex of G, the neighbors of v are the
vertices u for which {u, v} ∈ E. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
exists a bijection f : V1 → V2 such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.
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§0 Problems
1. Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n.

What are the possible values of r across all possible choices of the sequence (bn)?

2. Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T .
Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and
B intersects Γ1 again at C and Γ2 again at D, such that quadrilateral ABCD is
convex.
Suppose lines AC and BD meet at point X, while lines AD and BC meet at point
Y . Show that T , X, Y are collinear.

3. Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on
an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite
number of cells to be flooded. Hephaestus is building a levee, which is a subset of
unit edges of the grid, called walls, forming a connected, non-self-intersecting path
or loop.
The game then begins with Hephaestus moving first. On each of Hephaestus’s
turns, he adds one or more walls to the levee, as long as the total length of the levee
is at most αn after his nth turn. On each of Poseidon’s turns, every cell which is
adjacent to an already flooded cell and with no wall between them becomes flooded
as well.
Hephaestus wins if the levee forms a closed loop such that all flooded cells are
contained in the interior of the loop — hence stopping the flood and saving the
world. For which α can Hephaestus guarantee victory in a finite number of turns
no matter how Poseidon chooses the initial cells to flood?

4. For a finite simple graph G, we define G′ to be the graph on the same vertex set as
G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if
u and v have a common neighbor in G. Prove that if G is a finite simple graph
which is isomorphic to (G′)′, then G is also isomorphic to G′.

5. Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x)
with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;
• the numbers P (0), P 2(0), . . . , Pm−1(0) are not divisible by n; and
• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

6. Let P1P2 · · ·P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as the
intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.
Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove
that the points Q1, Q2, . . . , Q100 are concyclic.
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§1 Solutions to Day 1
§1.1 USA TST 2020/1, proposed by Carl Schildkraut, Milan Haiman
Available online at https://aops.com/community/p13654466.

Problem statement

Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n.

What are the possible values of r across all possible choices of the sequence (bn)?

The answer is 0 ≤ r ≤ 1/2. Obviously r ≥ 0.
In one direction, we show that

Claim (Greedy bound) — For all integers n, we have

bn
n2

≤ 1

2
+

1

2n
.

Proof. This is by induction on n. For n = 1 it is given. For the inductive step we have

bn < n2 bn−1

(n− 1)2
≤ n2

(
1

2
+

1

2(n− 1)

)
=

n3

2(n− 1)

=
1

2

[
n2 + n+ 1 +

1

n− 1

]
=

n(n+ 1)

2
+

1

2

[
1 +

1

n− 1

]
≤ n(n+ 1)

2
+ 1

So bn < n(n+1)
2 + 1 and since bn is an integer, bn ≤ n(n+1)

2 . This implies the result.

We now give a construction. For r = 1/2 we take bn = 1
2n(n + 1) for r = 0 we take

bn = 1.

Claim (Explicit construction, given by Nikolai Beluhov) — Fix 0 < r < 1/2. Let
N be large enough that

⌈
rn2 + n

⌉
< 1

2n(n+ 1) for all n ≥ N . Then the following
sequence works:

bn =

{⌈
rn2 + n

⌉
n ≥ N

n2+n
2 n < N.

Proof. We certainly have

bn
n2

=
rn2 + n+O(1)

n2

n→∞−−−→ r.

3
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Mainly, we contend bnn
−2 is strictly decreasing. We need only check this for n ≥ N ; in

fact
bn
n2

≥ rn2 + n

n2
>

[r(n+ 1)2 + (n+ 1)] + 1

(n+ 1)2
>

bn+1

(n+ 1)2

where the middle inequality is true since it rearranges to 1
n > n+2

(n+1)2
.
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§1.2 USA TST 2020/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p13654481.

Problem statement

Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T .
Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and
B intersects Γ1 again at C and Γ2 again at D, such that quadrilateral ABCD is
convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at
point Y . Show that T , X, Y are collinear.

We present four solutions.

¶ First solution, elementary (original) We have 4Y AC ∼ 4Y BD, from which it
follows

d(Y,AC)

d(Y,BD)
=

AC

BD
.

Moreover, if we denote by r1 and r2 the radii of Γ1 and Γ2, then

d(T,AC)

d(T,BD)
=

TA sin∠(AC, `1)

TB sin∠(BD, `2)
=

2r1 sin∠(AC, `1)

2r2 sin∠(BD, `2)
=

AC

BD

the last step by the law of sines.

A

B

C

D

X
Y

T

ℓ1

ℓ2

Γ1

Γ2

This solves the problem up to configuration issues: we claim that Y and T both lie
inside ∠AXB ≡ ∠CXD. WLOG TA < TB.

• The former is since Y lies outside segments BC and AD, since we assumed ABCD
was convex.

• For the latter, we note that X lies inside both Γ1 and Γ2 in fact on the radical axis
of the two circles (since X was an interior point of both chords AC and BD). In
particular, X is contained inside ∠ATB, and moreover ∠ATB < 90◦, and this is
enough to imply the result.
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¶ Second solution, inversive This is based on the solution posted by kapilpavase on
AoPS. Consider the inversion at T swapping Γ1 and Γ2; we let it send A to E, B to F ,
C to V , D to W , as shown. Draw circles ADWE and BCV F .

A

B

C

D

X
Y

T

ℓ1

ℓ2

Γ1

Γ2

E

F

V

W

Claim — Points T and Y lie on the radical axis of (ADE) and (BCF ).

Proof. Because TF · TB = TA · TE and Y A · Y D = Y C · Y B.

Claim — Point X has equal power to (ADE) and (BCF ).

Proof. Since TV · TC = TA · TE, quadrilateral V CEA is cyclic too, so by radical axis
with Γ1 and Γ2 we find X lies on V E. Similarly, X lies on FW . Thus, X is the center
of negative inversion between (ADE) and (BCF ).

But since AE = BF and moreover

]BCF + ]ADE = (]BCA+ ]ACF ) + (]ADB + ]BDE)

= (]BCA+ ]ADB) + (]ACF + ]BDE) = 0 + 0 = 0

we conclude that (ADE) and (BCF ) are congruent. As X was the center of negative
inversion between them, we’re done.

¶ Third solution, projective (Nikolai Beluhov) We start with some definitions. Let `1
touch Γ2 at E, `2 touch Γ1 at F , K = `1 ∩BD, L = `2 ∩AC, line FX meet Γ1 again at
M , line EX meet Γ2 again at N , and lines AB, AD, and BC meet line TX at Z, Y1,
and Y2. Thus the desired statement is equivalent to Y1 = Y2.

Claim — (EB;ND)Γ2 = (FA;MC)Γ1 .

Proof. Note that AX · XC = BX · XD = EX · XN , so AECN is cyclic. Likewise
BFDM is cyclic.

6
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Consider the inversion with center T which swaps Γ1 and Γ2; it also swaps the pairs
{A,E} and {B,F}. Since AECN is cyclic, C is on Γ1, and N is on Γ2, it also swaps
{C,N}; similarly it swaps {D,M}.

Thus (EB;ND)Γ2 = (AF ;CM)Γ1 = (FA;MC)Γ1 as desired.

With this claim, the remainder of the proof is chasing cross-ratios:

(TZ;XY1)
A
= (KB;XD)

E
= (EB;ND)Γ2 = (FA;MC)Γ1

F
= (LA;XC)

B
= (TZ;XY2)

implies Y1 = Y2 as desired.

¶ Fourth solution by untethered moving points Fix `1, `2, T , Γ1 and Γ2, and let Γ1

and Γ2 meet at U and V . By the radical axis theorem, X lies on UV .
Thus we instead treat X as a variable point on line UV and let C = AX ∩ Γ1,

D = BX ∩ Γ2. By definition, X has degree 1 and T has degree 0.
We apply Zack’s lemma to untethered point Y . Note that C and D move projectively

on conics, and therefore have degree 2. Then, lines AD and BC each have degree at most
deg(A) + deg(D) = 0 + 2 = 2, and so their intersection Y has degree at most 2 + 2 = 4.
But when X ∈ AB, the lines AD and BC are the same, so Zack’s lemma implies that

degY ≤ 4− 1 = 3.

Thus the assertion that T , X, Y are collinear (which for example can be seen as a
certain vanishing determinant) is a statement of degree at most 0 + 1 + 3 = 4. Thus
it suffices to find 5 values of X (other than X ∈ AB, which we used already). This is
remarkably easy:

1. When X = U or X = V , then X = C = D = Y and the statement is obvious

2. When X ∈ `1, say, then A = C and so Y lies on AC = `1 as well. The case X ∈ `2
is symmetric.

3. Finally, take X at infinity along UV . Then C and D are the other tangency points
of the circles with `1, `2, and so AC = `1, BD = `2, so Y = T .

This finishes the problem.

7
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§1.3 USA TST 2020/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p13654498.

Problem statement

Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on
an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite
number of cells to be flooded. Hephaestus is building a levee, which is a subset of
unit edges of the grid, called walls, forming a connected, non-self-intersecting path
or loop.

The game then begins with Hephaestus moving first. On each of Hephaestus’s
turns, he adds one or more walls to the levee, as long as the total length of the levee
is at most αn after his nth turn. On each of Poseidon’s turns, every cell which is
adjacent to an already flooded cell and with no wall between them becomes flooded
as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are
contained in the interior of the loop — hence stopping the flood and saving the
world. For which α can Hephaestus guarantee victory in a finite number of turns no
matter how Poseidon chooses the initial cells to flood?

We show that if α > 2 then Hephaestus wins, but when α = 2 (and hence α ≤ 2)
Hephaestus cannot contain even a single-cell flood initially.

Strategy for α > 2: Impose Z2 coordinates on the cells. Adding more flooded
cells does not make our task easier, so let us assume that initially the cells (x, y) with
|x| + |y| ≤ d are flooded for some d ≥ 2; thus on Hephaestus’s kth turn, the water is
contained in |x|+ |y| ≤ d+ k − 1. Our goal is to contain the flood with a large rectangle.

We pick large integers N1 and N2 such that

αN1 > 2N1 + (2d+ 3)

α(N1 +N2) > 2N2 + (6N1 + 8d+ 4).

Mark the points Xi, Yi as shown in the figure for 1 ≤ i ≤ 6. The red figures indicate the
distance between the marked points on the rectangle.
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X1 Y1X2 Y2X3 Y3

X4 Y4

X5 Y5

X6 Y6

1N1 N1d d

d+ 1 d+ 1

N2 N2

N1 + d N1 + d

We follow the following plan.

• Turn 1: place wall X1Y1. This cuts off the flood to the north.

• Turns 2 through N1 + 1: extend the levee to segment X2Y2. This prevents further
flooding to the north.

• Turn N1 + 2: add in broken lines X4X3X2 and Y4Y3Y2 all at once. This cuts off
the flood west and east.

• Turns N1 + 2 to N1 + N2 + 1: extend the levee along segments X4X5 and Y4Y5.
This prevents further flooding west and east.

• Turn N1 +N2 + 2: add in the broken line X5X6Y6Y5 all at once and win.

Proof for α = 2: Suppose Hephaestus contains the flood on his (n+ 1)st turn. We
prove that α > 2 by showing that in fact at least 2n+ 4 walls have been constructed.

Let c0, c1, . . . , cn be a path of cells such that c0 is the initial cell flooded, and in
general ci is flooded on Poseidon’s ith turn from ci−1. The levee now forms a closed loop
enclosing all ci.

Claim — If ci and cj are adjacent then |i− j| = 1.

Proof. Assume ci and cj are adjacent but |i − j| > 1. Then the two cells must be
separated by a wall. But the levee forms a closed loop, and now ci and cj are on opposite
sides.

Thus the ci actually form a path. We color green any edge of the unit grid (wall or
not) which is an edge of exactly one ci (i.e. the boundary of the polyomino). It is easy to
see there are exactly 2n+ 4 green edges.

9
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Now, from the center of each cell ci, shine a laser towards each green edge of ci (hence
a total of 2n + 4 lasers are emitted). An example below is shown for n = 6, with the
levee marked in brown.

c0 c1

c2

c3

c4c5c6

Claim — No wall is hit by more than one laser.

Proof. Assume for contradiction that a wall w is hit by lasers from ci and cj . WLOG
that laser is vertical, so ci and cj are in the same column (e.g. (i, j) = (0, 5) in figure).

We consider two cases on the position of w.

• If w is between ci and cj , then we have found a segment intersecting the levee
exactly once. But the endpoints of the segment lie inside the levee. This contradicts
the assumption that the levee is a closed loop.

• Suppose w lies above both ci and cj and assume WLOG i < j. Then we have found
that there is no levee at all between ci and cj .
Let ρ ≥ 1 be the distance between the centers of ci and cj . Then cj is flooded in a
straight line from ci within ρ turns, and this is the unique shortest possible path.
So this situation can only occur if j = i+ ρ and ci, . . . , cj form a column. But then
no vertical lasers from ci and cj may point in the same direction, contradiction.

Since neither case is possible, the proof ends here.

This implies the levee has at least 2n+ 4 walls (the number of lasers) on Hephaestus’s
(n+ 1)st turn. So α ≥ 2n+4

n+1 > 2.

Remark (Author comments). The author provides the following remarks.

• Even though the flood can be stopped when α = 2+ ε, it takes a very long time to do
that. Starting from a single flooded cell, the strategy I have outlined requires Θ(1/ε2)
days. Starting from several flooded cells contained within an area of diameter D, it
takes Θ(D/ε2) days. I do not know any strategies that require fewer days than that.

• There is a gaping chasm between α ≤ 2 and α > 2. Since α ≤ 2 does not suffice
even when only one cell is flooded in the beginning, there are in fact no initial

10
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configurations at all for which it is sufficient. On the other hand, α > 2 works for all
initial configurations.

• The second half of the solution essentially estimates the perimeter of a polyomino in
terms of its diameter (where diameter is measured entirely within the polyomino).
It appears that this has not been done before, or at least I was unable to find any
reference for it. I did find tons of references where the perimeter of a polyomino is
estimated in terms of its area, but nothing concerning the diameter.
My argument is a formalisation of the intuition that if P is any shortest path within
some weirdly-shaped polyomino, then the boundary of that polyomino must hug P
rather closely so that P cannot be shortened.

11
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§2 Solutions to Day 2
§2.1 USA TST 2020/4, proposed by Zack Chroman, Mehtaab Sawhney
Available online at https://aops.com/community/p13913804.

Problem statement

For a finite simple graph G, we define G′ to be the graph on the same vertex set as
G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if u
and v have a common neighbor in G. Prove that if G is a finite simple graph which
is isomorphic to (G′)′, then G is also isomorphic to G′.

We say a vertex of a graph is fatal if it has degree at least 3, and some two of its neighbors
are not adjacent.

Claim — The graph G′ has at least as many triangles as G, and has strictly more
if G has any fatal vertices.

Proof. Obviously any triangle in G persists in G′. Moreover, suppose v is a fatal vertex
of G. Then the neighbors of G will form a clique in G′ which was not there already, so
there are more triangles.

Thus we only need to consider graphs G with no fatal vertices. Looking at the
connected components, the only possibilities are cliques (including single vertices), cycles,
and paths. So in what follows we restrict our attention to graphs G only consisting of
such components.

Remark (Warning). Beware: assuming G is connected loses generality. For example, it
could be that G = G1 tG2, where G′

1
∼= G2 and G′

2
∼= G1.

First, note that the following are stable under the operation:

• an isolated vertex,

• a cycle of odd length, or

• a clique with at least three vertices.

In particular, G ∼= G′′ holds for such graphs.
On the other hand, cycles of even length or paths of nonzero length will break into

more connected components. For this reason, a graph G with any of these components
will not satisfy G ∼= G′′ because G′ will have strictly more connected components than
G, and G′′ will have at least as many as G′.

Therefore G ∼= G′′ if and only if G is a disjoint union of the three types of connected
components named earlier. Since G ∼= G′ holds for such graphs as well, the problem
statement follows right away.

Remark. Note that the same proof works equally well for an arbitrary number of iterations
G

′′···′′ ∼= G, rather than just G′′ ∼= G.
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Remark. The proposers included a variant of the problem where given any graph G, the
operation stabilized after at most O(logn) operations, where n was the number of vertices
of G.
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§2.2 USA TST 2020/5, proposed by Carl Schildkraut
Available online at https://aops.com/community/p13913769.

Problem statement

Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x)
with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;

• the numbers P (0), P 2(0), . . . , Pm−1(0) are not divisible by n; and

• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

The answer is that this is possible if and only if there exists primes p′ < p such that p | n
and p′ - n. (Equivalently, the radical rad(n) must not be the product of the first several
primes.)

For a polynomial P , and an integer N , we introduce the notation

zord(P mod N) := min {e > 0 | P e(0) ≡ 0 mod N}

where we set min∅ = 0 by convention. Note that in general we have

zord(P mod N) = lcm
q|N

(zord(P mod q)) (†)

where the index runs over all prime powers q | N (by Chinese remainder theorem). This
will be used in both directions.

Construction: First, we begin by giving a construction. The idea is to first use the
following prime power case.

Claim — Let pe be a prime power, and 1 ≤ k < p. Then

f(X) = X + 1− k · X(X − 1)(X − 2) . . . (X − (k − 2))

(k − 1)!

viewed as a polynomial in (Z/pe)[X] satisfies zord(f mod pe) = k.

Proof. Note f(0) = 1, f(1) = 2, . . . , f(k − 2) = k − 1, f(k − 1) = 0 as needed.

This gives us a way to do the construction now. For the prime power pe | n, we choose
1 ≤ p′ < p and require zord(P mod pe) = p′ and zord(P mod q) = 1 for every other
prime power q dividing n. Then by (†) we are done.

Remark. The claim can be viewed as a special case of Lagrange interpolation adapted to
work over Z/pe rather than Z/p. Thus the construction of the polynomial f above is quite
natural.

Necessity: by (†) again, it will be sufficient to prove the following claim.

14
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Claim — For any prime power q = pe, and any polynomial f(x) ∈ Z[x], if the
quantity zord(f mod q) is nonzero then it has all prime factors at most p.

Proof. This is by induction on e ≥ 1. For e = 1, the pigeonhole principle immediately
implies that zord(P mod p) ≤ p.

Now assume e ≥ 2. Let us define

k := zord(P mod pe−1), Q := P k.

Since being periodic modulo pe requires periodic modulo pe−1, it follows that

zord(P mod pe) = k · zord(Q mod pe).

However since Q(0) ≡ 0 mod pe−1, it follows {Q(0), Q2(0), . . . } are actually all multiples
of pe−1. There are only p residues modulo pe which are also multiples of pe−1, so
zord(Q mod pe) ≤ p, as needed.

Remark. One reviewer submitted the following test-solving comments:
This is one of these problems where you can make many useful natural observations, and

if you make enough of them eventually they cohere into a solution. For example, here are
some things I noticed while solving:

• The polynomial 1− x shows that m = 2 works for any odd n.

• In general, if ζ is a primitive mth root of unity modulo n, then ζ(x+ 1)− 1 has the
desired property (assuming gcd(m,n) = 1). We can extend this using the Chinese
remainder theorem to find that if p | n, m | p− 1, and gcd(m,n) = 1, then n works.
So by this point I already have something about the prime factors of n being sort-of
closed downwards.

• By iterating P we see it is enough to consider m prime.

• In the case where n = 2k, it is not too difficult to show that no odd prime m works.

15
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§2.3 USA TST 2020/6, proposed by Michael Ren
Available online at https://aops.com/community/p13913742.

Problem statement

Let P1P2 · · ·P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as the
intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.

Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove
that the points Q1, Q2, . . . , Q100 are concyclic.

We show two solutions. In addition, Luke Robitaille has a reasonable complex numbers
solution posted at https://aops.com/community/p26795631.

¶ Solution to proposed problem We let PP2 and P1P3 intersect (perpendicularly) at
point K2, and define K• cyclically.
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P1

P2

P3

P4

K2

K3

P

K4

P5K5
K1

H1

H2

H3

H4

Q2

Q3

Q4

E

E2

E3

E4

Claim — The points K• are concyclic say with circumcircle γ.

Proof. Note that PP1 × PK1 = PP2 × PK2 = . . . so the result follows by inversion at
P .

Let Ei be the second intersection of line Pi−1KiPi+1 with γ; then it follows that the
perpendiculars to Pi−1Pi+1 at Ei all concur at a point E, which is the reflection of P
across the center of γ.

We let H2 = P1P3 ∩ P2P4 denote the orthocenter of 4PP2P3 and define H• cycli-
cally.

Claim — We have

EH2 ⊥ P1P4 ‖ K2K3 and PH2 ⊥ E2E3 ‖ P2P3.

17
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Proof. Both parallelisms follow by Reim’s theorem through ∠E2H2E3 = ∠K2H2K3, So
we need to show the perpendicularities.

Note that H2P and H2E are respectively circum-diameters of 4H2K2K3 and 4H2E2E3.
As K2K3 and E2E3 are anti-parallel, it follows H2P and H2E are isogonal and we derive
both perpendicularities.

Claim — The points E, Q3, E3 are collinear.

Proof. We use the previous claim. The parallelisms imply that

E3H2

E3P2
=

E2H2

E2P3
=

E4H3

E4P3
=

E3H3

E3P4
.

Now consider a homothety centered at E3 sending H2 to P2 and H3 to P4. Then it
should send the orthocenter of 4EH2H3 to Q3, proving the result.

From all this it follows that 4EQ2Q3 ∼ 4PK2K3 as the opposite sides are all parallel.
Repeating this we actually find a homothety of 100-gons

Q1Q2Q3 · · · ∼ K1K2K3 · · ·

and that concludes the proof.

Remark. The proposer remarks that in fact, if one lets s be an integer and instead defines
Ri = PiPi+s∩Pi+1Pi+s+1, then the R• are concyclic. The present problem is the case s = 3.
We comment on a few special cases:

• There is nothing to prove for s = 1.

• If s = 0, this amounts to proving that poles of PiPi+1 are concyclic; by inversion this
is equivalent to showing the midpoints of the sides are concyclic. This is an interesting
problem but not as difficult.

• The problem for s = 2 is to show that our H• are concyclic, which uses the s = 0 case
as a lemma.

¶ Solution to generalization (Nikolai Beluhov) We are going to need some well-known
lemmas.

Lemma
Suppose that ABCD is inscribed in a circle Γ. Let the tangents to Γ at A and B
meet at E, let the tangents to Γ at C and D meet at F , and let diagonals AC and
BD meet at P . Then points E, F , and P are collinear.

Proof. Let the circle of center E and radius EA = EB meet lines AC and BD for the
second time at points U and V . By a simple angle chase, triangles EUV and FCD are
homothetic.

18
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Lemma
Suppose that points X and Y are isogonal conjugates in polygon A = A1A2 . . . An.
(This means that lines AiX and AiY are symmetric with respect to the interior
angle bisector of ∠Ai−1AiAi+1 for all i, where An+j ≡ Aj for all j.) Then the 2n
projections of X and Y on the sides of A are concyclic.

Proof. By a simple angle chase, for all i we have that the four projections on sides Ai−1Ai

and AiAi+1 are concyclic. Say that they lie on circle Γi. Consider the midpoint M of
segment XY . For every side s of A, we have that M is equidistant from the projections
of X and Y on s. Therefore, M is the center of Γi for all i, and thus all of the Γi

coincide.

Lemma
Let Γ′ and Γ′′ be two circles and let r be some fixed real number. Then the locus of
points X satisfying Pow(X,Γ′) : Pow(X,Γ′′) = r is a circle.

Proof. This is a classical result in circle geometry. A full proof is given, for example, in
item 115 of Roger Johnson’s Advanced Euclidean Geometry.

We are ready to solve the problem. Let P be our polygon, let O be its the circumcenter,
and let Γ be its circumcircle.

Fix any index i. In triangle Pi−1PiPi+1, we have that line PiP contains the altitude
through Pi and line PiO contains the circumradius through Pi. Therefore, these two
lines are symmetric with respect to the interior angle bisector of ∠Pi−1PiPi+1.

Thus points P and O are isogonal conjugates in P. By Lemma 2, it follows that the
projections of O onto the sides of P are concyclic. In other words, the midpoints of the
sides of P lie on some circle ω.

Let Mi be the midpoint of segment PiPi+1 and let the tangents to Γ at points Pi and
Pi+1 meet at Ti. Since inversion with respect to Γ swaps Mi and Ti for all i, and also
since all of the Mi lie on the same circle ω, we obtain that all of the Ti lie on the same
circle Ω.
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Pi−2

Pi−1

Pi

Pi+1

Pi+2

Pi+3

Qi

Qi+1

Ti−2

Ti−1

Ti

Ti+1

Ti+2

Again, fix any index i. By Lemma 1 applied to cyclic quadrilateral Pi−2Pi−1Pi+1Pi+2,
we have that point Qi lies on line Ti−2Ti+1. Similarly, point Qi+1 lies on line Ti−1Ti+2.

Define
fi =

Pow(Qi,Γ)

Pow(Qi,Ω)
.

Claim — We have fi = fi+1 for all i.

Proof. Note that

Pow(Qi,Γ) = QiPi−1 ·QiPi+2

Pow(Qi+1,Γ) = Qi+1Pi−1 ·Qi+1Pi+2.

Pow(Qi,Ω) = QiTi−2 ·QiTi+1

Pow(Qi+1,Ω) = Qi+1Ti−1 ·Qi+1Ti+2.

Consider cyclic quadrilateral Ti−2Ti−1Ti+1Ti+2. Since Γ touches its opposite sides
Ti−2Ti−1 and Ti+1Ti+2 at points Pi−1 and Pi+2, we have that line Pi−1Pi+2 makes equal
angles with these opposite sides. From here, a simple angle chase shows that triangles
Pi−1QiTi−2 and Pi+2Qi+1Ti+2 are similar. Thus

QiPi−1

QiTi−2
=

Qi+1Pi+2

Qi+1Ti+2
.

Similarly,
QiPi+2

QiTi+1
=

Qi+1Pi−1

Qi+1Ti−1
.

From these, the desired identity fi = fi+1 follows.

Therefore, the power ratio fi is the same for all i. By Lemma 3 for circles Γ and Ω,
the solution is complete.
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Remark. This solution applies to the full generalization (from 3 to s) mentioned in the end
of the previous solution, essentially with no change.

Remark. Polygon T1T2 . . . T100 is both circumscribed about a circle and inscribed inside
a circle. Polygons like that are known as Poncelet polygons. See, for example, https:
//en.wikipedia.org/wiki/Poncelet's_closure_theorem. This solution borrows a lot
from the discussion of Poncelet’s closure theorem in Advanced Euclidean Geometry, referenced
above for Lemma 3.
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§1 Summary of scores for TST 2020
N 31
µ 18.87
σ 6.82

1st Q 17
Median 19

3rd Q 22

Max 34
Top 3 29
Top 6 23

§2 Problem statistics for TST 2020

P1 P2 P3 P4 P5 P6
0 1 20 19 3 8 31

1 4 1 1 1 0 0

2 0 0 10 0 1 0

3 0 0 0 1 1 0

4 1 1 0 3 2 0

5 1 0 0 1 0 0

6 2 0 0 10 1 0

7 22 9 1 12 18 0

Avg 5.77 2.19 0.90 5.32 4.68 0.00

QM 6.21 3.84 1.70 5.77 5.57 0.00
#5+ 25 9 1 23 19 0
%5+ %80.6 %29.0 %3.2 %74.2 %61.3 %0.0
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§3 Rankings for TST 2020
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 0 0 0.00%
35 0 0 0.00%
34 1 1 3.23%
33 0 1 3.23%
32 0 1 3.23%
31 0 1 3.23%
30 0 1 3.23%
29 2 3 9.68%

Sc Num Cu Per
28 0 3 9.68%
27 1 4 12.90%
26 0 4 12.90%
25 1 5 16.13%
24 0 5 16.13%
23 2 7 22.58%
22 2 9 29.03%
21 2 11 35.48%
20 3 14 45.16%
19 3 17 54.84%
18 6 23 74.19%
17 1 24 77.42%
16 2 26 83.87%
15 0 26 83.87%

Sc Num Cu Per
14 1 27 87.10%
13 0 27 87.10%
12 0 27 87.10%
11 0 27 87.10%
10 1 28 90.32%
9 0 28 90.32%
8 0 28 90.32%
7 1 29 93.55%
6 0 29 93.55%
5 0 29 93.55%
4 0 29 93.55%
3 0 29 93.55%
2 2 31 100.00%
1 0 31 100.00%
0 0 31 100.00%

§4 Histogram for TST 2020
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Team Selection Test for the 62nd International Mathematical Olympiad

United States of America

February 25, 2021

Time limit : 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, March 1 at noon Eastern time.

IMO TST 1. Determine all integers s ≥ 4 for which there exist positive integers a, b,
c, d such that s = a+ b+ c+ d and s divides abc+ abd+ acd+ bcd.

IMO TST 2. Points A, V1, V2, B, U2, U1 lie fixed on a circle Γ, in that order, and
such that BU2 > AU1 > BV2 > AV1.

Let X be a variable point on the arc V1V2 of Γ not containing A or B. Line XA meets
line U1V1 at C, while line XB meets line U2V2 at D. Let O and ρ denote the circumcenter
and circumradius of 4XCD, respectively.

Prove there exists a fixed point K and a real number c, independent of X, for which
OK2 − ρ2 = c always holds regardless of the choice of X.

IMO TST 3. Find all functions f : R→ R that satisfy the inequality

f(y)−
(
z − y
z − x

f(x) +
y − x
z − x

f(z)

)
≤ f

(
x+ z

2

)
− f(x) + f(z)

2

for all real numbers x < y < z.
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§0 Problems
1. Determine all integers s ≥ 4 for which there exist positive integers a, b, c, d such

that s = a+ b+ c+ d and s divides abc+ abd+ acd+ bcd.

2. Points A, V1, V2, B, U2, U1 lie fixed on a circle Γ, in that order, and such that
BU2 > AU1 > BV2 > AV1.
Let X be a variable point on the arc V1V2 of Γ not containing A or B. Line XA
meets line U1V1 at C, while line XB meets line U2V2 at D.
Prove there exists a fixed point K, independent of X, such that the power of K to
the circumcircle of 4XCD is constant.

3. Find all functions f : R → R that satisfy the inequality

f(y)−
(
z − y

z − x
f(x) +

y − x

z − x
f(z)

)
≤ f

(
x+ z

2

)
− f(x) + f(z)

2

for all real numbers x < y < z.
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§1 Solutions to Day 1
§1.1 USA TST 2021/1, proposed by Ankan Bhattacharya, Michael Ren
Available online at https://aops.com/community/p20672573.

Problem statement

Determine all integers s ≥ 4 for which there exist positive integers a, b, c, d such
that s = a+ b+ c+ d and s divides abc+ abd+ acd+ bcd.

The answer is s composite.

¶ Composite construction Write s = (w + x)(y + z), where w, x, y, z are positive
integers. Let a = wy, b = wz, c = xy, d = xz. Then

abc+ abd+ acd+ bcd = wxyz(w + x)(y + z)

so this works.

¶ Prime proof Choose suitable a, b, c, d. Then

(a+ b)(a+ c)(a+ d) = (abc+ abd+ acd+ bcd) + a2(a+ b+ c+ d) ≡ 0 (mod s).

Hence s divides a product of positive integers less than s, so s is composite.

Remark. Here is another proof that s is composite.
Suppose that s is prime. Then the polynomial (x− a)(x− b)(x− c)(x− d) ∈ Fs[x] is even,

so the roots come in two opposite pairs in Fs. Thus the sum of each pair is at least s, so the
sum of all four is at least 2s > s, contradiction.
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§1.2 USA TST 2021/2, proposed by Andrew Gu, Frank Han
Available online at https://aops.com/community/p20672623.

Problem statement

Points A, V1, V2, B, U2, U1 lie fixed on a circle Γ, in that order, and such that
BU2 > AU1 > BV2 > AV1.

Let X be a variable point on the arc V1V2 of Γ not containing A or B. Line XA
meets line U1V1 at C, while line XB meets line U2V2 at D.

Prove there exists a fixed point K, independent of X, such that the power of K
to the circumcircle of 4XCD is constant.

For brevity, we let `i denote line UiVi for i = 1, 2.
We first give an explicit description of the fixed point K. Let E and F be points on Γ

such that AE ‖ `1 and BF ‖ `2. The problem conditions imply that E lies between U1

and A while F lies between U2 and B. Then we let

K = AF ∩BE.

This point exists because AEFB are the vertices of a convex quadrilateral.

Remark (How to identify the fixed point). If we drop the condition that X lies on the
arc, then the choice above is motivated by choosing X ∈ {E,F}. Essentially, when one
chooses X → E, the point C approaches an infinity point. So in this degenerate case, the
only points whose power is finite to (XCD) are bounded are those on line BE. The same
logic shows that K must lie on line AF . Therefore, if the problem is going to work, the
fixed point must be exactly AF ∩BE.

We give two possible approaches for proving the power of K with respect to (XCD) is
fixed.

¶ First approach by Vincent Huang We need the following claim:

Claim — Suppose distinct lines AC and BD meet at X. Then for any point K

pow(K,XAB) + pow(K,XCD) = pow(K,XAD) + pow(K,XBC).

Proof. The difference between the left-hand side and right-hand side is a linear function
in K, which vanishes at all of A, B, C, D.

Construct the points P = `1∩BE and Q = `2∩AF , which do not depend on X.

Claim — Quadrilaterals BPCX and AQDX are cyclic.

Proof. By Reim’s theorem: ]CPB = ]AEB = ]AXB = ]CXB, etc.
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Now, for the particular K we choose, we have

pow(K,XCD) = pow(K,XAD) + pow(K,XBC)− pow(K,XAB)

= KA ·KQ+KB ·KP − pow(K,Γ).

This is fixed, so the proof is completed.

¶ Second approach by authors Let Y be the second intersection of (XCD) with Γ.
Let S = EY ∩ `1 and T = FY ∩ `2.

Claim — Points S and T lies on (XCD) as well.

Proof. By Reim’s theorem: ]CSY = ]AEY = ]AXY = ]CXY , etc.

Now let X ′ be any other choice of X, and define C ′ and D′ in the obvious way. We
are going to show that K lies on the radical axis of (XCD) and (X ′C ′D′).
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The main idea is as follows:

Claim — The point L = EY ∩AX ′ lies on the radical axis. By symmetry, so does
the point M = FY ∩BX ′ (not pictured).

Proof. Again by Reim’s theorem, SC ′Y X ′ is cyclic. Hence we have

pow(L,X ′C ′D′) = LC ′ · LX ′ = LS · LY = pow(L,XCD).

To conclude, note that by Pascal theorem on

EY FAX ′B

it follows K, L, M are collinear, as needed.

Remark. All the conditions about U1, V1, U2, V2 at the beginning are there to eliminate
configuration issues, making the problem less obnoxious to the contestant.

In particular, without the various assumptions, there exist configurations in which the
point K is at infinity. In these cases, the center of XCD moves along a fixed line.
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§1.3 USA TST 2021/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p20672681.

Problem statement

Find all functions f : R → R that satisfy the inequality

f(y)−
(
z − y

z − x
f(x) +

y − x

z − x
f(z)

)
≤ f

(
x+ z

2

)
− f(x) + f(z)

2

for all real numbers x < y < z.

Answer: all functions of the form f(y) = ay2 + by + c, where a, b, c are constants with
a ≤ 0.

If I = (x, z) is an interval, we say that a real number α is a supergradient of f at y ∈ I
if we always have

f(t) ≤ f(y) + α(t− y)

for every t ∈ I. (This inequality may be familiar as the so-called “tangent line trick”. A
cartoon of this situation is drawn below for intuition.) We will also say α is a supergradient
of f at y, without reference to the interval, if α is a supergradient of some open interval
containing y.

slope
α

x

z

y

slop
e

f(z
)−f(x

)

z−x

x

y = x+z
2

z

Claim — The problem condition is equivalent to asserting that f(z)−f(x)
z−x is a

supergradient of f at x+z
2 for the interval (x, z), for every x < z.

Proof. This is just manipulation.

At this point, we may readily verify that all claimed quadratic functions f(x) =
ax2 + bx+ c work — these functions are concave, so the graphs lie below the tangent
line at any point. Given x < z, the tangent at x+z

2 has slope given by the derivative
f ′(x) = 2ax+ b, that is

f ′
(
x+ z

2

)
= 2a · x+ z

2
+ b =

f(z)− f(x)

z − x

as claimed. (Of course, it is also easy to verify the condition directly by elementary
means, since it is just a polynomial inequality.)

Now suppose f satisfies the required condition; we prove that it has the above form.

Claim — The function f is concave.
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Proof. Choose any ∆ > max{z − y, y − x}. Since f has a supergradient α at y over the
interval (y −∆, y +∆), and this interval includes x and z, we have

z − y

z − x
f(x) +

y − x

z − x
f(z) ≤ z − y

z − x
(f(y) + α(x− y)) +

y − x

z − x
(f(y) + α(z − y))

= f(y).

That is, f is a concave function. Continuity follows from the fact that any concave
function on R is automatically continuous.

Lemma (see e.g. https://math.stackexchange.com/a/615161 for picture)
Any concave function f on R is continuous.

Proof. Suppose we wish to prove continuity at p ∈ R. Choose any real numbers a and b
with a < p < b. For any 0 < ε < max(b− p, p− a) we always have

f(p) +
f(b)− f(p)

b− p
ε ≤ f(p+ ε) ≤ f(p) +

f(p)− f(a)

p− a
ε

which implies right continuity; the proof for left continuity is the same.

Claim — The function f cannot have more than one supergradient at any given
point.

Proof. Fix y ∈ R. For t > 0, let’s define the function

g(t) =
f(y)− f(y − t)

t
− f(y + t)− f(y)

t
.

We contend that g(ε) ≤ 3
5g(3ε) for any ε > 0. Indeed by the problem condition,

f(y) ≤ f(y − ε) +
f(y + ε)− f(y − 3ε)

4

f(y) ≤ f(y + ε)− f(y + 3ε)− f(y − ε)

4
.

Summing gives the desired conclusion.
y − 3ε

y − ε
y

y + ε

y + 3ε

Now suppose that f has two supergradients α < α′ at point y. For small enough ε, we
should have we have f(y − ε) ≤ f(y)− α′ε and f(y + ε) ≤ f(y) + αε, hence

g(ε) =
f(y)− f(y − ε)

ε
− f(y + ε)− f(y)

ε
≥ α′ − α.

This is impossible since g(ε) may be arbitrarily small.

Claim — The function f is quadratic on the rational numbers.

Proof. Consider any four-term arithmetic progression x, x+ d, x+ 2d, x+ 3d. Because
(f(x+ 2d)− f(x+ d))/d and (f(x+ 3d)− f(x))/3d are both supergradients of f at the
point x+ 3d/2, they must be equal, hence

f(x+ 3d)− 3f(x+ 2d) + 3f(x+ d)− f(x) = 0. (1)
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If we fix d = 1/n, it follows inductively that f agrees with a quadratic function f̃n on
the set 1

nZ. On the other hand, for any m 6= n, we apparently have f̃n = f̃mn = f̃m, so
the quadratic functions on each “layer” are all equal.

Since f is continuous, it follows f is quadratic, as needed.

Remark (Alternate finish using differentiability due to Michael Ren). In the proof of the
main claim (about uniqueness of supergradients), we can actually notice the two terms
f(y)−f(y−t)

t and f(y+t)−f(y)
t in the definition of g(t) are both monotonic (by concavity).

Since we supplied a proof that limt→0 g(t) = 0, we find f is differentiable.
Now, if the derivative at some point exists, it must coincide with all the supergradients;

(informally, this is why “tangent line trick” always has the slope as the derivative, and
formally, we use the mean value theorem). In other words, we must have

f(x+ y)− f(x− y) = 2f ′(x) · y

holds for all real numbers x and y. By choosing y = 1 we obtain that f ′(x) = f(x+1)−f(x−1)
which means f ′ is also continuous.

Finally differentiating both sides with respect to y gives

f ′(x+ y)− f ′(x− y) = 2f ′(x)

which means f ′ obeys Jensen’s functional equation. Since f ′ is continuous, this means f ′ is
linear. Thus f is quadratic, as needed.
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Andrew Gu, Ankan Bhattacharya and Evan Chen

62th IMO 2021 Russia

The Romanian Masters of Mathematics (RMM) was originally scheduled in February
and is normally used as a USA team selection test. Since the RMM was postponed due to
the COVID-19 pandemic, a single three-problem test was used instead for team selection
testing in February. The statistics for that one exam are listed here.

§1 Summary of scores for TST 2021

N 27
µ 10.15
σ 4.30

1st Q 7
Median 7
3rd Q 13

Max 21
Top 3 16
Top 6 14

§2 Problem statistics for TST 2021

P1 P2 P3

0 0 20 17

1 0 2 1

2 0 0 1

3 0 0 0

4 0 0 2

5 0 0 1

6 1 0 2

7 26 5 3

Avg 6.96 1.37 1.81

§3 Rankings for TST 2021

Sc Num Cu Per

21 2 2 7.41%

20 0 2 7.41%

19 0 2 7.41%

18 0 2 7.41%

17 0 2 7.41%

16 1 3 11.11%

15 1 4 14.81%

Sc Num Cu Per

14 2 6 22.22%

13 2 8 29.63%

12 1 9 33.33%

11 2 11 40.74%

10 0 11 40.74%

9 0 11 40.74%

8 2 13 48.15%

Sc Num Cu Per

7 13 26 96.30%

6 1 27 100.00%

5 0 27 100.00%

4 0 27 100.00%

3 0 27 100.00%

2 0 27 100.00%

1 0 27 100.00%

0 0 27 100.00%
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§4 Histogram for TST 2021
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Team Selection Test for the 64th International Mathematical Olympiad

United States of America

Day I

Thursday, December 8, 2022

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, December 12 at noon Eastern time.

IMO TST 1. There are 2022 equally spaced points on a circular track γ of circumfer-
ence 2022. The points are labeled A1, A2, . . ., A2022 in some order, each label used once.
Initially, Bunbun the Bunny begins at A1. She hops along γ from A1 to A2, then from
A2 to A3, until she reaches A2022, after which she hops back to A1. When hopping from
P to Q, she always hops along the shorter of the two arcs P̃Q of γ; if PQ is a diameter
of γ, she moves along either semicircle.
Determine the maximal possible sum of the lengths of the 2022 arcs which Bunbun
traveled, over all possible labellings of the 2022 points.

IMO TST 2. Let ABC be an acute triangle. Let M be the midpoint of side BC, and
let E and F be the feet of the altitudes from B and C, respectively. Suppose that the
common external tangents to the circumcircles of triangles BME and CMF intersect
at a point K, and that K lies on the circumcircle of ABC. Prove that line AK is
perpendicular to line BC.

IMO TST 3. Consider pairs (f, g) of functions from the set of nonnegative integers to
itself such that
• f(0) ≥ f(1) ≥ f(2) ≥ · · · ≥ f(300) ≥ 0;
• f(0) + f(1) + f(2) + · · ·+ f(300) ≤ 300;
• for any 20 nonnegative integers n1, n2, . . . , n20, not necessarily distinct, we have

g(n1 + n2 + · · ·+ n20) ≤ f(n1) + f(n2) + · · ·+ f(n20).

Determine the maximum possible value of g(0) + g(1) + · · ·+ g(6000) over all such pairs
of functions.
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Team Selection Test for the 64th International Mathematical Olympiad

United States of America

Day II

Thursday, January 12, 2023

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems,
but do not discuss them with anyone until Monday, January 16 at noon Eastern time.

IMO TST 4. Let b•c denote the floor function. For nonnegative integers a and b, their
bitwise xor, denoted a⊕ b, is the unique nonnegative integer such that⌊

a

2k

⌋
+

⌊
b

2k

⌋
−
⌊
a⊕ b

2k

⌋
is even for every integer k ≥ 0. (For example, 9⊕ 10 = 10012 ⊕ 10102 = 00112 = 3.)
Find all positive integers a such that for any integers x > y ≥ 0, we have

x⊕ ax 6= y ⊕ ay.

IMO TST 5. Let m and n be fixed positive integers. Tsvety and Freyja play a game
on an infinite grid of unit square cells. Tsvety has secretly written a real number inside
of each cell so that the sum of the numbers within every rectangle of size either m× n or
n×m is zero. Freyja wants to learn all of these numbers.
One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals
what number is written in it. Freyja wins if, at any point, Freyja can simultaneously
deduce the number written in every cell of the entire infinite grid. (If this never occurs,
Freyja has lost the game and Tsvety wins.)
In terms of m and n, find the smallest number of questions that Freyja must ask to win,
or show that no finite number of questions can suffice.

IMO TST 6. Let N denote the set of positive integers. Fix a function f : N → N and
for any m,n ∈ N define

∆(m,n) = f(f(. . . f︸ ︷︷ ︸
f(n) times

(m) . . . ))− f(f(. . . f︸ ︷︷ ︸
f(m) times

(n) . . . )).

Suppose ∆(m,n) 6= 0 for any distinct m,n ∈ N. Show that ∆ is unbounded, meaning
that for any constant C there exist m,n ∈ N with |∆(m,n)| > C.
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Andrew Gu, Evan Chen, and Gopal Goel

64rd IMO 2022 Japan and 12th EGMO 2023 Slovenia
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§0 Problems
1. There are 2022 equally spaced points on a circular track γ of circumference 2022.

The points are labeled A1, A2, . . ., A2022 in some order, each label used once.
Initially, Bunbun the Bunny begins at A1. She hops along γ from A1 to A2, then
from A2 to A3, until she reaches A2022, after which she hops back to A1. When
hopping from P to Q, she always hops along the shorter of the two arcs P̃Q of γ;
if PQ is a diameter of γ, she moves along either semicircle.
Determine the maximal possible sum of the lengths of the 2022 arcs which Bunbun
traveled, over all possible labellings of the 2022 points.

2. Let ABC be an acute triangle. Let M be the midpoint of side BC, and let E and F
be the feet of the altitudes from B and C, respectively. Suppose that the common
external tangents to the circumcircles of triangles BME and CMF intersect at
a point K, and that K lies on the circumcircle of ABC. Prove that line AK is
perpendicular to line BC.

3. Consider pairs (f, g) of functions from the set of nonnegative integers to itself such
that
• f(0) ≥ f(1) ≥ f(2) ≥ · · · ≥ f(300) ≥ 0;
• f(0) + f(1) + f(2) + · · ·+ f(300) ≤ 300;
• for any 20 nonnegative integers n1, n2, . . . , n20, not necessarily distinct, we

have
g(n1 + n2 + · · ·+ n20) ≤ f(n1) + f(n2) + · · ·+ f(n20).

Determine the maximum possible value of g(0) + g(1) + · · ·+ g(6000) over all such
pairs of functions.

4. For nonnegative integers a and b, denote their bitwise xor by a⊕ b. (For example,
9⊕ 10 = 10012 ⊕ 10102 = 00112 = 3.)
Find all positive integers a such that for any integers x > y ≥ 0, we have

x⊕ ax 6= y ⊕ ay.

5. Let m and n be fixed positive integers. Tsvety and Freyja play a game on an infinite
grid of unit square cells. Tsvety has secretly written a real number inside of each
cell so that the sum of the numbers within every rectangle of size either m× n or
n×m is zero. Freyja wants to learn all of these numbers.
One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully
reveals what number is written in it. Freyja wins if, at any point, Freyja can
simultaneously deduce the number written in every cell of the entire infinite grid.
(If this never occurs, Freyja has lost the game and Tsvety wins.)
In terms of m and n, find the smallest number of questions that Freyja must ask
to win, or show that no finite number of questions can suffice.

6. Fix a function f : N → N and for any m,n ∈ N define

∆(m,n) = f(f(. . . f︸ ︷︷ ︸
f(n) times

(m) . . . ))− f(f(. . . f︸ ︷︷ ︸
f(m) times

(n) . . . )).

Suppose ∆(m,n) 6= 0 for any distinct m,n ∈ N. Show that ∆ is unbounded,
meaning that for any constant C there exist m,n ∈ N with |∆(m,n)| > C.
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§1 Solutions to Day 1
§1.1 USA TST 2023/1, proposed by Kevin Cong
Available online at https://aops.com/community/p26685816.

Problem statement

There are 2022 equally spaced points on a circular track γ of circumference 2022. The
points are labeled A1, A2, . . ., A2022 in some order, each label used once. Initially,
Bunbun the Bunny begins at A1. She hops along γ from A1 to A2, then from A2 to
A3, until she reaches A2022, after which she hops back to A1. When hopping from P
to Q, she always hops along the shorter of the two arcs P̃Q of γ; if PQ is a diameter
of γ, she moves along either semicircle.

Determine the maximal possible sum of the lengths of the 2022 arcs which Bunbun
traveled, over all possible labellings of the 2022 points.

Replacing 2022 with 2n, the answer is 2n2 − 2n + 2. (When n = 1011, the number is
2042222.)

1

10

86

4

2

9

7 5

3

¶ Construction The construction for n = 5 shown on the left half of the figure easily
generalizes for all n.

Remark. The validity of this construction can also be seen from the below proof.

¶ First proof of bound Let di be the shorter distance from A2i−1 to A2i+1.

Claim — The distance of the leg of the journey A2i−1 → A2i → A2i+1 is at most
2n− di.

Proof. Of the two arcs from A2i−1 to A2i+1, Bunbun will travel either di or 2n−di. One of
those arcs contains A2i along the way. So we get a bound of max(di, 2n−di) = 2n−di.

That means the total distance is at most
n∑

i=1

(2n− di) = 2n2 − (d1 + d2 + · · ·+ dn).
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Claim — We have
d1 + d2 + · · ·+ dn ≥ 2n− 2.

Proof. The left-hand side is the sum of the walk A1 → A3 → · · · → A2n−1 → A1. Among
the n points here, two of them must have distance at least n− 1 apart; the other di’s
contribute at least 1 each. So the bound is (n− 1) + (n− 1) · 1 = 2n− 2.

¶ Second proof of bound Draw the n diameters through the 2n arc midpoints, as
shown on the right half of the figure for n = 5 in red.

Claim (Interpretation of distances) — The distance between any two points equals
the number of diameters crossed to travel between the points.

Proof. Clear.

With this in mind, call a diameter critical if it is crossed by all 2n arcs.

Claim — At most one diameter is critical.

Proof. Suppose there were two critical diameters; these divide the circle into four arcs.
Then all 2n arcs cross both diameters, and so travel between opposite arcs. But this
means that points in two of the four arcs are never accessed — contradiction.

Claim — Every diameter is crossed an even number of times.

Proof. Clear: the diameter needs to be crossed an even number of times for the loop to
return to its origin.

This immediately implies that the maximum possible total distance is achieved when
one diameter is crossed all 2n times, and every other diameter is crossed 2n− 2 times,
for a total distance of at most

n · (2n− 2) + 2 = 2n2 − 2n+ 2.
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§1.2 USA TST 2023/2, proposed by Kevin Cong
Available online at https://aops.com/community/p26685484.

Problem statement

Let ABC be an acute triangle. Let M be the midpoint of side BC, and let E and F
be the feet of the altitudes from B and C, respectively. Suppose that the common
external tangents to the circumcircles of triangles BME and CMF intersect at
a point K, and that K lies on the circumcircle of ABC. Prove that line AK is
perpendicular to line BC.

We present several distinct approaches.

¶ Inversion solution submitted by Ankan Bhattacharya and Nikolai Beluhov Let H
be the orthocenter of 4ABC. We use inversion in the circle with diameter BC. We
identify a few images:

• The circumcircles of 4BME and 4CMF are mapped to lines BE and CF .

• The common external tangents are mapped to the two circles through M which
are tangent to lines BE and CF .

• The image of K, denoted K∗, is the second intersection of these circles.

• The assertion that K lies on (ABC) is equivalent to K∗ lying on (BHC).

However, now K∗ is simple to identify directly: it’s just the reflection of M in the bisector
of ∠BHC.
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In particular, HK∗ is a symmedian of 4BHC. However, since K∗ lies on (BHC),
this means (HK∗;BC) = −1.
Then, we obtain that BC bisects ∠HMK∗ ≡ ∠HMK. However, K also lies on

(ABC), which forces K to be the reflection of H in BC. Thus AK ⊥ BC, as wanted.

¶ Solution with coaxial circles (Pitchayut Saengrungkongka) LetH be the orthocenter
of 4ABC. Let Q be the second intersection of �(BME) and �(CMF ). We first prove
the following well-known properties of Q.

Claim — Q is the Miquel point of BCEF . In particular, Q lies on both �(AEF )
and �(ABC).

Proof. Follows since BCEF is cyclic with M being the circumcenter.

Claim — A(Q,H;B,C) = −1.

Proof. By the radical center theorem on �(AEF ), �(ABC), and �(BCEF ), we get that
AQ, EF , and BC are concurrent. Now, the result follows from a well-known harmonic
property.

Now, we get to the meat of the solution. Let the circumcircle of �(QMK) meet BC
again at T 6= M . The key claim is the following.

6
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Claim — QT is tangent to �(BQC).

Proof. We use the “forgotten coaxiality lemma”.

BT

TC
=

TB · TM
TC · TM

=
pow(T,�(BME))

pow(T,�(CMF ))

=
pow(K,�(BME))

pow(K,�(CMF ))

=

(
r�(BME)

r�(CMF )

)2

=

(
BQ/ sin∠QMB

CQ/ sin∠QMC

)2

=
BQ2

CQ2
,

implying the result.

To finish, let O be the center of �(ABC). Then, from the claim, ∠OQT = 90◦ =
∠OMT , so O also lies on �(QMTK). Thus, ∠OKT = 90◦, so KT is also tangent to
�(ABC) as well. This implies that QBKC is harmonic quadrilateral, and the result
follows from the second claim.

¶ Solution by Luke Robitaille Let Q be the second intersection of �(BME) and
�(CMF ). We use the first two claims of the previous solution. In particular, Q ∈
�(ABC). We have the following claim.

Claim (Also appeared in ISL 2017 G7) — We have ]QKM = ]QBM + ]QCM .

Proof. Let KQ and KM meet �(BME) again at Q′ and M ′. Then, by homothety,
]Q′QM ′ = ]QCM , so

]QKM = ]Q′QM ′ + ]QM ′M

= ]QCM + ]QBM,

as desired.

Now, we extend KM to meet �(ABC) again at Q1. We have

]Q1QB = ]Q1KB = ]Q1KQ+ ]QCB

= ]MKQ+ ]QKB

= (]MBQ+ ]MCQ) + ]QCB

= ]CBQ,

implying that QQ1 ‖ BC. This implies that QBKC is harmonic quadrilateral, so we are
done.

7
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¶ Synthetic solution due to Andrew Gu (Harvard 2026) Define O1 and O2 as the
circumcenters of (BME) and (CMF ). Let T be the point on (ABC) such that AT ⊥ BC.
Denote by L the midpoint of minor arc B̃C.
We are going to ignore the condition that K lies on the circumcircle of ABC, and

prove the following unconditional result:

Proposition
The points T , L, K are collinear.

This will solve the problem because if K is on the circumcircle of ABC, it follows K = T
or K = L; but K = L can never occur since O1 and O2 are obviously on different sides
of line LM so line LM must meet O1O2 inside segment O1O2, and K lies outside this
segment.

B C

A

L
T

E

F

M

Q O2

O1

P2

P1

Q2

Q1

K

N

We now turn to the proof of the main lemma. Let P1 and P2 be the antipodes of M
on these circles.

Claim — Lines AC and LM meet at the antipode Q1 of B on (BME), so that
BP1Q1M is a rectangle. Similarly, lines AB and LM meet at the antipode Q2 of C
on (CMF ), so that CP2Q2M is a rectangle.

Proof. Let Q′
1 = ω1 ∩ AC 6= E. Then ]BMQ′

1 = ]BEQ′
1 = 90◦ hence Q′

1 ∈ LM . The
other half of the lemma follows similarly.

8
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From this, it follows that P1Q1 = BM = 1
2BC = MC = P2Q2. Letting r1 denote the

radius of ω1 (and similarly for ω2), we deduce that CQ1 = BQ1 = 2r1.

Claim — KM = KL.

Proof. I first claim that CL is the external bisector of ∠Q1CQ2; this follows from

]Q1CL = ]ACL = ]ABL = ]Q2BL = ]Q2CL.

The external angle bisector theorem then gives an equality of directed ratios

LQ1

LQ2
=

|CQ1|
|CQ2|

=
|BQ1|
|CQ2|

=
2r1
2r2

=
r1
r2

Let the reflection of M over K be P ; then P lies on P1P2 and

PP1

PP2
=

2KO1

2KO2
=

KO1

KO2
=

r1
r2

=
LQ1

LQ2

where again the ratios are directed. Projecting everything onto line LM , so that P1 lands
at Q1 and P2 lands at Q2, we find that the projection of P must land exactly at L.

Claim — Line KM is an external angle bisector of ∠O1MO2.

Proof. Because KO1
KO2

= r1
r2

= MO1
MO2

.

To finish, note that we know that MP1 ‖ CQ1 ≡ AC and MP2 ‖ BQ2 ≡ AB, meaning
the angles ∠O1MO2 and ∠CAB have parallel legs. Hence, if N is the antipode of L, it
follows that MK ‖ AN . Now from MK = KL and the fact that ANLT is an isosceles
trapezoid, we deduce that LT and LK are lines in the same direction (namely, the
reflection of MK ‖ AN across BC), as needed.

¶ Complex numbers approach with Apollonian circles, by Carl Schildkraut We use
complex numbers. As in the first approach, we will ignore the hypothesis that K lies on
(ABC).

Let Q := (AH)∩(ABC)∩(AEF ) 6= A be the Miquel point of BFEC again. Construct
the point T on (ABC) for which AT ⊥ BC; note that T = − bc

a . This time the
unconditional result is:

Proposition
We have Q, M , T , K are concyclic (or collinear) on an Apollonian circle of O1O2.

This will solve the original problem since once K lies on (ABC) it must be either Q or
T . But since K is not on (BME), K 6= Q, it will have to be T .

We now prove the proposition. Suppose (ABC) is the unit circle and let A = a, B = b,
C = c. Let H = a+ b+ c be the orthocenter of 4ABC. By the usual formulas,

E :=
1

2

(
a+ b+ c− bc

a

)
.

Let O1 be the center of (BME) and O2 be the center of (CMF ).

9
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Claim (Calculation of the Miquel point) — We have Q = 2a+b+c
a
(
1
a
+ 1

b
+ 1

c

)
+1

.

Proof. We now compute that Q = q satisfies q = 1/q (since Q is on the unit circle) and
q−h
q−a ∈ iR (since AQ ⊥ QH), which expands to

0 =
q − h

q − a
+

1/q − h

1/q − 1/a
=

q − h

q − a
− a(1− qh)

q − a
.

This solves to q = h+a
ah+1

= 2a+b+c
ah+1

.

Claim (Calculation of O1 and O2) — We have O1 =
b(2a+b+c)
2(a+b) and O2 =

c(2a+b+c)
2(a+c) .

Proof. We now compute O1 and O2. For x, y, z ∈ C, let Circum(x, y, z) denote the
circumcenter of the triangle defined by vertices x, y, and z in C. We have

O1 = Circum(B,M,E)

= b+
1

2
Circum

(
0, c− b,

(a− b)(b− c)

b

)
= b− b− c

2b
Circum (0, b, b− a)

= b− b− c

2b
(b− Circum (0, b, a))

= b− b− c

2b

(
b− ab

a+ b

)
= b− b(b− c)

2(a+ b)
=

b(2a+ b+ c)

2(a+ b)
.

Similarly, O2 =
c(2a+b+c)
2(a+c) .

We are now going to prove the following:

Claim — We have
TO1

TO2
=

MO1

MO2
=

QO1

QO2
.

Proof. We now compute

MO1 = BO1 =

∣∣∣∣b− b(2a+ b+ c)

2(a+ b)

∣∣∣∣ = ∣∣∣∣ b(b− c)

2(a+ b)

∣∣∣∣ = 1

2

∣∣∣∣ b− c

a+ b

∣∣∣∣
and

QO1 =

∣∣∣∣r − b(2a+ b+ c)

2(a+ b)

∣∣∣∣ = ∣∣∣∣1− b(a+ h)

2(a+ b)r

∣∣∣∣ = ∣∣∣∣1− b(ah+ 1)

2(a+ b)

∣∣∣∣ =
∣∣∣∣∣ a− ab

c

2(a+ b)

∣∣∣∣∣ = 1

2

∣∣∣∣ b− c

a+ b

∣∣∣∣ .
This implies both (by symmetry) that MO1

MO2
= QO1

QO2
=

∣∣a+c
a+b

∣∣ and that Q is on (BME)
and (CMF ). Also,

TO1

TO2
=

∣∣∣ b(2a+b+c)
2(a+b) + bc

a

∣∣∣∣∣∣ c(2a+b+c)
2(a+c) + bc

a

∣∣∣ =
∣∣∣∣∣∣
b(2a2+ab+ac+2ac+2bc)

2a(a+b)

c(2a2+ab+ac+2ab+2bc)
2a(a+c)

∣∣∣∣∣∣ =
∣∣∣∣a+ c

a+ b

∣∣∣∣ · ∣∣∣∣2a2 + 2bc+ ab+ 3ac

2a2 + 2bc+ 3ab+ ac

∣∣∣∣ ;
if z = 2a2 + 2bc+ ab+ 3ac, then a2bcz = 2a2 + 2bc+ 3ab+ ac, so the second term has
magnitude 1. This means TO1

TO2
= MO1

MO2
= QO1

QO2
, as desired.
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To finish, note that this common ratio is the ratio between the radii of these two circles,
so it is also KO1

KO2
. By Apollonian circles the points {Q,M, T,K} lie on a circle or a line.

11
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§1.3 USA TST 2023/3, proposed by Sean Li
Available online at https://aops.com/community/p26685437.

Problem statement

Consider pairs (f, g) of functions from the set of nonnegative integers to itself such
that

• f(0) ≥ f(1) ≥ f(2) ≥ · · · ≥ f(300) ≥ 0;

• f(0) + f(1) + f(2) + · · ·+ f(300) ≤ 300;

• for any 20 nonnegative integers n1, n2, . . . , n20, not necessarily distinct, we
have

g(n1 + n2 + · · ·+ n20) ≤ f(n1) + f(n2) + · · ·+ f(n20).

Determine the maximum possible value of g(0) + g(1) + · · ·+ g(6000) over all such
pairs of functions.

Replace 300 = 24·25
2 with s(s+1)

2 where s = 24, and 20 with k. The answer is 115440 =
ks(ks+1)

2 . Equality is achieved at f(n) = max(s − n, 0) and g(n) = max(ks − n, 0). To
prove

g(n1 + · · ·+ nk) ≤ f(n1) + · · ·+ f(nk),

write it as
max(x1 + · · ·+ xk, 0) ≤ max(x1, 0) + · · ·+max(xk, 0)

with xi = s− ni. This can be proven from the k = 2 case and induction.

It remains to show the upper bound. For this problem, define a partition to be a
nonincreasing function p : Z≥0 → Z≥0 such that p(n) = 0 for some n. The sum of p is
defined to be

∑∞
n=0 p(n), which is finite under the previous assumption. Let L = Z2

≥0.
The Young diagram of the partition is the set of points

P := {(x, y) ∈ L : y < p(x)}.

The number of points in P is equal to the sum of p. The conjugate of a partition defined
as

p∗(n) = the number of i for which p(i) > n.

This is a partition with the same sum as p. Geometrically, the Young diagrams of p and
p∗ are reflections about x = y.
Since each g(n) is independent, we may maximize each one separately for all n and

assume that
g(n) = min

n1+···+nk=n
(f(n1) + · · ·+ f(nk)). (*)

The conditions of the problem statement imply that f
( s(s+1)

2

)
= 0. Then, for any

n ≤ k s(s+1)
2 , there exists an optimal combination (n1, . . . , nk) in (*) where all ni are at

most s(s+1)
2 , by replacing any term in an optimum greater than s(s+1)

2 by s(s+1)
2 and

shifting the excess to smaller terms (because f is nonincreasing). Therefore we may
extend f to a partition by letting f(n) = 0 for n > s(s+1)

2 without affecting the relevant
values of g. Then (*) implies that g is a partition as well.

12
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The problem can be restated as follows: f is a partition with sum s(s+1)
2 , and g is a

partition defined by (*). Find the maximum possible sum of g. The key claim is that the
problem is the same under conjugation.

Claim — Under these conditions, we have

g∗(n) = min
n1+···+nk=n

(f∗(n1) + · · ·+ f∗(nk)).

Proof. Let F and G be the Young diagrams of f and g respectively, and F = L \ F
and G = L \ G be their complements. The lower boundary of F is formed by the points
(n, f(n)) for i ∈ Z≥0. By the definition of g, the lower boundary of G consists of points
(n, g(n)) which are formed by adding k points of F . This means

G = F + · · ·+ F︸ ︷︷ ︸
k F ’s

where + denotes set addition. This definition remains invariant under reflection about
x = y, which swaps f and g with their conjugates.

Let A be the sum of g. We now derive different bounds on A. First, by Hermite’s
identity

n =
k−1∑
i=0

⌊
n+i
k

⌋
we have

A =

∞∑
n=0

g(n)

≤
∞∑
n=0

k−1∑
i=0

f
(⌊

n+i
k

⌋)
= k2

∞∑
n=0

f(n)− k(k − 1)

2
f(0)

= k2
s(s+ 1)

2
− k(k − 1)

2
f(0).

By the claim, we also get the second bound A ≤ k2 s(s+1)
2 − k(k−1)

2 f∗(0).
For the third bound, note that f(f∗(0)) = 0 and thus g(kf∗(0)) = 0. Moreover,

g(qf∗(0) + r) ≤ q · f(f∗(0)) + (k − q − 1)f(0) + f(r) = (k − q − 1)f(0) + f(r),

so we have

A =
∑

0≤q<k
0≤r<f∗(0)

g(qf∗(0) + r)

≤ k(k − 1)

2
f∗(0)f(0) + k

∑
0≤r<f∗(0)

f(r)

=
k(k − 1)

2
f∗(0)f(0) + k

s(s+ 1)

2
.

Now we have three cases:

13
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• If f(0) ≥ s then

A ≤ k2
s(s+ 1)

2
− k(k − 1)

2
f(0) ≤ ks(ks+ 1)

2
.

• If f∗(0) ≥ s then

A ≤ k2
s(s+ 1)

2
− k(k − 1)

2
f∗(0) ≤

ks(ks+ 1)

2
.

• Otherwise, f(0)f∗(0) ≤ s2 and

A ≤ k(k − 1)

2
f∗(0)f(0) + k

s(s+ 1)

2
≤ ks(ks+ 1)

2
.

In all cases, A ≤ ks(ks+1)
2 , as desired.

Remark. One can estimate the answer to be around k2 s(s+1)
2 by observing the set addition

operation “dilates” F by a factor of k, but significant care is needed to sharpen the bound.
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§2 Solutions to Day 2
§2.1 USA TST 2023/4, proposed by Carl Schildkraut
Available online at https://aops.com/community/p26896062.

Problem statement

For nonnegative integers a and b, denote their bitwise xor by a⊕ b. (For example,
9⊕ 10 = 10012 ⊕ 10102 = 00112 = 3.)
Find all positive integers a such that for any integers x > y ≥ 0, we have

x⊕ ax 6= y ⊕ ay.

Answer: the function x 7→ x⊕ ax is injective if and only if a is an even integer.

¶ Even case First, assume ν2(a) = k > 0. We wish to recover x from c := x ⊕ ax.
Notice that:

• The last k bits of c coincide with the last k bits of x.

• Now the last k bits of x give us also the last 2k bits of ax, so we may recover the
last 2k bits of x as well.

• Then the last 2k bits of x give us also the last 3k bits of ax, so we may recover the
last 3k bits of x as well.

• . . .and so on.

¶ Odd case Conversely, suppose a is odd. To produce the desired collision:

Claim — Let n be any integer such that 2n > a, and define

x = 1 . . . 1︸ ︷︷ ︸
n

= 2n − 1, y = 10 . . . 0︸ ︷︷ ︸
n

1 = 2n + 1.

Then x⊕ ax = y ⊕ ay.

Proof. Let P be the binary string for a, zero-padded to length n, and let Q be the binary
string for a− 1, zero-padded to length n, Then let R be the bitwise complement of Q.
(Hence all three of are binary strings of length n.) Then

ax = QR =⇒ x⊕ ax = QQ

ay = PP =⇒ y ⊕ ay = QQ.

We’re done.

15

https://aops.com/community/p26896062


USA TST 2023 Solutions Andrew Gu, Evan Chen, and Gopal Goel

§2.2 USA TST 2023/5, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p26896130.

Problem statement

Let m and n be fixed positive integers. Tsvety and Freyja play a game on an infinite
grid of unit square cells. Tsvety has secretly written a real number inside of each
cell so that the sum of the numbers within every rectangle of size either m× n or
n×m is zero. Freyja wants to learn all of these numbers.

One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully
reveals what number is written in it. Freyja wins if, at any point, Freyja can
simultaneously deduce the number written in every cell of the entire infinite grid.
(If this never occurs, Freyja has lost the game and Tsvety wins.)

In terms of m and n, find the smallest number of questions that Freyja must ask
to win, or show that no finite number of questions can suffice.

The answer is the following:

• If gcd(m,n) > 1, then Freyja cannot win.

• If gcd(m,n) = 1, then Freyja can win in a minimum of (m−1)2+(n−1)2 questions.

First, we dispose of the case where gcd(m,n) > 1. Write d = gcd(m,n). The idea is
that any labeling where each 1× d rectangle has sum zero is valid. Thus, to learn the
labeling, Freyja must ask at least one question in every row, which is clearly not possible
in a finite number of questions.
Now suppose gcd(m,n) = 1. We split the proof into two halves.

¶ Lower bound Clearly, any labeling where each m× 1 and 1×m rectangle has sum
zero is valid. These labelings form a vector space with dimension (m− 1)2, by inspection.
(Set the values in an (m−1)×(m−1) square arbitrarily and every other value is uniquely
determined.)

Similarly, labelings where each n× 1 and 1× n rectangle have sum zero are also valid,
and have dimension (n− 1)2.
It is also easy to see that no labeling other than the all-zero labeling belongs to both

categories; labelings in the first space are periodic in both directions with period m, while
labelings in the second space are periodic in both directions with period n; and hence
any labeling in both categories must be constant, ergo all-zero.

Taking sums of these labelings gives a space of valid labelings of dimension (m− 1)2 +
(n− 1)2. Thus, Freyja needs at least (m− 1)2 + (n− 1)2 questions to win.

¶ Proof of upper bound using generating functions, by Ankan Bhattacharya We
prove:

Claim (Periodicity) — Any valid labeling is doubly periodic with period mn.

Proof. By Chicken McNugget, there exists N such that N and N+1 are both nonnegative
integer linear combinations of m and n.

16
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Then both mn×N and mn× (N + 1) rectangles have zero sum, so mn× 1 rectangles
have zero sum. This implies that any two cells with a vertical displacement of mn are
equal; similarly for horizontal displacements.

With that in mind, consider a valid labeling. It naturally corresponds to a generating
function

f(x, y) =
mn−1∑
a=0

mn−1∑
b=0

ca,bx
ayb

where ca,b is the number in (a, b).
The generating function corresponding to sums over n×m rectangles is

f(x, y)(1 + x+ · · ·+ xm−1)(1 + y + · · ·+ yn−1) = f(x, y) · x
m − 1

x− 1
· y

n − 1

y − 1
.

Similarly, the one for m× n rectangles is

f(x, y) · x
n − 1

x− 1
· y

m − 1

y − 1
.

Thus, the constraints for f to be valid are equivalent to

f(x, y) · x
m − 1

x− 1
· y

n − 1

y − 1
and f(x, y) · x

n − 1

x− 1
· y

m − 1

y − 1

being zero when reduced modulo xmn − 1 and ymn − 1, or, letting ω = exp(2πi/mn),
both terms being zero when powers of ω are plugged in.
To restate the constraints one final time, we need

f(ωa, ωb) · ω
am − 1

ωa − 1
· ω

bn − 1

ωb − 1
= f(ωa, ωb) · ω

an − 1

ωa − 1
· ω

bm − 1

ωb − 1
= 0

for all a, b ∈ {0, . . . ,mn− 1}.

Claim — This implies that f(ωa, ωb) = 0 for all but at most (m− 1)2 + (n− 1)2

values of (a, b) ∈ {0, . . . ,mn− 1}2.

Proof. Consider a pair (a, b) such that f(ωa, ωb) 6= 0. Then we need

ωam − 1

ωa − 1
· ω

bn − 1

ωb − 1
=

ωan − 1

ωa − 1
· ω

bm − 1

ωb − 1
= 0.

This happens when (at least) one fraction in either product is zero.

• If the first fraction is zero, then either n | a and a > 0, or m | b and b > 0.

• If the second fraction is zero, then either m | a and a > 0, or n | b and b > 0.

If the first condition holds in both cases, then mn | a, but 0 < a < mn, a contradiction.
Thus if n | a, then we must have n | b, and similarly if m | a then m | b.

The former case happens (m− 1)2 times, and the latter case happens (n− 1)2 times.
Thus, at most (m− 1)2 + (n− 1)2 values of f(ωa, ωb) are nonzero.
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Claim — The (mn)2 equations f(ωa, ωb) = 0 are linearly independent when viewed
as linear equations in (mn)2 variables ca,b. Hence, any subset of these equations is
also linearly independent.

Proof. In general, the equation f(x, y) = 0 is a polynomial relation with degx f(x, y) =
degy f(x, y) < mn. However, if we let S = {ω0, ω1, . . . , ωmn−1}, then |S| = mn and we
are given f(s, s′) = 0 for all s, s′ ∈ S. This can only happen if f is the zero polynomial,
that is, ca,b = 0 for all a and b.

It follows that the dimension of the space of valid labelings is at most (m−1)2+(n−1)2,
as desired.

¶ Explicit version of winning algorithm by Freyja, from author Suppose that gcd(m,n) =
1 and m ≤ n. Let [a, b] denote the set of integers between a and b inclusive.

Let Freyja ask about all cells (x, y) in the two squares

S1 = [1,m− 1]× [1,m− 1]

S2 = [m,m+ n− 2]× [1, n− 1].

In the beginning, one by one, Freyja determines all values inside of the rectangle Q :=
[1,m− 1]× [m,n− 1]. To that end, on each step she considers some rectangle with m
rows and n columns such that its top left corner is in Q and all of the other values in it
have been determined already. In this way, Freyja uncovers all of Q, starting with its
lower right corner and then proceeding upwards and to the left.
Thus Freyja can learn all numbers inside of the rectangle

R := [1,m+ n− 2]× [1, n− 1] = Q ∪ S1 ∪ S2.

See the figure below for an illustration for (m,n) = (5, 8). The first cell of Q is uncovered
using the dotted green rectangle.

S1

S2

Q

T

(m,n) = (5, 8)

We need one lemma:
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Lemma
Let m and n be positive integers with gcd(m,n) = 1. Consider an unknown sequence
of real numbers z1, z2, . . ., zs with s ≥ m+n−2. Suppose that we know the sums of
all contiguous blocks of size either m or n in this sequence. Then we can determine
all individual entries in the sequence as well.

Proof. By induction on m+n. Suppose, without loss of generality, that m ≤ n. Our base
case is m = 1, which is clear. For the induction step, set ` = n−m. Each contiguous
block of size ` within z1, z2, . . ., zs−n is the difference of two contiguous blocks of sizes m
and n within the original sequence. By the induction hypothesis for ` and m, it follows
that we can determine all of z1, z2, . . ., zs−n. Then we determine the remaining zi as
well, one by one, in order from left to right, by examining on each step an appropriate
contiguous block of size m.

Let T be the rectangle [1,m+ n− 2]× {n}. By looking at appropriate rectangles of
sizes m×n and n×m such that their top row is contained within T and all of their other
rows are contained within R, Freyja can learn the sums of all contiguous blocks of values
of sizes m and n within T . By the Lemma, it follows that Freyja can uncover all of T .
In this way, with the help of the Lemma, Freyja can extend her rectangular area of

knowledge both upwards and downwards. Once its height reaches m+n− 2, by the same
method she will be able to extend it to the left and right as well. This allows Freyja
to determine all values in the grid. Therefore, (m− 1)2 + (n− 1)2 questions are indeed
sufficient.

Remark. The ideas in the solution also yield a proof of the following result:

Let m and n be relatively prime positive integers. Consider an infinite grid of
unit square cells coloured in such a way that every rectangle of size either m×n
or n×m contains the same multiset of colours. Then the colouring is either
doubly periodic with period length m or doubly periodic with period length n.

(Here, “doubly periodic with period length s” means “both horizontally and vertically
periodic with period length s”.)

Here is a quick sketch of the proof. Given two positive integers i and j with 1 ≤ i, j ≤ m−1,
we define

fij(x, y) :=


+1 when (x, y) ≡ (0, 0) or (i, j) (mod m);

−1 when (x, y) ≡ (0, j) or (i, 0) (mod m); and
0 otherwise.

Define gi,j similarly, but with 1 ≤ i, j ≤ n− 1 and “mod m” everywhere replaced by “mod
n”. First we show that if a linear combination h :=

∑
αi,jfi,j +

∑
βi,jgi,j of the fi,j and

gi,j contains only two distinct values, then either all of the αi,j vanish or all of the βi,j do.
It follows that each colour, considered in isolation, is either doubly periodic with period
length m or doubly periodic with period length n. Finally, we check that different period
lengths cannot mix.

On the other hand, if m and n are not relatively prime, then there exist infinitely
many non-isomorphic valid colourings. Furthermore, when gcd(m,n) = 2, there exist valid
colourings which are not horizontally periodic; and, when gcd(m,n) ≥ 3, there exist valid
colourings which are neither horizontally nor vertically periodic.
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§2.3 USA TST 2023/6, proposed by Maxim Li
Available online at https://aops.com/community/p26896222.

Problem statement

Fix a function f : N → N and for any m,n ∈ N define

∆(m,n) = f(f(. . . f︸ ︷︷ ︸
f(n) times

(m) . . . ))− f(f(. . . f︸ ︷︷ ︸
f(m) times

(n) . . . )).

Suppose ∆(m,n) 6= 0 for any distinct m,n ∈ N. Show that ∆ is unbounded, meaning
that for any constant C there exist m,n ∈ N with |∆(m,n)| > C.

Suppose for the sake of contradiction that |∆(m,n)| ≤ N for all m, n. Note that f is
injective, as

f(m) = f(n) =⇒ ∆(m,n) = 0 =⇒ m = n,

as desired.
Let G be the “arrow graph” of f , which is the directed graph with vertex set N and

edges n → f(n). The first step in the solution is to classify the structure of G. Injectivity
implies that G is a disjoint collection of chains (infinite and half-infinite) and cycles. We
have the following sequence of claims that further refine the structure.

Claim — The graph G has no cycles.

Proof. Suppose for the sake of contradiction that fk(n) = n for some k ≥ 2 and n ∈ N.
As m varies over N, we have |∆(m,n)| ≤ N , so ff(n)(m) can only take on some finite set
of values. In particular, this means that

ff(n)(m1) = ff(n)(m2)

for some m1 6= m2, which contradicts injectivity.

Claim — The graph G has at most 2N + 1 chains.

Proof. Suppose we have numbers m1, . . . , mk in distinct chains. Select a positive integer
B > max{f(m1), . . . , f(mk)}. Now,∣∣∣∆(

mi, f
B−f(mi)(1)

)∣∣∣ ≤ N =⇒
∣∣∣fB(1)− ffB−f(mi)+1(1)(mi)

∣∣∣ ≤ N.

Since the mis are in different chains, we have that ffB−f(mi)+1(1)(mi) are distinct for each
i, which implies that k ≤ 2N + 1, as desired.

Claim — The graph G consists of exactly one half-infinite chain.

Proof. Fix some c ∈ N. Call an element of N bad if it is not of the form fk(c) for some
k ≥ 0. It suffices to show that there are only finitely many bad numbers.

Since there are only finitely many chains, ff(c)(n) achieves all sufficiently large positive
integers, say all positive integers at least M . Fix A and B such that B > A ≥ M .
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If ff(c)(n) ∈ [A,B], then ff(n)(c) ∈ [A − N,B + N ], and distinct n generate distinct
ff(n)(c) due to the structure of G. Therefore, we have at least B −A+ 1 good numbers
in [A−N,B +N ], so there are at most 2N bad numbers in [A−N,B +N ].
Varying B, this shows there are at most 2N bad numbers at least A−N .

Let c be the starting point of the chain, so every integer is of the form fk(c), where
k ≥ 0. Define a function g : Z≥0 → N by

g(k) := fk(c).

Due to the structure of G, g is a bijection. Define

δ(a, b) := ∆(fa(c), f b(c)) = g(g(b+ 1) + a)− g(g(a+ 1) + b),

so the conditions are equivalent to |δ(a, b)| ≤ N for all a, b ∈ Z≥0 and δ(a, b) 6= 0 for
a 6= b, which is equivalent to g(a + 1) − a 6= g(b + 1) − b for a 6= b. This tells us that
g(x)− x is injective for x ≥ 1.

Lemma
For all M , there exists a nonnegative integer x with g(x) ≤ x−M .

Proof. Assume for the sake of contradiction that g(x)− x is bounded below. Fix some
large positive K. Since g(x) − x is injective, there exists B such that g(x) − x ≥ K
for all x ≥ B. Then min{g(B + 1), g(B + 2), . . . } ≥ B +K, while {g(0), . . . , g(B)} only
achieve B + 1 values. Thus, at least K − 1 values are not achieved by g, which is a
contradiction.

Now pick B such that g(B) +N ≤ B and g(B) > N . Note that infinitely many such
B exist, since we can take M to be arbitrarily small in the above lemma. Let

t = max{g−1(g(B)−N), g−1(g(B)−N + 1), . . . , g−1(g(B) +N)}.

Note that g(t) ≤ g(B) +N ≤ B, so we have

|δ(t− 1, B − g(t))| = |g(B)− g(t− 1 + g(B + 1− g(t)))| ≤ N,

so

t− 1 + g(B + 1− g(t)) ∈ {g−1(g(B)−N), g−1(g(B)−N + 1), . . . , g−1(g(B) +N)},

so by the maximality of t, we must have g(B + 1− g(t)) = 1, so B + 1− g(t) = g−1(1).
We have |g(t)− g(B)| ≤ N , so

|(B − g(B)) + 1− g−1(1)| ≤ N.

This is true for infinitely many values of B, so infinitely many values of B − g(B) (by
injectivity of g(x)− x), which is a contradiction. This completes the proof.
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United States of America — IMO Team Selection Tests

Evan Chen, Gopal Goel, and Andrew Gu

64th IMO 2023 Japan and 12th EGMO 2023 Slovenia

§1 Summary of scores for TST 2023
N 31
µ 17.55
σ 7.91

1st Q 14
Median 18

3rd Q 22

Max 32
Top 3 29

Top 12 22

§2 Problem statistics for TST 2023

P1 P2 P3 P4 P5 P6
0 1 13 22 4 12 18

1 3 6 7 0 4 13

2 1 3 0 0 4 0

3 0 0 0 0 5 0

4 0 0 0 0 1 0

5 0 0 0 0 0 0

6 0 1 0 5 1 0

7 26 8 2 22 4 0

Avg 6.03 2.39 0.68 5.94 2.10 0.42

QM 6.43 3.79 1.84 6.37 3.18 0.65
#5+ 26 9 2 27 5 0
%5+ %83.9 %29.0 %6.5 %87.1 %16.1 %0.0
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§3 Rankings for TST 2023
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 0 0 0.00%
35 0 0 0.00%
34 0 0 0.00%
33 0 0 0.00%
32 1 1 3.23%
31 1 2 6.45%
30 0 2 6.45%
29 1 3 9.68%

Sc Num Cu Per
28 0 3 9.68%
27 0 3 9.68%
26 1 4 12.90%
25 1 5 16.13%
24 1 6 19.35%
23 1 7 22.58%
22 5 12 38.71%
21 0 12 38.71%
20 1 13 41.94%
19 1 14 45.16%
18 4 18 58.06%
17 2 20 64.52%
16 1 21 67.74%
15 0 21 67.74%

Sc Num Cu Per
14 3 24 77.42%
13 1 25 80.65%
12 0 25 80.65%
11 0 25 80.65%
10 0 25 80.65%
9 1 26 83.87%
8 0 26 83.87%
7 2 28 90.32%
6 0 28 90.32%
5 0 28 90.32%
4 0 28 90.32%
3 0 28 90.32%
2 2 30 96.77%
1 1 31 100.00%
0 0 31 100.00%

§4 Histogram for TST 2023
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