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Toomates Coolección 
 

Los libros de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un 

ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser 
digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele 

suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que 

no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales pretenden 
cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima 

calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, pretende 

convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende 
pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos 

que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el 
libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Estos libros se comparten bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve y 
se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los libros se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” de 

MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 

 

Toomates Coolección Problem Solving (en español): 

Geometría Axiomática  ,  Problemas de Geometría 1  ,  Problemas de Geometría 2 

Introducción a la Geometría ,  Álgebra ,  Teoría de números  ,  Combinatoria  ,  Probabilidad  

Trigonometría  , Desigualdades  ,  Números complejos , Funciones  
 

Toomates Coolección Llibres de Text (en catalán): 

Nombres (Preàlgebra) , Àlgebra , Proporcionalitat , Mesures geomètriques , Geometria analítica

 Combinatòria i Probabilitat , Estadística , Trigonometria , Funcions , Nombres Complexos , 

 Àlgebra Lineal , Geometria Lineal , Càlcul Infinitesimal , Programació Lineal , Mates amb Excel 
 

Toomates Coolección Compendiums:  
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¡Genera tus propias versiones de estos libros! Siempre que es posible se ofrecen las versiones editables 

“MS Word” de todos los materiales, para facilitar su edición.  
 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 
 

¡No utilices una versión anticuada! Todos estos libros se revisan y amplían constantemente. Descarga 

totalmente gratis la última versión de estos documentos en los correspondientes enlaces superiores, en los 

que siempre encontrarás la versión más actualizada. 
 

Consulta el Catálogo de libros de la biblioteca Toomates Coolección en http://www.toomates.net/biblioteca.htm 
 

Encontrarás muchos más materiales para el aprendizaje de las matemáticas en  www.toomates.net 
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The Forty-Sixth Annual William Lowell Putnam Competition
Saturday, December 7, 1985

A–1 Determine, with proof, the number of ordered triples
(A1,A2,A3) of sets which have the property that

(i) A1∪A2∪A3 = {1,2,3,4,5,6,7,8,9,10}, and

(ii) A1∩A2∩A3 = /0.

Express your answer in the form 2a3b5c7d , where
a,b,c,d are nonnegative integers.

A–2 Let T be an acute triangle. Inscribe a rectangle R in T
with one side along a side of T . Then inscribe a rectan-
gle S in the triangle formed by the side of R opposite the
side on the boundary of T , and the other two sides of T ,
with one side along the side of R. For any polygon X ,
let A(X) denote the area of X . Find the maximum value,
or show that no maximum exists, of A(R)+A(S)

A(T ) , where T
ranges over all triangles and R,S over all rectangles as
above.

A–3 Let d be a real number. For each integer m ≥ 0, define
a sequence {am( j)}, j = 0,1,2, . . . by the condition

am(0) = d/2m,

am( j+1) = (am( j))2 +2am( j), j ≥ 0.

Evaluate limn→∞ an(n).

A–4 Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i≥
1. Which integers between 00 and 99 inclusive occur as
the last two digits in the decimal expansion of infinitely
many ai?

A–5 Let Im =
∫ 2π

0 cos(x)cos(2x) · · ·cos(mx)dx. For which
integers m, 1≤ m≤ 10 is Im 6= 0?

A–6 If p(x) = a0+a1x+ · · ·+amxm is a polynomial with real
coefficients ai, then set

Γ(p(x)) = a2
0 +a2

1 + · · ·+a2
m.

Let F(x) = 3x2+7x+2. Find, with proof, a polynomial
g(x) with real coefficients such that

(i) g(0) = 1, and

(ii) Γ( f (x)n) = Γ(g(x)n)

for every integer n≥ 1.

B–1 Let k be the smallest positive integer for which there
exist distinct integers m1,m2,m3,m4,m5 such that the
polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find, with proof, a
set of integers m1,m2,m3,m4,m5 for which this mini-
mum k is achieved.

B–2 Define polynomials fn(x) for n ≥ 0 by f0(x) = 1,
fn(0) = 0 for n≥ 1, and

d
dx

fn+1(x) = (n+1) fn(x+1)

for n≥ 0. Find, with proof, the explicit factorization of
f100(1) into powers of distinct primes.

B–3 Let

a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . .
a3,1 a3,2 a3,3 . . .

...
...

...
. . .

be a doubly infinite array of positive integers, and sup-
pose each positive integer appears exactly eight times in
the array. Prove that am,n > mn for some pair of positive
integers (m,n).

B–4 Let C be the unit circle x2 +y2 = 1. A point p is chosen
randomly on the circumference C and another point q
is chosen randomly from the interior of C (these points
are chosen independently and uniformly over their do-
mains). Let R be the rectangle with sides parallel to the
x and y-axes with diagonal pq. What is the probability
that no point of R lies outside of C?

B–5 Evaluate
∫

∞

0 t−1/2e−1985(t+t−1) dt. You may assume that∫
∞

−∞
e−x2

dx =
√

π .

B–6 Let G be a finite set of real n× n matrices {Mi}, 1 ≤
i ≤ r, which form a group under matrix multiplication.
Suppose that ∑

r
i=1 tr(Mi) = 0, where tr(A) denotes the

trace of the matrix A. Prove that ∑
r
i=1 Mi is the n× n

zero matrix.



The Forty-Seventh Annual William Lowell Putnam Competition
Saturday, December 6, 1986

A–1 Find, with explanation, the maximum value of f (x) =
x3− 3x on the set of all real numbers x satisfying x4 +
36≤ 13x2.

A–2 What is the units (i.e., rightmost) digit of⌊
1020000

10100 +3

⌋
?

A–3 Evaluate ∑
∞
n=0 Arccot(n2 + n + 1), where Arccot t for

t ≥ 0 denotes the number θ in the interval 0 < θ ≤ π/2
with cotθ = t.

A–4 A transversal of an n×n matrix A consists of n entries
of A, no two in the same row or column. Let f (n) be
the number of n×n matrices A satisfying the following
two conditions:

(a) Each entry αi, j of A is in the set {−1,0,1}.
(b) The sum of the n entries of a transversal is the

same for all transversals of A.

An example of such a matrix A is

A =

 −1 0 −1
0 1 0
0 1 0

 .

Determine with proof a formula for f (n) of the form

f (n) = a1bn
1 +a2bn

2 +a3bn
3 +a4,

where the ai’s and bi’s are rational numbers.

A–5 Suppose f1(x), f2(x), . . . , fn(x) are functions of n real
variables x = (x1, . . . ,xn) with continuous second-order
partial derivatives everywhere on Rn. Suppose further
that there are constants ci j such that

∂ fi

∂x j
−

∂ f j

∂xi
= ci j

for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Prove that there is
a function g(x) on Rn such that fi +∂g/∂xi is linear for
all i, 1≤ i≤ n. (A linear function is one of the form

a0 +a1x1 +a2x2 + · · ·+anxn.)

A–6 Let a1,a2, . . . ,an be real numbers, and let b1,b2, . . . ,bn
be distinct positive integers. Suppose that there is a
polynomial f (x) satisfying the identity

(1− x)n f (x) = 1+
n

∑
i=1

aixbi .

Find a simple expression (not involving any sums) for
f (1) in terms of b1,b2, . . . ,bn and n (but independent of
a1,a2, . . . ,an).

B–1 Inscribe a rectangle of base b and height h in a circle
of radius one, and inscribe an isosceles triangle in the
region of the circle cut off by one base of the rectangle
(with that side as the base of the triangle). For what
value of h do the rectangle and triangle have the same
area?

B–2 Prove that there are only a finite number of possibili-
ties for the ordered triple T = (x−y,y− z,z−x), where
x,y,z are complex numbers satisfying the simultaneous
equations

x(x−1)+2yz = y(y−1)+2zx = z(z−1)+2xy,

and list all such triples T .

B–3 Let Γ consist of all polynomials in x with integer co-
efficients. For f and g in Γ and m a positive integer,
let f ≡ g (mod m) mean that every coefficient of f −g
is an integral multiple of m. Let n and p be positive
integers with p prime. Given that f ,g,h,r and s are
in Γ with r f + sg ≡ 1 (mod p) and f g ≡ h (mod p),
prove that there exist F and G in Γ with F ≡ f (mod p),
G≡ g (mod p), and FG≡ h (mod pn).

B–4 For a positive real number r, let G(r) be the minimum
value of |r−

√
m2 +2n2| for all integers m and n. Prove

or disprove the assertion that limr→∞ G(r) exists and
equals 0.

B–5 Let f (x,y,z) = x2+y2+z2+xyz. Let p(x,y,z),q(x,y,z),
r(x,y,z) be polynomials with real coefficients satisfying

f (p(x,y,z),q(x,y,z),r(x,y,z)) = f (x,y,z).

Prove or disprove the assertion that the sequence p,q,r
consists of some permutation of ±x,±y,±z, where the
number of minus signs is 0 or 2.

B–6 Suppose A,B,C,D are n× n matrices with entries in a
field F , satisfying the conditions that ABT and CDT are
symmetric and ADT −BCT = I. Here I is the n×n iden-
tity matrix, and if M is an n×n matrix, MT is its trans-
pose. Prove that AT D−CT B = I.



The Forty-Eighth Annual William Lowell Putnam Competition
Saturday, December 5, 1987

A–1 Curves A,B,C and D are defined in the plane as follows:

A =

{
(x,y) : x2− y2 =

x
x2 + y2

}
,

B =

{
(x,y) : 2xy+

y
x2 + y2 = 3

}
,

C =
{
(x,y) : x3−3xy2 +3y = 1

}
,

D =
{
(x,y) : 3x2y−3x− y3 = 0

}
.

Prove that A∩B =C∩D.

A–2 The sequence of digits

123456789101112131415161718192021 . . .

is obtained by writing the positive integers in order. If
the 10n-th digit in this sequence occurs in the part of
the sequence in which the m-digit numbers are placed,
define f (n) to be m. For example, f (2) = 2 because the
100th digit enters the sequence in the placement of the
two-digit integer 55. Find, with proof, f (1987).

A–3 For all real x, the real-valued function y = f (x) satisfies

y′′−2y′+ y = 2ex.

(a) If f (x)> 0 for all real x, must f ′(x)> 0 for all real
x? Explain.

(b) If f ′(x)> 0 for all real x, must f (x)> 0 for all real
x? Explain.

A–4 Let P be a polynomial, with real coefficients, in three
variables and F be a function of two variables such that

P(ux,uy,uz) = u2F(y− x,z− x) for all real x,y,z,u,

and such that P(1,0,0) = 4, P(0,1,0) = 5, and
P(0,0,1)= 6. Also let A,B,C be complex numbers with
P(A,B,C) = 0 and |B−A|= 10. Find |C−A|.

A–5 Let

~G(x,y) =
(
−y

x2 +4y2 ,
x

x2 +4y2 ,0
)
.

Prove or disprove that there is a vector-valued function

~F(x,y,z) = (M(x,y,z),N(x,y,z),P(x,y,z))

with the following properties:

(i) M,N,P have continuous partial derivatives for all
(x,y,z) 6= (0,0,0);

(ii) Curl~F =~0 for all (x,y,z) 6= (0,0,0);

(iii) ~F(x,y,0) = ~G(x,y).
A–6 For each positive integer n, let a(n) be the number of

zeroes in the base 3 representation of n. For which pos-
itive real numbers x does the series

∞

∑
n=1

xa(n)

n3

converge?

B–1 Evaluate ∫ 4

2

√
ln(9− x)dx√

ln(9− x)+
√

ln(x+3)
.

B–2 Let r,s and t be integers with 0≤ r, 0≤ s and r+ s≤ t.
Prove that(s

0

)(t
r

) + (s
1

)( t
r+1

) + · · ·+ (s
s

)( t
r+s

) = t +1
(t +1− s)

(t−s
r

) .
B–3 Let F be a field in which 1+ 1 6= 0. Show that the set

of solutions to the equation x2 + y2 = 1 with x and y in
F is given by (x,y) = (1,0) and

(x,y) =
(

r2−1
r2 +1

,
2r

r2 +1

)
where r runs through the elements of F such that r2 6=
−1.

B–4 Let (x1,y1) = (0.8,0.6) and let xn+1 = xn cosyn −
yn sinyn and yn+1 = xn sinyn + yn cosyn for n =
1,2,3, . . . . For each of limn→∞ xn and limn→∞ yn, prove
that the limit exists and find it or prove that the limit
does not exist.

B–5 Let On be the n-dimensional vector (0,0, · · · ,0). Let
M be a 2n× n matrix of complex numbers such that
whenever (z1,z2, . . . ,z2n)M = On, with complex zi, not
all zero, then at least one of the zi is not real. Prove
that for arbitrary real numbers r1,r2, . . . ,r2n, there are
complex numbers w1,w2, . . . ,wn such that

re

M

 w1
...

wn


=

 r1
...

rn

 .

(Note: if C is a matrix of complex numbers, re(C) is the
matrix whose entries are the real parts of the entries of
C.)

B–6 Let F be the field of p2 elements, where p is an odd
prime. Suppose S is a set of (p2−1)/2 distinct nonzero
elements of F with the property that for each a 6= 0 in
F , exactly one of a and−a is in S. Let N be the number
of elements in the intersection S∩{2a : a ∈ S}. Prove
that N is even.



The Forty-Ninth Annual William Lowell Putnam Competition
Saturday, December 3, 1988

A–1 Let R be the region consisting of the points (x,y) of the
cartesian plane satisfying both |x|− |y| ≤ 1 and |y| ≤ 1.
Sketch the region R and find its area.

A–2 A not uncommon calculus mistake is to believe that the
product rule for derivatives says that ( f g)′ = f ′g′. If
f (x) = ex2

, determine, with proof, whether there exists
an open interval (a,b) and a nonzero function g defined
on (a,b) such that this wrong product rule is true for x
in (a,b).

A–3 Determine, with proof, the set of real numbers x for
which

∞

∑
n=1

(
1
n

csc
1
n
−1
)x

converges.

A–4 (a) If every point of the plane is painted one of three
colors, do there necessarily exist two points of the
same color exactly one inch apart?

(b) What if “three” is replaced by “nine”?

A–5 Prove that there exists a unique function f from the set
R+ of positive real numbers to R+ such that

f ( f (x)) = 6x− f (x)

and

f (x)> 0

for all x > 0.

A–6 If a linear transformation A on an n-dimensional vector
space has n+1 eigenvectors such that any n of them are
linearly independent, does it follow that A is a scalar
multiple of the identity? Prove your answer.

B–1 A composite (positive integer) is a product ab with a
and b not necessarily distinct integers in {2,3,4, . . .}.
Show that every composite is expressible as xy+ xz+
yz+1, with x,y,z positive integers.

B–2 Prove or disprove: If x and y are real numbers with y≥ 0
and y(y+1)≤ (x+1)2, then y(y−1)≤ x2.

B–3 For every n in the set N = {1,2, . . .} of positive inte-
gers, let rn be the minimum value of |c− d

√
3| for all

nonnegative integers c and d with c+d = n. Find, with
proof, the smallest positive real number g with rn ≤ g
for all n ∈ N.

B–4 Prove that if ∑
∞
n=1 an is a convergent series of positive

real numbers, then so is ∑
∞
n=1(an)

n/(n+1).
B–5 For positive integers n, let Mn be the 2n+ 1 by 2n+ 1

skew-symmetric matrix for which each entry in the first
n subdiagonals below the main diagonal is 1 and each
of the remaining entries below the main diagonal is -1.
Find, with proof, the rank of Mn. (According to one
definition, the rank of a matrix is the largest k such that
there is a k× k submatrix with nonzero determinant.)

One may note that

M1 =

 0 −1 1
1 0 −1
−1 1 0



M2 =


0 −1 −1 1 1
1 0 −1 −1 1
1 1 0 −1 −1
−1 1 1 0 −1
−1 −1 1 1 0

 .

B–6 Prove that there exist an infinite number of ordered pairs
(a,b) of integers such that for every positive integer t,
the number at +b is a triangular number if and only if t
is a triangular number. (The triangular numbers are the
tn = n(n+1)/2 with n in {0,1,2, . . .}.)



The Fiftieth Annual William Lowell Putnam Competition
Saturday, December 2, 1989

A–1 How many primes among the positive integers, written
as usual in base 10, are alternating 1’s and 0’s, begin-
ning and ending with 1?

A–2 Evaluate
∫ a

0

∫ b

0
emax{b2x2,a2y2} dydx where a and b are

positive.

A–3 Prove that if

11z10 +10iz9 +10iz−11 = 0,

then |z|= 1. (Here z is a complex number and i2 =−1.)

A–4 If α is an irrational number, 0 < α < 1, is there a fi-
nite game with an honest coin such that the probabil-
ity of one player winning the game is α? (An honest
coin is one for which the probability of heads and the
probability of tails are both 1

2 . A game is finite if with
probability 1 it must end in a finite number of moves.)

A–5 Let m be a positive integer and let G be a regular
(2m + 1)-gon inscribed in the unit circle. Show that
there is a positive constant A, independent of m, with
the following property. For any points p inside G there
are two distinct vertices v1 and v2 of G such that

| |p− v1|− |p− v2| |<
1
m
− A

m3 .

Here |s− t| denotes the distance between the points s
and t.

A–6 Let α = 1+ a1x+ a2x2 + · · · be a formal power series
with coefficients in the field of two elements. Let

an =


1

if every block of zeros in the binary
expansion of n has an even number
of zeros in the block

0 otherwise.

(For example, a36 = 1 because 36 = 1001002 and a20 =
0 because 20 = 101002.) Prove that α3 + xα +1 = 0.

B–1 A dart, thrown at random, hits a square target. Assum-
ing that any two parts of the target of equal area are
equally likely to be hit, find the probability that the point
hit is nearer to the center than to any edge. Express your

answer in the form
a
√

b+ c
d

, where a, b, c, d are inte-
gers.

B–2 Let S be a non-empty set with an associative operation
that is left and right cancellative (xy = xz implies y = z,
and yx = zx implies y = z). Assume that for every a in S
the set {an : n = 1,2,3, . . .} is finite. Must S be a group?

B–3 Let f be a function on [0,∞), differentiable and satisfy-
ing

f ′(x) =−3 f (x)+6 f (2x)

for x > 0. Assume that | f (x)| ≤ e−
√

x for x≥ 0 (so that
f (x) tends rapidly to 0 as x increases). For n a non-
negative integer, define

µn =
∫

∞

0
xn f (x)dx

(sometimes called the nth moment of f ).

a) Express µn in terms of µ0.

b) Prove that the sequence {µn
3n

n! } always converges,
and that the limit is 0 only if µ0 = 0.

B–4 Can a countably infinite set have an uncountable collec-
tion of non-empty subsets such that the intersection of
any two of them is finite?

B–5 Label the vertices of a trapezoid T (quadrilateral with
two parallel sides) inscribed in the unit circle as
A, B,C, D so that AB is parallel to CD and A, B,C, D
are in counterclockwise order. Let s1, s2, and d denote
the lengths of the line segments AB,CD, and OE, where
E is the point of intersection of the diagonals of T , and
O is the center of the circle. Determine the least upper
bound of s1−s2

d over all such T for which d 6= 0, and
describe all cases, if any, in which it is attained.

B–6 Let (x1, x2, . . . xn) be a point chosen at random from the
n-dimensional region defined by 0 < x1 < x2 < · · · <
xn < 1. Let f be a continuous function on [0,1] with
f (1) = 0. Set x0 = 0 and xn+1 = 1. Show that the ex-
pected value of the Riemann sum

n

∑
i=0

(xi+1− xi) f (xi+1)

is
∫ 1

0 f (t)P(t)dt, where P is a polynomial of degree n,
independent of f , with 0≤ P(t)≤ 1 for 0≤ t ≤ 1.



The 51st William Lowell Putnam Mathematical Competition
Saturday, December 8, 1990

A–1 Let

T0 = 2,T1 = 3,T2 = 6,

and for n≥ 3,

Tn = (n+4)Tn−1−4nTn−2 +(4n−8)Tn−3.

The first few terms are

2,3,6,14,40,152,784,5168,40576.

Find, with proof, a formula for Tn of the form Tn = An+
Bn, where {An} and {Bn} are well-known sequences.

A–2 Is
√

2 the limit of a sequence of numbers of the form
3
√

n− 3
√

m (n,m = 0,1,2, . . . )?

A–3 Prove that any convex pentagon whose vertices (no
three of which are collinear) have integer coordinates
must have area greater than or equal to 5/2.

A–4 Consider a paper punch that can be centered at any point
of the plane and that, when operated, removes from the
plane precisely those points whose distance from the
center is irrational. How many punches are needed to
remove every point?

A–5 If A and B are square matrices of the same size such
that ABAB = 0, does it follow that BABA = 0?

A–6 If X is a finite set, let X denote the number of ele-
ments in X . Call an ordered pair (S,T ) of subsets of
{1,2, . . . ,n} admissible if s > |T | for each s ∈ S, and
t > |S| for each t ∈ T . How many admissible ordered
pairs of subsets of {1,2, . . . ,10} are there? Prove your
answer.

B–1 Find all real-valued continuously differentiable func-
tions f on the real line such that for all x,

( f (x))2 =
∫ x

0
[( f (t))2 +( f ′(t))2]dt +1990.

B–2 Prove that for |x|< 1, |z|> 1,

1+
∞

∑
j=1

(1+ x j)Pj = 0,

where Pj is

(1− z)(1− zx)(1− zx2) · · ·(1− zx j−1)

(z− x)(z− x2)(z− x3) · · ·(z− x j)
.

B–3 Let S be a set of 2×2 integer matrices whose entries ai j
(1) are all squares of integers and, (2) satisfy ai j ≤ 200.
Show that if S has more than 50387 (= 154−152−15+
2) elements, then it has two elements that commute.

B–4 Let G be a finite group of order n generated by a and b.
Prove or disprove: there is a sequence

g1,g2,g3, . . . ,g2n

such that

(1) every element of G occurs exactly twice, and

(2) gi+1 equals gia or gib for i = 1,2, . . . ,2n. (Inter-
pret g2n+1 as g1.)

B–5 Is there an infinite sequence a0,a1,a2, . . . of nonzero
real numbers such that for n= 1,2,3, . . . the polynomial

pn(x) = a0 +a1x+a2x2 + · · ·+anxn

has exactly n distinct real roots?

B–6 Let S be a nonempty closed bounded convex set in the
plane. Let K be a line and t a positive number. Let L1
and L2 be support lines for S parallel to K1, and let L be
the line parallel to K and midway between L1 and L2.
Let BS(K, t) be the band of points whose distance from
L is at most (t/2)w, where w is the distance between L1
and L2. What is the smallest t such that

S∩
⋂
K

BS(K, t) 6= /0

for all S? (K runs over all lines in the plane.)



The 52nd William Lowell Putnam Mathematical Competition
Saturday, December 7, 1991

A–1 A 2×3 rectangle has vertices as (0,0),(2,0),(0,3), and
(2,3). It rotates 90◦ clockwise about the point (2,0). It
then rotates 90◦ clockwise about the point (5,0), then
90◦ clockwise about the point (7,0), and finally, 90◦

clockwise about the point (10,0). (The side originally
on the x-axis is now back on the x-axis.) Find the area of
the region above the x-axis and below the curve traced
out by the point whose initial position is (1,1).

A–2 Let A and B be different n×n matrices with real entries.
If A3 = B3 and A2B = B2A, can A2 +B2 be invertible?

A–3 Find all real polynomials p(x) of degree n≥ 2 for which
there exist real numbers r1 < r2 < · · ·< rn such that

1. p(ri) = 0, i = 1,2, . . . ,n, and

2. p′
(

ri+ri+1
2

)
= 0 i = 1,2, . . . ,n−1,

where p′(x) denotes the derivative of p(x).

A–4 Does there exist an infinite sequence of closed discs
D1,D2,D3, . . . in the plane, with centers c1,c2,c3, . . . ,
respectively, such that

1. the ci have no limit point in the finite plane,

2. the sum of the areas of the Di is finite, and

3. every line in the plane intersects at least one of the
Di?

A–5 Find the maximum value of∫ y

0

√
x4 +(y− y2)2 dx

for 0≤ y≤ 1.

A–6 Let A(n) denote the number of sums of positive integers

a1 +a2 + · · ·+ar

which add up to n with

a1 > a2 +a3,a2 > a3 +a4, . . . ,

ar−2 > ar−1 +ar,ar−1 > ar.

Let B(n) denote the number of b1 +b2 + · · ·+bs which
add up to n, with

1. b1 ≥ b2 ≥ ·· · ≥ bs,

2. each bi is in the sequence 1,2,4, . . . ,g j, . . . defined
by g1 = 1, g2 = 2, and g j = g j−1 +g j−2 +1, and

3. if b1 = gk then every element in {1,2,4, . . . ,gk}
appears at least once as a bi.

Prove that A(n) = B(n) for each n≥ 1.

(For example, A(7) = 5 because the relevant sums are
7,6+1,5+2,4+3,4+2+1, and B(7) = 5 because the
relevant sums are 4+2+1,2+2+2+1,2+2+1+1+
1,2+1+1+1+1+1,1+1+1+1+1+1+1.)

B–1 For each integer n≥ 0, let S(n) = n−m2, where m is the
greatest integer with m2 ≤ n. Define a sequence (ak)

∞
k=0

by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For what
positive integers A is this sequence eventually constant?

B–2 Suppose f and g are non-constant, differentiable, real-
valued functions defined on (−∞,∞). Furthermore,
suppose that for each pair of real numbers x and y,

f (x+ y) = f (x) f (y)−g(x)g(y),
g(x+ y) = f (x)g(y)+g(x) f (y).

If f ′(0) = 0, prove that ( f (x))2 +(g(x))2 = 1 for all x.

B–3 Does there exist a real number L such that, if m and n are
integers greater than L, then an m×n rectangle may be
expressed as a union of 4×6 and 5×7 rectangles, any
two of which intersect at most along their boundaries?

B–4 Suppose p is an odd prime. Prove that

p

∑
j=0

(
p
j

)(
p+ j

j

)
≡ 2p +1 (mod p2).

B–5 Let p be an odd prime and let Zp denote (the field of)
integers modulo p. How many elements are in the set

{x2 : x ∈ Zp}∩{y2 +1 : y ∈ Zp}?

B–6 Let a and b be positive numbers. Find the largest num-
ber c, in terms of a and b, such that

axb1−x ≤ a
sinhux
sinhu

+b
sinhu(1− x)

sinhu

for all u with 0 < |u| ≤ c and for all x, 0 < x < 1. (Note:
sinhu = (eu− e−u)/2.)



The 53rd William Lowell Putnam Mathematical Competition
Saturday, December 5, 1992

A–1 Prove that f (n) = 1−n is the only integer-valued func-
tion defined on the integers that satisfies the following
conditions.

(i) f ( f (n)) = n, for all integers n;

(ii) f ( f (n+2)+2) = n for all integers n;

(iii) f (0) = 1.

A–2 Define C(α) to be the coefficient of x1992 in the power
series about x = 0 of (1+ x)α . Evaluate

∫ 1

0

(
C(−y−1)

1992

∑
k=1

1
y+ k

)
dy.

A–3 For a given positive integer m, find all triples (n,x,y)
of positive integers, with n relatively prime to m, which
satisfy

(x2 + y2)m = (xy)n.

A–4 Let f be an infinitely differentiable real-valued function
defined on the real numbers. If

f
(

1
n

)
=

n2

n2 +1
, n = 1,2,3, . . . ,

compute the values of the derivatives f (k)(0),k =
1,2,3, . . . .

A–5 For each positive integer n, let an = 0 (or 1) if the num-
ber of 1’s in the binary representation of n is even (or
odd), respectively. Show that there do not exist positive
integers k and m such that

ak+ j = ak+m+ j = ak+2m+ j,

for 0≤ j ≤ m−1.

A–6 Four points are chosen at random on the surface of a
sphere. What is the probability that the center of the
sphere lies inside the tetrahedron whose vertices are at
the four points? (It is understood that each point is in-
dependently chosen relative to a uniform distribution on
the sphere.)

B–1 Let S be a set of n distinct real numbers. Let AS be the
set of numbers that occur as averages of two distinct
elements of S. For a given n ≥ 2, what is the smallest
possible number of elements in AS?

B–2 For nonnegative integers n and k, define Q(n,k) to be
the coefficient of xk in the expansion of (1+ x+ x2 +
x3)n. Prove that

Q(n,k) =
k

∑
j=0

(
n
j

)(
n

k−2 j

)
,

where
(a

b

)
is the standard binomial coefficient. (Re-

minder: For integers a and b with a≥ 0,
(a

b

)
= a!

b!(a−b)!

for 0≤ b≤ a, with
(a

b

)
= 0 otherwise.)

B–3 For any pair (x,y) of real numbers, a sequence
(an(x,y))n≥0 is defined as follows:

a0(x,y) = x,

an+1(x,y) =
(an(x,y))2 + y2

2
, for n≥ 0.

Find the area of the region

{(x,y)|(an(x,y))n≥0 converges}.

B–4 Let p(x) be a nonzero polynomial of degree less than
1992 having no nonconstant factor in common with
x3− x. Let

d1992

dx1992

(
p(x)

x3− x

)
=

f (x)
g(x)

for polynomials f (x) and g(x). Find the smallest possi-
ble degree of f (x).

B–5 Let Dn denote the value of the (n− 1)× (n− 1) deter-
minant 

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+1

 .

Is the set
{Dn

n!

}
n≥2 bounded?

B–6 Let M be a set of real n×n matrices such that

(i) I ∈M , where I is the n×n identity matrix;

(ii) if A ∈M and B ∈M , then either AB ∈M or
−AB ∈M , but not both;

(iii) if A ∈M and B ∈M , then either AB = BA or
AB =−BA;

(iv) if A ∈M and A 6= I, there is at least one B ∈M
such that AB =−BA.

Prove that M contains at most n2 matrices.



The 54th William Lowell Putnam Mathematical Competition
Saturday, December 4, 1993

A–1 The horizontal line y = c intersects the curve y = 2x−
3x3 in the first quadrant as in the figure. Find c so that
the areas of the two shaded regions are equal. [Figure
not included. The first region is bounded by the y-axis,
the line y = c and the curve; the other lies under the
curve and above the line y = c between their two points
of intersection.]

A–2 Let (xn)n≥0 be a sequence of nonzero real numbers such
that x2

n− xn−1xn+1 = 1 for n = 1,2,3, . . . . Prove there
exists a real number a such that xn+1 = axn− xn−1 for
all n≥ 1.

A–3 Let Pn be the set of subsets of {1,2, . . . ,n}. Let c(n,m)
be the number of functions f : Pn→{1,2, . . . ,m} such
that f (A∩B) = min{ f (A), f (B)}. Prove that

c(n,m) =
m

∑
j=1

jn.

A–4 Let x1,x2, . . . ,x19 be positive integers each of which is
less than or equal to 93. Let y1,y2, . . . ,y93 be positive
integers each of which is less than or equal to 19. Prove
that there exists a (nonempty) sum of some xi’s equal to
a sum of some y j’s.

A–5 Show that ∫ −10

−100

(
x2− x

x3−3x+1

)2

dx+

∫ 1
11

1
101

(
x2− x

x3−3x+1

)2

dx+

∫ 11
10

101
100

(
x2− x

x3−3x+1

)2

dx

is a rational number.

A–6 The infinite sequence of 2’s and 3’s

2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,
3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2, . . .

has the property that, if one forms a second sequence
that records the number of 3’s between successive 2’s,
the result is identical to the given sequence. Show that
there exists a real number r such that, for any n, the nth
term of the sequence is 2 if and only if n = 1+ brmc
for some nonnegative integer m. (Note: bxc denotes the
largest integer less than or equal to x.)

B–1 Find the smallest positive integer n such that for every
integer m with 0 < m < 1993, there exists an integer k
for which

m
1993

<
k
n
<

m+1
1994

.

B–2 Consider the following game played with a deck of 2n
cards numbered from 1 to 2n. The deck is randomly
shuffled and n cards are dealt to each of two players.
Beginning with A, the players take turns discarding one
of their remaining cards and announcing its number.
The game ends as soon as the sum of the numbers on the
discarded cards is divisible by 2n+ 1. The last person
to discard wins the game. Assuming optimal strategy
by both A and B, what is the probability that A wins?

B–3 Two real numbers x and y are chosen at random in the
interval (0,1) with respect to the uniform distribution.
What is the probability that the closest integer to x/y is
even? Express the answer in the form r+ sπ , where r
and s are rational numbers.

B–4 The function K(x,y) is positive and continuous for 0≤
x ≤ 1,0 ≤ y ≤ 1, and the functions f (x) and g(x) are
positive and continuous for 0≤ x≤ 1. Suppose that for
all x, 0≤ x≤ 1,∫ 1

0
f (y)K(x,y)dy = g(x)

and ∫ 1

0
g(y)K(x,y)dy = f (x).

Show that f (x) = g(x) for 0≤ x≤ 1.

B–5 Show there do not exist four points in the Euclidean
plane such that the pairwise distances between the
points are all odd integers.

B–6 Let S be a set of three, not necessarily distinct, posi-
tive integers. Show that one can transform S into a set
containing 0 by a finite number of applications of the
following rule: Select two of the three integers, say x
and y, where x≤ y and replace them with 2x and y− x.



The 55th William Lowell Putnam Mathematical Competition
Saturday, December 3, 1994

A–1 Suppose that a sequence a1,a2,a3, . . . satisfies 0 < an ≤
a2n + a2n+1 for all n ≥ 1. Prove that the series ∑

∞
n=1 an

diverges.

A–2 Let A be the area of the region in the first quadrant
bounded by the line y = 1

2 x, the x-axis, and the ellipse
1
9 x2 + y2 = 1. Find the positive number m such that A
is equal to the area of the region in the first quadrant
bounded by the line y = mx, the y-axis, and the ellipse
1
9 x2 + y2 = 1.

A–3 Show that if the points of an isosceles right triangle of
side length 1 are each colored with one of four colors,
then there must be two points of the same color whch
are at least a distance 2−

√
2 apart.

A–4 Let A and B be 2×2 matrices with integer entries such
that A,A+B,A+2B,A+3B, and A+4B are all invert-
ible matrices whose inverses have integer entries. Show
that A+5B is invertible and that its inverse has integer
entries.

A–5 Let (rn)n≥0 be a sequence of positive real numbers such
that limn→∞ rn = 0. Let S be the set of numbers repre-
sentable as a sum

ri1 + ri2 + · · ·+ ri1994 ,

with i1 < i2 < · · ·< i1994. Show that every nonempty in-
terval (a,b) contains a nonempty subinterval (c,d) that
does not intersect S.

A–6 Let f1, . . . , f10 be bijections of the set of integers such
that for each integer n, there is some composition fi1 ◦
fi2 ◦ · · · ◦ fim of these functions (allowing repetitions)
which maps 0 to n. Consider the set of 1024 functions

F = { f e1
1 ◦ f e2

2 ◦ · · · ◦ f e10
10 },

ei = 0 or 1 for 1 ≤ i ≤ 10. ( f 0
i is the identity function

and f 1
i = fi.) Show that if A is any nonempty finite set

of integers, then at most 512 of the functions in F map
A to itself.

B–1 Find all positive integers n that are within 250 of exactly
15 perfect squares.

B–2 For which real numbers c is there a straight line that
intersects the curve

x4 +9x3 + cx2 +9x+4

in four distinct points?

B–3 Find the set of all real numbers k with the following
property: For any positive, differentiable function f that
satisfies f ′(x)> f (x) for all x, there is some number N
such that f (x)> ekx for all x > N.

B–4 For n ≥ 1, let dn be the greatest common divisor of the
entries of An− I, where

A =

(
3 2
4 3

)
and I =

(
1 0
0 1

)
.

Show that limn→∞ dn = ∞.

B–5 For any real number α , define the function fα(x) =
bαxc. Let n be a positive integer. Show that there exists
an α such that for 1≤ k ≤ n,

f k
α(n

2) = n2− k = f
αk(n2).

B–6 For any integer n, set

na = 101a−100 ·2a.

Show that for 0 ≤ a,b,c,d ≤ 99, na + nb ≡ nc + nd
(mod 10100) implies {a,b}= {c,d}.
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A–1 Let S be a set of real numbers which is closed under
multiplication (that is, if a and b are in S, then so is ab).
Let T and U be disjoint subsets of S whose union is
S. Given that the product of any three (not necessarily
distinct) elements of T is in T and that the product of
any three elements of U is in U , show that at least one
of the two subsets T,U is closed under multiplication.

A–2 For what pairs (a,b) of positive real numbers does the
improper integral∫

∞

b

(√√
x+a−

√
x−
√√

x−
√

x−b
)

dx

converge?

A–3 The number d1d2 . . .d9 has nine (not necessarily dis-
tinct) decimal digits. The number e1e2 . . .e9 is such that
each of the nine 9-digit numbers formed by replacing
just one of the digits di is d1d2 . . .d9 by the correspond-
ing digit ei (1 ≤ i ≤ 9) is divisible by 7. The number
f1 f2 . . . f9 is related to e1e2 . . .e9 is the same way: that
is, each of the nine numbers formed by replacing one of
the ei by the corresponding fi is divisible by 7. Show
that, for each i, di− fi is divisible by 7. [For example,
if d1d2 . . .d9 = 199501996, then e6 may be 2 or 9, since
199502996 and 199509996 are multiples of 7.]

A–4 Suppose we have a necklace of n beads. Each bead is
labeled with an integer and the sum of all these labels
is n− 1. Prove that we can cut the necklace to form a
string whose consecutive labels x1,x2, . . . ,xn satisfy

k

∑
i=1

xi ≤ k−1 for k = 1,2, . . . ,n.

A–5 Let x1,x2, . . . ,xn be differentiable (real-valued) func-
tions of a single variable f which satisfy

dx1

dt
= a11x1 +a12x2 + · · ·+a1nxn

dx2

dt
= a21x1 +a22x2 + · · ·+a2nxn

...
...

dxn

dt
= an1x1 +an2x2 + · · ·+annxn

for some constants ai j > 0. Suppose that for all i,
xi(t)→ 0 as t→∞. Are the functions x1,x2, . . . ,xn nec-
essarily linearly dependent?

A–6 Suppose that each of n people writes down the numbers
1,2,3 in random order in one column of a 3×n matrix,
with all orders equally likely and with the orders for
different columns independent of each other. Let the

row sums a,b,c of the resulting matrix be rearranged
(if necessary) so that a ≤ b ≤ c. Show that for some
n ≥ 1995, it is at least four times as likely that both
b = a+1 and c = a+2 as that a = b = c.

B–1 For a partition π of {1,2,3,4,5,6,7,8,9}, let π(x) be
the number of elements in the part containing x. Prove
that for any two partitions π and π ′, there are two dis-
tinct numbers x and y in {1,2,3,4,5,6,7,8,9} such that
π(x) = π(y) and π ′(x) = π ′(y). [A partition of a set S
is a collection of disjoint subsets (parts) whose union is
S.]

B–2 An ellipse, whose semi-axes have lengths a and b, rolls
without slipping on the curve y = csin

( x
a

)
. How are

a,b,c related, given that the ellipse completes one rev-
olution when it traverses one period of the curve?

B–3 To each positive integer with n2 decimal digits, we asso-
ciate the determinant of the matrix obtained by writing
the digits in order across the rows. For example, for n =

2, to the integer 8617 we associate det
(

8 6
1 7

)
= 50.

Find, as a function of n, the sum of all the determinants
associated with n2-digit integers. (Leading digits are as-
sumed to be nonzero; for example, for n = 2, there are
9000 determinants.)

B–4 Evaluate

8

√
2207− 1

2207− 1
2207−...

.

Express your answer in the form a+b
√

c
d , where a,b,c,d

are integers.

B–5 A game starts with four heaps of beans, containing 3,4,5
and 6 beans. The two players move alternately. A move
consists of taking either

a) one bean from a heap, provided at least two beans
are left behind in that heap, or

b) a complete heap of two or three beans.

The player who takes the last heap wins. To win the
game, do you want to move first or second? Give a
winning strategy.

B–6 For a positive real number α , define

S(α) = {bnαc : n = 1,2,3, . . .}.

Prove that {1,2,3, . . .} cannot be expressed as the dis-
joint union of three sets S(α),S(β ) and S(γ). [As usual,
bxc is the greatest integer ≤ x.]
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A–1 Suppose on the contrary that there exist t1, t2 ∈ T
with t1t2 ∈ U and u1,u2 ∈ U with u1u2 ∈ T . Then
(t1t2)u1u2 ∈U while t1t2(u1u2) ∈ T , contradiction.

A–2 The integral converges iff a = b. The easiest proof uses
“big-O” notation and the fact that (1+x)1/2 = 1+x/2+
O(x2) for |x| < 1. (Here O(x2) means bounded by a
constant times x2.)

So
√

x+a−
√

x = x1/2(
√

1+a/x−1)

= x1/2(1+a/2x+O(x−2)),

hence√√
x+a−

√
x = x1/4(a/4x+O(x−2))

and similarly√√
x−
√

x−b = x1/4(b/4x+O(x−2)).

Hence the integral we’re looking at is∫
∞

b
x1/4((a−b)/4x+O(x−2))dx.

The term x1/4O(x−2) is bounded by a constant times
x−7/4, whose integral converges. Thus we only have to
decide whether x−3/4(a− b)/4 converges. But x−3/4

has divergent integral, so we get convergence if and
only if a = b (in which case the integral telescopes any-
way).

A–3 Let D and E be the numbers d1 . . .d9 and e1 . . .e9, re-
spectively. We are given that (ei − di)109−i + D ≡ 0
(mod 7) and ( fi − ei)109−i + E ≡ 0 (mod 7) for i =
1, . . . ,9. Sum the first relation over i = 1, . . . ,9 and we
get E −D+ 9D ≡ 0 (mod 7), or E +D ≡ 0 (mod 7).
Now add the first and second relations for any partic-
ular value of i and we get ( fi− di)109−i +E +D ≡ 0
(mod 7). But we know E +D is divisible by 7, and 10
is coprime to 7, so di− fi ≡ 0 (mod 7).

A–4 Let sk = x1 + · · ·+ xk− k(n−1)/n, so that sn = s0 = 0.
These form a cyclic sequence that doesn’t change when
you rotate the necklace, except that the entire sequence
gets translated by a constant. In particular, it makes
sense to choose xi for which si is maximum and make
that one xn; this way si ≤ 0 for all i, which gives x1 +
· · ·+xi ≤ i(n−1)/n, but the right side may be replaced
by i−1 since the left side is an integer.

A–5 Everyone (presumably) knows that the set of solutions
of a system of linear first-order differential equations
with constant coefficients is n-dimensional, with ba-
sis vectors of the form fi(t)~vi (i.e. a function times
a constant vector), where the ~vi are linearly indepen-
dent. In particular, our solution ~x(t) can be written as
∑

n
i=1 ci fi(t)~v1.

Choose a vector ~w orthogonal to~v2, . . . ,~vn but not to~v1.
Since ~x(t)→ 0 as t → ∞, the same is true of ~w ·~x; but
that is simply (~w ·~v1)c1 f1(t). In other words, if ci 6= 0,
then fi(t) must also go to 0.

However, it is easy to exhibit a solution which does
not go to 0. The sum of the eigenvalues of the matrix
A = (ai j), also known as the trace of A, being the sum
of the diagonal entries of A, is nonnegative, so A has
an eigenvalue λ with nonnegative real part, and a cor-
responding eigenvector ~v. Then eλ t~v is a solution that
does not go to 0. (If λ is not real, add this solution to
its complex conjugate to get a real solution, which still
doesn’t go to 0.)

Hence one of the ci, say c1, is zero, in which case~x(t) ·
~w = 0 for all t.

A–6 View this as a random walk/Markov process with states
(i, j,k) the triples of integers with sum 0, correspond-
ing to the difference between the first, second and third
rows with their average (twice the number of columns).
Adding a new column adds on a random permutation
of the vector (1,0,−1). I prefer to identify the triple
(i, j,k) with the point (i− j)+ ( j− k)ω +(k− i)ω2 in
the plane, where ω is a cube root of unity. Then adding
a new column corresponds to moving to one of the six
neighbors of the current position in a triangular lattice.

What we’d like to argue is that for large enough n, the
ratio of the probabilities of being in any two particular
states goes to 1. Then in fact, we’ll see that eventually,
about six times as many matrices have a = b− 1,b =
c− 1 than a = b = c. This is a pain to prove, though,
and in fact is way more than we actually need.

Let Cn and An be the probability that we are at the ori-
gin, or at a particular point adjacent to the origin, re-
spectively. Then Cn+1 = An. (In fact, Cn+1 is 1/6 times
the sum of the probabilities of being at each neighbor of
the origin at time n, but these are all An.) So the desired
result, which is that Cn/An ≥ 2/3 for some large n, is
equivalent to An+1/An ≥ 2/3.

Suppose on the contrary that this is not the case; then
An < c(2/3)n for some constant n. However, if n = 6m,
the probability that we chose each of the six types
of moves m times is already (6m)!/[m!666m], which
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by Stirling’s approximation is asymptotic to a constant
times m−5/2. This term alone is bigger than c(2/3)n, so
we must have An+1/An ≥ 2/3 for some n. (In fact, we
must have An+1/An ≥ 1− ε for any ε > 0.)

B–1 For a given π , no more than three different values of
π(x) are possible (four would require one part each of
size at least 1,2,3,4, and that’s already more than 9 el-
ements). If no such x,y exist, each pair (π(x),π ′(x))
occurs for at most 1 element of x, and since there are
only 3×3 possible pairs, each must occur exactly once.
In particular, each value of π(x) must occur 3 times.
However, clearly any given value of π(x) occurs kπ(x)
times, where k is the number of distinct partitions of that
size. Thus π(x) can occur 3 times only if it equals 1 or
3, but we have three distinct values for which it occurs,
contradiction.

B–2 For those who haven’t taken enough physics, “rolling
without slipping” means that the perimeter of the ellipse
and the curve pass at the same rate, so all we’re saying
is that the perimeter of the ellipse equals the length of
one period of the sine curve. So set up the integrals:

∫ 2π

0

√
(−asinθ)2 +(bcosθ)2 dθ

=
∫ 2πa

0

√
1+(c/acosx/a)2 dx.

Let θ = x/a in the second integral and write 1 as
sin2

θ + cos2 θ and you get

∫ 2π

0

√
a2 sin2

θ +b2 cos2 θ dθ

=
∫ 2π

0

√
a2 sin2

θ +(a2 + c2)cos2 θ dθ .

Since the left side is increasing as a function of b, we
have equality if and only if b2 = a2 + c2.

B–3 For n = 1 we obviously get 45, while for n = 3 the
answer is 0 because it both changes sign (because de-
terminants are alternating) and remains unchanged (by
symmetry) when you switch any two rows other than
the first one. So only n = 2 is left. By the multilinear-
ity of the determinant, the answer is the determinant of
the matrix whose first (resp. second) row is the sum of
all possible first (resp. second) rows. There are 90 first
rows whose sum is the vector (450,405), and 100 sec-
ond rows whose sum is (450,450). Thus the answer is
450×450−450×405 = 45×450 = 20250.

B–4 The infinite continued fraction is defined as the limit
of the sequence L0 = 2207,Ln+1 = 2207− 1/Ln. No-
tice that the sequence is strictly decreasing (by induc-
tion) and thus indeed has a limit L, which satisfies L =
2207− 1/L, or rewriting, L2− 2207L+ 1 = 0. More-
over, we want the greater of the two roots.

Now how to compute the eighth root of L? Notice that
if x satisfies the quadratic x2−ax+1 = 0, then we have

0 = (x2−ax+1)(x2 +ax+1)

= x4− (a2−2)x2 +1.

Clearly, then, the positive square roots of the quadratic
x2−bx+1 satisfy the quadratic x2− (b2 +2)1/2x+1 =

0. Thus we compute that L1/2 is the greater root of x2−
47x+1 = 0, L1/4 is the greater root of x2−7x+1 = 0,
and L1/8 is the greater root of x2−3x+1 = 0, otherwise
known as (3+

√
5)/2.

B–5 This problem is dumb if you know the Sprague-
Grundy theory of normal impartial games (see Conway,
Berlekamp and Guy, Winning Ways, for details). I’ll de-
scribe how it applies here. To each position you assign
a nim-value as follows. A position with no moves (in
which case the person to move has just lost) takes value
0. Any other position is assigned the smallest number
not assigned to a valid move from that position.

For a single pile, one sees that an empty pile has value
0, a pile of 2 has value 1, a pile of 3 has value 2, a pile
of 4 has value 0, a pile of 5 has value 1, and a pile of 6
has value 0.

You add piles just like in standard Nim: the nim-value
of the composite of two games (where at every turn you
pick a game and make a move there) is the “base 2 ad-
dition without carries” (i.e. exclusive OR) of the nim-
values of the constituents. So our starting position, with
piles of 3, 4, 5, 6, has nim-value 2⊕0⊕1⊕0 = 3.

A position is a win for the player to move if and only if
it has a nonzero value, in which case the winning strat-
egy is to always move to a 0 position. (This is always
possible from a nonzero position and never from a zero
position, which is precisely the condition that defines
the set of winning positions.) In this case, the winning
move is to reduce the pile of 3 down to 2, and you can
easily describe the entire strategy if you so desire.

B–6 Obviously α,β ,γ have to be greater than 1, and no two
can both be rational, so without loss of generality as-
sume that α and β are irrational. Let {x} = x− bxc
denote the fractional part of x. Then m ∈ S(α) if and
only if f (m/α) ∈ (1−1/α,1)∪{0}. In particular, this
means that S(α)∩{1, . . . ,n} contains d(n+ 1)/αe− 1
elements, and similarly. Hence for every integer n,

n =

⌈
n+1

α

⌉
+

⌈
n+1

β

⌉
+

⌈
n+1

γ

⌉
−3.

Dividing through by n and taking the limit as n→ ∞

shows that 1/α + 1/β + 1/γ = 1. That in turn implies
that for all n,{
−n+1

α

}
+

{
−n+1

β

}
+

{
−n+1

γ

}
= 2.

Our desired contradiction is equivalent to showing that
the left side actually takes the value 1 for some n. Since
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the left side is an integer, it suffices to show that {−(n+
1)/α}+{−(n+1)/β}< 1 for some n.

A result in ergodic theory (the two-dimensional version
of the Weil equidistribution theorem) states that if 1,r,s
are linearly independent over the rationals, then the
set of points ({nr},{ns} is dense (and in fact equidis-
tributed) in the unit square. In particular, our claim def-
initely holds unless a/α + b/β = c for some integers
a,b,c.

On the other hand, suppose that such a relation

does hold. Since α and β are irrational, by the
one-dimensional Weil theorem, the set of points
({−n/α},{−n/β} is dense in the set of (x,y) in the
unit square such that ax+ by is an integer. It is simple
enough to show that this set meets the region {(x,y) ∈
[0,1]2 : x+ y < 1} unless a+ b is an integer, and that
would imply that 1/α +1/β , a quantity between 0 and
1, is an integer. We have our desired contradiction.
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A–1 Find the least number A such that for any two squares of
combined area 1, a rectangle of area A exists such that
the two squares can be packed in the rectangle (without
interior overlap). You may assume that the sides of the
squares are parallel to the sides of the rectangle.

A–2 Let C1 and C2 be circles whose centers are 10 units
apart, and whose radii are 1 and 3. Find, with proof,
the locus of all points M for which there exists points X
on C1 and Y on C2 such that M is the midpoint of the
line segment XY .

A–3 Suppose that each of 20 students has made a choice of
anywhere from 0 to 6 courses from a total of 6 courses
offered. Prove or disprove: there are 5 students and 2
courses such that all 5 have chosen both courses or all 5
have chosen neither course.

A–4 Let S be the set of ordered triples (a,b,c) of distinct
elements of a finite set A. Suppose that

1. (a,b,c) ∈ S if and only if (b,c,a) ∈ S;

2. (a,b,c) ∈ S if and only if (c,b,a) /∈ S;

3. (a,b,c) and (c,d,a) are both in S if and only if
(b,c,d) and (d,a,b) are both in S.

Prove that there exists a one-to-one function g from A
to R such that g(a) < g(b) < g(c) implies (a,b,c) ∈ S.
Note: R is the set of real numbers.

A–5 If p is a prime number greater than 3 and k = b2p/3c,
prove that the sum(

p
1

)
+

(
p
2

)
+ · · ·+

(
p
k

)
of binomial coefficients is divisible by p2.

A–6 Let c > 0 be a constant. Give a complete description,
with proof, of the set of all continuous functions f :
R→ R such that f (x) = f (x2 + c) for all x ∈ R. Note
that R denotes the set of real numbers.

B–1 Define a selfish set to be a set which has its own cardi-
nality (number of elements) as an element. Find, with
proof, the number of subsets of {1,2, . . . ,n} which are

minimal selfish sets, that is, selfish sets none of whose
proper subsets is selfish.

B–2 Show that for every positive integer n,(
2n−1

e

) 2n−1
2

< 1 ·3 ·5 · · ·(2n−1)<
(

2n+1
e

) 2n+1
2

.

B–3 Given that {x1,x2, . . . ,xn} = {1,2, . . . ,n}, find, with
proof, the largest possible value, as a function of n (with
n≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

B–4 For any square matrix A, we can define sinA by the
usual power series:

sinA =
∞

∑
n=0

(−1)n

(2n+1)!
A2n+1.

Prove or disprove: there exists a 2× 2 matrix A with
real entries such that

sinA =

(
1 1996
0 1

)
.

B–5 Given a finite string S of symbols X and O, we write
∆(S) for the number of X’s in S minus the number of
O’s. For example, ∆(XOOXOOX) = −1. We call a
string S balanced if every substring T of (consecutive
symbols of) S has −2 ≤ ∆(T ) ≤ 2. Thus, XOOXOOX
is not balanced, since it contains the substring OOXOO.
Find, with proof, the number of balanced strings of
length n.

B–6 Let (a1,b1),(a2,b2), . . . ,(an,bn) be the vertices of a
convex polygon which contains the origin in its inte-
rior. Prove that there exist positive real numbers x and y
such that

(a1,b1)xa1yb1 +(a2,b2)xa2yb2 + · · ·
+(an,bn)xanybn = (0,0).
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A–1 If x and y are the sides of two squares with combined
area 1, then x2 + y2 = 1. Suppose without loss of gen-
erality that x ≥ y. Then the shorter side of a rectangle
containing both squares without overlap must be at least
x, and the longer side must be at least x+ y. Hence the
desired value of A is the maximum of x(x+ y).

To find this maximum, we let x = cosθ ,y = sinθ with
θ ∈ [0,π/4]. Then we are to maximize

cos2
θ + sinθ cosθ =

1
2
(1+ cos2θ + sin2θ)

=
1
2
+

√
2

2
cos(2θ −π/4)

≤ 1+
√

2
2

,

with equality for θ = π/8. Hence this value is the de-
sired value of A.

A–2 Let O1 and O2 be the centers of C1 and C2, respectively.
(We are assuming C1 has radius 1 and C2 has radius
3.) Then the desired locus is an annulus centered at the
midpoint of O1O2, with inner radius 1 and outer radius
2.

For a fixed point Q on C2, the locus of the midpoints of
the segments PQ for P lying on C1 is the image of C1
under a homothety centered at Q of radius 1/2, which
is a circle of radius 1/2. As Q varies, the center of this
smaller circle traces out a circle C3 of radius 3/2 (again
by homothety). By considering the two positions of Q
on the line of centers of the circles, one sees that C3 is
centered at the midpoint of O1O2, and the locus is now
clearly the specified annulus.

A–3 The claim is false. There are
(6

3

)
= 20 ways to choose

3 of the 6 courses; have each student choose a different
set of 3 courses. Then each pair of courses is chosen by
4 students (corresponding to the four ways to complete
this pair to a set of 3 courses) and is not chosen by 4
students (corresponding to the 3-element subsets of the
remaining 4 courses).

Note: Assuming that no two students choose the same
courses, the above counterexample is unique (up to per-
muting students). This may be seen as follows: Given a
group of students, suppose that for any pair of courses
(among the six) there are at most 4 students taking both,
and at most 4 taking neither. Then there are at most
120 = (4+ 4)

(6
2

)
pairs (s, p), where s is a student, and

p is a set of two courses of which s is taking either both
or none. On the other hand, if a student s is taking k
courses, then he/she occurs in f (k) =

(k
2

)
+
(6−k

2

)
such

pairs (s, p). As f (k) is minimized for k = 3, it follows
that every student occurs in at least 6 =

(3
2

)
+
(3

2

)
such

pairs (s, p). Hence there can be at most 120/6 = 20 stu-
dents, with equality only if each student takes 3 courses,
and for each set of two courses, there are exactly 4 stu-
dents who take both and exactly 4 who take neither.
Since there are only 4 ways to complete a given pair
of courses to a set of 3, and only 4 ways to choose 3
courses not containing the given pair, the only way for
there to be 20 students (under our hypotheses) is if all
sets of 3 courses are in fact taken. This is the desired
conclusion.

However, Robin Chapman has pointed out that the so-
lution is not unique in the problem as stated, because a
given selection of courses may be made by more than
one student. One alternate solution is to identify the 6
courses with pairs of antipodal vertices of an icosahe-
dron, and have each student pick a different face and
choose the three vertices touching that face. In this ex-
ample, each of 10 selections is made by a pair of stu-
dents.

A–4 In fact, we will show that such a function g exists with
the property that (a,b,c) ∈ S if and only if g(d) <
g(e) < g( f ) for some cyclic permutation (d,e, f ) of
(a,b,c). We proceed by induction on the number of
elements in A. If A = {a,b,c} and (a,b,c) ∈ S, then
choose g with g(a) < g(b) < g(c), otherwise choose g
with g(a)> g(b)> g(c).

Now let z be an element of A and B = A−{z}. Let
a1, . . . ,an be the elements of B labeled such that g(a1)<
g(a2)< · · ·< g(an). We claim that there exists a unique
i ∈ {1, . . . ,n} such that (ai,z,ai+1) ∈ S, where hereafter
an+k = ak.

We show existence first. Suppose no such i exists; then
for all i,k ∈ {1, . . . ,n}, we have (ai+k,z,ai) /∈ S. This
holds by property 1 for k = 1 and by induction on k in
general, noting that

(ai+k+1,z,ai+k),(ai+k,z,ai) ∈ S
⇒ (ai+k,ai+k+1,z),(z,ai,ai+k) ∈ S
⇒ (ai+k+1,z,ai) ∈ S.

Applying this when k = n, we get (ai−1,z,ai) ∈ S, con-
tradicting the fact that (ai,z,ai−1) ∈ S. Hence existence
follows.

Now we show uniqueness. Suppose (ai,z,ai+1) ∈
S; then for any j 6= i − 1, i, i + 1, we have
(ai,ai+1,a j),(a j,a j+1,ai) ∈ S by the assumption on G.
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Therefore

(ai,z,ai+1),(ai+1,a j,ai) ∈ S⇒ (a j,ai,z) ∈ S
(ai,z,a j),(a j,a j+1,ai) ∈ S⇒ (z,a j,a j+1),

so (a j,z,a j+1) /∈ S. The case j = i+1 is ruled out by

(ai,z,ai+1),(ai+1,ai+2,ai) ∈ S⇒ (z,ai+1,ai+2) ∈ S

and the case j = i−1 is similar.

Finally, we put g(z) in (g(an),+∞) if i = n, and
(g(ai),g(ai+1)) otherwise; an analysis similar to that
above shows that g has the desired property.

A–5 (due to Lenny Ng) For 1≤ n≤ p−1, p divides
(p

n

)
and

1
p

(
p
n

)
=

1
n

p−1
1

p−2
2
· · · p−n+1

n−1

≡ (−1)n−1

n
(mod p),

where the congruence x≡ y (mod p) means that x−y is
a rational number whose numerator, in reduced form, is
divisible by p. Hence it suffices to show that

k

∑
n=1

(−1)n−1

n
≡ 0 (mod p).

We distinguish two cases based on p (mod6). First sup-
pose p = 6r+1, so that k = 4r. Then

4r

∑
n=1

(−1)n−1

n
=

4r

∑
n=1

1
n
−2

2r

∑
n=1

1
2n

=
2r

∑
n=1

(
1
n
− 1

n

)
+

3r

∑
n=2r+1

(
1
n
+

1
6r+1−n

)
=

3r

∑
n=2r+1

p
n(p−n)

≡ 0 (mod p),

since p = 6r+1.

Now suppose p = 6r+5, so that k = 4r+3. A similar
argument gives

4r+3

∑
n=1

(−1)n−1

n
=

4r+3

∑
n=1

1
n
+2

2r+1

∑
n=1

1
2n

=
2r+1

∑
n=1

(
1
n
− 1

n

)
+

3r+2

∑
n=2r+2

(
1
n
+

1
6r+5−n

)
=

3r+2

∑
n=2r+2

p
n(p−n)

≡ 0 (mod p).

A–6 We first consider the case c≤ 1/4; we shall show in this
case f must be constant. The relation

f (x) = f (x2 + c) = f ((−x)2 + c) = f (−x)

proves that f is an even function. Let r1 ≤ r2 be the
roots of x2 + c− x, both of which are real. If x > r2,

define x0 = x and xn+1 =
√

xn− c for each positive in-
teger x. By induction on n, r2 < xn+1 < xn for all n, so
the sequence {xn} tends to a limit L which is a root of
x2+c = x not less than r2. Of course this means L = r2.
Since f (x) = f (xn) for all n and xn→ r2, we conclude
f (x) = f (r2), so f is constant on x≥ r2.

If r1 < x < r2 and xn is defined as before, then by in-
duction, xn < xn+1 < r2. Note that the sequence can be
defined because r1 > c; the latter follows by noting that
the polynomial x2− x+ c is positive at x = c and has
its minimum at 1/2 > c, so both roots are greater than
c. In any case, we deduce that f (x) is also constant on
r1 ≤ x≤ r2.

Finally, suppose x < r1. Now define x0 = x,xn+1 =
x2

n + c. Given that xn < r1, we have xn+1 > xn. Thus if
we had xn < r1 for all n, by the same argument as in the
first case we deduce xn→ r1 and so f (x) = f (r1). Actu-
ally, this doesn’t happen; eventually we have xn > r1, in
which case f (x) = f (xn) = f (r1) by what we have al-
ready shown. We conclude that f is a constant function.
(Thanks to Marshall Buck for catching an inaccuracy in
a previous version of this solution.)

Now suppose c > 1/4. Then the sequence xn defined
by x0 = 0 and xn+1 = x2

n + c is strictly increasing and
has no limit point. Thus if we define f on [x0,x1] as any
continuous function with equal values on the endpoints,
and extend the definition from [xn,xn+1] to [xn+1,xn+2]
by the relation f (x) = f (x2 + c), and extend the defini-
tion further to x < 0 by the relation f (x) = f (−x), the
resulting function has the desired property. Moreover,
any function with that property clearly has this form.

B–1 Let [n] denote the set {1,2, . . . ,n}, and let fn denote
the number of minimal selfish subsets of [n]. Then the
number of minimal selfish subsets of [n] not containing
n is equal to fn−1. On the other hand, for any mini-
mal selfish subset of [n] containing n, by subtracting 1
from each element, and then taking away the element
n− 1 from the set, we obtain a minimal selfish subset
of [n− 2] (since 1 and n cannot both occur in a selfish
set). Conversely, any minimal selfish subset of [n− 2]
gives rise to a minimal selfish subset of [n] containing
n by the inverse procedure. Hence the number of mini-
mal selfish subsets of [n] containing n is fn−2. Thus we
obtain fn = fn−1 + fn−2. Since f1 = f2 = 1, we have
fn = Fn, where Fn denotes the nth term of the Fibonacci
sequence.

B–2 By estimating the area under the graph of lnx using up-
per and lower rectangles of width 2, we get∫ 2n−1

1
lnxdx≤ 2(ln(3)+ · · ·+ ln(2n−1))

≤
∫ 2n+1

3
lnxdx.

Since
∫

lnxdx = x lnx−x+C, we have, upon exponen-
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tiating and taking square roots,(
2n−1

e

) 2n−1
2

< (2n−1)
2n−1

2 e−n+1

≤ 1 ·3 · · ·(2n−1)

≤ (2n+1)
2n+1

2
e−n+1

33/2

<

(
2n+1

e

) 2n+1
2

,

using the fact that 1 < e < 3.

B–3 View x1, . . . ,xn as an arrangement of the numbers
1,2, . . . ,n on a circle. We prove that the optimal ar-
rangement is

. . . ,n−4,n−2,n,n−1,n−3, . . .

To show this, note that if a,b is a pair of adjacent num-
bers and c,d is another pair (read in the same order
around the circle) with a < d and b > c, then the seg-
ment from b to c can be reversed, increasing the sum
by

ac+bd−ab− cd = (d−a)(b− c)> 0.

Now relabel the numbers so they appear in order as fol-
lows:

. . . ,an−4,an−2,an = n,an−1,an−3, . . .

where without loss of generality we assume an−1 >
an−2. By considering the pairs an−2,an and an−1,an−3
and using the trivial fact an > an−1, we deduce an−2 >
an−3. We then compare the pairs an−4,an−2 and
an−1,an−3, and using that an−1 > an−2, we deduce
an−3 > an−4. Continuing in this fashion, we prove that
an > an−1 > · · · > a1 and so ak = k for k = 1,2, . . . ,n,
i.e. that the optimal arrangement is as claimed. In par-
ticular, the maximum value of the sum is

1 ·2+(n−1) ·n+1 ·3+2 ·4+ · · ·+(n−2) ·n
= 2+n2−n+(12−1)+ · · ·+[(n−1)2−1]

= n2−n+2− (n−1)+
(n−1)n(2n−1)

6

=
2n3 +3n2−11n+18

6
.

Alternate solution: We prove by induction that the value
given above is an upper bound; it is clearly a lower
bound because of the arrangement given above. As-
sume this is the case for n− 1. The optimal arrange-
ment for n is obtained from some arrangement for n−1
by inserting n between some pair x,y of adjacent terms.
This operation increases the sum by nx + ny− xy =
n2− (n− x)(n− y), which is an increasing function of
both x and y. In particular, this difference is maximal

when x and y equal n− 1 and n− 2. Fortunately, this
yields precisely the difference between the claimed up-
per bound for n and the assumed upper bound for n−1,
completing the induction.

B–4 Suppose such a matrix A exists. If the eigenvalues of
A (over the complex numbers) are distinct, then there
exists a complex matrix C such that B = CAC−1 is
diagonal. Consequently, sinB is diagonal. But then
sinA = C−1(sinB)C must be diagonalizable, a contra-
diction. Hence the eigenvalues of A are the same, and A
has a conjugate B =CAC−1 over the complex numbers
of the form (

x y
0 x

)
.

A direct computation shows that

sinB =

(
sinx y · cosx

0 sinx

)
.

Since sinA and sinB are conjugate, their eigenvalues
must be the same, and so we must have sinx = 1. This
implies cosx = 0, so that sinB is the identity matrix, as
must be sinA, a contradiction. Thus A cannot exist.

Alternate solution (due to Craig Helfgott and Alex
Popa): Define both sinA and cosA by the usual power
series. Since A commutes with itself, the power series
identity

sin2 A+ cos2 A = I

holds. But if sinA is the given matrix, then by the above

identity, cos2 A must equal
(

0 −2 ·1996
0 0

)
which is a

nilpotent matrix. Thus cosA is also nilpotent. How-
ever, the square of any 2× 2 nilpotent matrix must be
zero (e.g., by the Cayley-Hamilton theorem). This is a
contradiction.

B–5 Consider a 1× n checkerboard, in which we write an
n-letter string, one letter per square. If the string is
balanced, we can cover each pair of adjacent squares
containing the same letter with a 1× 2 domino, and
these will not overlap (because no three in a row can
be the same). Moreover, any domino is separated from
the next by an even number of squares, since they must
cover opposite letters, and the sequence must alternate
in between.

Conversely, any arrangement of dominoes where ad-
jacent dominoes are separated by an even number of
squares corresponds to a unique balanced string, once
we choose whether the string starts with X or O. In
other words, the number of balanced strings is twice
the number of acceptable domino arrangements.

We count these arrangements by numbering the squares
0,1, . . . ,n−1 and distinguishing whether the dominoes
start on even or odd numbers. Once this is decided, one
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simply chooses whether or not to put a domino in each
eligible position. Thus we have 2bn/2c arrangements in
the first case and 2b(n−1)/2c in the second, but note that
the case of no dominoes has been counted twice. Hence
the number of balanced strings is

2b(n+2)/2c+2b(n+1)/2c−2.

B–6 We will prove the claim assuming only that the convex
hull of the points (ai,bi) contains the origin in its inte-
rior. (Thanks to Marshall Buck for pointing out that the
last three words are necessary in the previous sentence!)
Let u = logx,v = logy so that the left-hand side of the
given equation is

(a1,b1)exp(a1u+b1v)+(a2,b2)exp(a2u+b2v)+
· · ·+(an,bn)exp(anu+bnv). (1)

Now note that (1) is the gradient of the function

f (u,v) = exp(a1u+b1v)+ exp(a2u+b2v)+
· · ·+ exp(anu+bnv),

and so it suffices to show f has a critical point. We will
in fact show f has a global minimum.

Clearly we have

f (u,v)≥ exp
(

max
i
(aiu+biv)

)
.

Note that this maximum is positive for (u,v) 6= (0,0): if
we had aiu+biv< 0 for all i, then the subset ur+vs< 0
of the rs-plane would be a half-plane containing all of
the points (ai,bi), whose convex hull would then not
contain the origin, a contradiction.

The function maxi(aiu+ biv) is clearly continuous on
the unit circle u2 + v2 = 1, which is compact. Hence it
has a global minimum M > 0, and so for all u,v,

max
i
(aiu+biv)≥M

√
u2 + v2.

In particular, f ≥ n + 1 on the disk of radius√
(n+1)/M. Since f (0,0) = n, the infimum of f is the

same over the entire uv-plane as over this disk, which
again is compact. Hence f attains its infimal value at
some point in the disk, which is the desired global min-
imum.

Noam Elkies has suggested an alternate solution as fol-
lows: for r > 0, draw the loop traced by (1) as (u,v)
travels counterclockwise around the circle u2 +v2 = r2.
For r = 0, this of course has winding number 0 about
any point, but for r large, one can show this loop has
winding number 1 about the origin, so somewhere in
between the loop must pass through the origin. (Prov-
ing this latter fact is a little tricky.)



The 58th William Lowell Putnam Mathematical Competition
Saturday, December 6, 1997

A–1 A rectangle, HOMF , has sides HO = 11 and OM = 5.
A triangle ABC has H as the intersection of the altitudes,
O the center of the circumscribed circle, M the midpoint
of BC, and F the foot of the altitude from A. What is
the length of BC?

A–2 Players 1,2,3, . . . ,n are seated around a table, and each
has a single penny. Player 1 passes a penny to player
2, who then passes two pennies to player 3. Player 3
then passes one penny to Player 4, who passes two pen-
nies to Player 5, and so on, players alternately passing
one penny or two to the next player who still has some
pennies. A player who runs out of pennies drops out
of the game and leaves the table. Find an infinite set
of numbers n for which some player ends up with all n
pennies.

A–3 Evaluate∫
∞

0

(
x− x3

2
+

x5

2 ·4
− x7

2 ·4 ·6
+ · · ·

)
(

1+
x2

22 +
x4

22 ·42 +
x6

22 ·42 ·62 + · · ·
)

dx.

A–4 Let G be a group with identity e and φ : G→ G a func-
tion such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists
an element a ∈ G such that ψ(x) = aφ(x) is a homo-
morphism (i.e. ψ(xy) = ψ(x)ψ(y) for all x,y ∈ G).

A–5 Let Nn denote the number of ordered n-tuples of pos-
itive integers (a1,a2, . . . ,an) such that 1/a1 + 1/a2 +
. . .+1/an = 1. Determine whether N10 is even or odd.

A–6 For a positive integer n and any real number c, define xk
recursively by x0 = 0, x1 = 1, and for k ≥ 0,

xk+2 =
cxk+1− (n− k)xk

k+1
.

Fix n and then take c to be the largest value for which
xn+1 = 0. Find xk in terms of n and k, 1≤ k ≤ n.

B–1 Let {x} denote the distance between the real number
x and the nearest integer. For each positive integer n,
evaluate

Fn =
6n−1

∑
m=1

min({ m
6n
},{ m

3n
}).

(Here min(a,b) denotes the minimum of a and b.)
B–2 Let f be a twice-differentiable real-valued function sat-

isfying

f (x)+ f ′′(x) =−xg(x) f ′(x),

where g(x) ≥ 0 for all real x. Prove that | f (x)| is
bounded.

B–3 For each positive integer n, write the sum ∑
n
m=1 1/m in

the form pn/qn, where pn and qn are relatively prime
positive integers. Determine all n such that 5 does not
divide qn.

B–4 Let am,n denote the coefficient of xn in the expansion of
(1+ x+ x2)m. Prove that for all [integers] k ≥ 0,

0≤
b 2k

3 c

∑
i=0

(−1)iak−i,i ≤ 1.

B–5 Prove that for n≥ 2,

n terms︷︸︸︷
22···

2
≡

n−1 terms︷︸︸︷
22···

2
(mod n).

B–6 The dissection of the 3–4–5 triangle shown below (into
four congruent right triangles similar to the original) has
diameter 5/2. Find the least diameter of a dissection of
this triangle into four parts. (The diameter of a dissec-
tion is the least upper bound of the distances between
pairs of points belonging to the same part.)
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A–1 The centroid G of the triangle is collinear with H and O
(Euler line), and the centroid lies two-thirds of the way
from A to M. Therefore H is also two-thirds of the way
from A to F , so AF = 15. Since the triangles BFH and
AFC are similar (they’re right triangles and

∠HBC = π/2−∠C = ∠CAF),

we have

BF/FH = AF/FC

or

BF ·FC = FH ·AF = 75.

Now

BC2 = (BF +FC)2 = (BF−FC)2 +4BF ·FC,

but

BF−FC = BM+MF− (MC−MF) = 2MF = 22,

so

BC =
√

222 +4 ·75 =
√

784 = 28.

A–2 We show more precisely that the game terminates with
one player holding all of the pennies if and only if n =
2m+1 or n= 2m+2 for some m. First suppose we are in
the following situation for some k ≥ 2. (Note: for us, a
“move” consists of two turns, starting with a one-penny
pass.)

– Except for the player to move, each player has k
pennies;

– The player to move has at least k pennies.

We claim then that the game terminates if and only if
the number of players is a power of 2. First suppose
the number of players is even; then after m complete
rounds, every other player, starting with the player who
moved first, will have m more pennies than initially, and
the others will all have 0. Thus we are reduced to the
situation with half as many players; by this process, we
eventually reduce to the case where the number of play-
ers is odd. However, if there is more than one player,
after two complete rounds everyone has as many pen-
nies as they did before (here we need m ≥ 2), so the
game fails to terminate. This verifies the claim.

Returning to the original game, note that after one com-
plete round, b n−1

2 c players remain, each with 2 pennies
except for the player to move, who has either 3 or 4 pen-
nies. Thus by the above argument, the game terminates
if and only if b n−1

2 c is a power of 2, that is, if and only
if n = 2m +1 or n = 2m +2 for some m.

A–3 Note that the series on the left is simply xexp(−x2/2).
By integration by parts,∫

∞

0
x2n+1e−x2/2dx = 2n

∫
∞

0
x2n−1e−x2/2dx

and so by induction,∫
∞

0
x2n+1e−x2/2dx = 2×4×·· ·×2n.

Thus the desired integral is simply

∞

∑
n=0

1
2nn!

=
√

e.

A–4 In order to have ψ(x) = aφ(x) for all x, we must in par-
ticular have this for x = e, and so we take a = φ(e)−1.
We first note that

φ(g)φ(e)φ(g−1) = φ(e)φ(g)φ(g−1)

and so φ(g) commutes with φ(e) for all g. Next, we
note that

φ(x)φ(y)φ(y−1x−1) = φ(e)φ(xy)φ(y−1x−1)

and using the commutativity of φ(e), we deduce

φ(e)−1
φ(x)φ(e)−1

φ(y) = φ(e)−1
φ(xy)

or ψ(xy) = ψ(x)ψ(y), as desired.

A–5 We may discard any solutions for which a1 6= a2, since
those come in pairs; so assume a1 = a2. Similarly, we
may assume that a3 = a4, a5 = a6, a7 = a8, a9 = a10.
Thus we get the equation

2/a1 +2/a3 +2/a5 +2/a7 +2/a9 = 1.

Again, we may assume a1 = a3 and a5 = a7, so we get
4/a1+4/a5+2/a9 = 1; and a1 = a5, so 8/a1+2/a9 =
1. This implies that (a1− 8)(a9− 2) = 16, which by
counting has 5 solutions. Thus N10 is odd.

A–6 Clearly xn+1 is a polynomial in c of degree n, so it suf-
fices to identify n values of c for which xn+1 = 0. We
claim these are c = n− 1− 2r for r = 0,1, . . . ,n− 1;
in this case, xk is the coefficient of tk−1 in the polyno-
mial f (t) = (1− t)r(1+ t)n−1−r. This can be verified
by noticing that f satisfies the differential equation

f ′(t)
f (t)

=
n−1− r

1+ t
− r

1− t
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(by logarithmic differentiation) or equivalently,

(1− t2) f ′(t) = f (t)[(n−1− r)(1− t)− r(1+ t)]
= f (t)[(n−1−2r)− (n−1)t]

and then taking the coefficient of tk on both sides:

(k+1)xk+2− (k−1)xk =

(n−1−2r)xk+1− (n−1)xk.

In particular, the largest such c is n−1, and xk =
(n−1

k−1

)
for k = 1,2, . . . ,n.

Greg Kuperberg has suggested an alternate approach to
show directly that c = n−1 is the largest root, without
computing the others. Note that the condition xn+1 = 0
states that (x1, . . . ,xn) is an eigenvector of the matrix

Ai j =

 i j = i+1
n− j j = i−1

0 otherwise

with eigenvalue c. By the Perron-Frobenius theorem,
A has a unique eigenvector with positive entries, whose
eigenvalue has modulus greater than or equal to that of
any other eigenvalue, which proves the claim.

B–1 It is trivial to check that m
6n = { m

6n} ≤ {
m
3n} for 1 ≤

m ≤ 2n, that 1− m
3n = { m

3n} ≤ {
m
6n} for 2n ≤ m ≤ 3n,

that m
3n − 1 = { m

3n} ≤ {
m
6n} for 3n ≤ m ≤ 4n, and that

1− m
6n = { m

6n} ≤ {
m
3n} for 4n ≤ m ≤ 6n. Therefore the

desired sum is

2n−1

∑
m=1

m
6n

+
3n−1

∑
m=2n

(
1− m

3n

)
+

4n−1

∑
m=3n

( m
3n
−1
)
+

6n−1

∑
m=4n

(
1− m

6n

)
= n.

B–2 It suffices to show that | f (x)| is bounded for x≥ 0, since
f (−x) satisfies the same equation as f (x). But then

d
dx

(
( f (x))2 +( f ′(x))2)= 2 f ′(x)( f (x)+ f ′′(x))

=−2xg(x)( f ′(x))2 ≤ 0,

so that ( f (x))2 ≤ ( f (0))2 +( f ′(0))2 for x≥ 0.

B–3 The only such n are the numbers 1–4, 20–24, 100–104,
and 120–124. For the proof let

Hn =
n

∑
m=1

1
m

and introduce the auxiliary function

In = ∑
1≤m≤n,(m,5)=1

1
m
.

It is immediate (e.g., by induction) that In ≡
1,−1,1,0,0 (mod 5) for n≡ 1,2,3,4,5 (mod 5) respec-
tively, and moreover, we have the equality

Hn =
k

∑
m=0

1
5m Ibn/5mc,

where k = k(n) denotes the largest integer such that
5k ≤ n. We wish to determine those n such that the
above sum has nonnegative 5–valuation. (By the 5–
valuation of a number a we mean the largest integer v
such that a/5v is an integer.)

If bn/5kc ≤ 3, then the last term in the above sum
has 5–valuation −k, since I1, I2, I3 each have valua-
tion 0; on the other hand, all other terms must have 5–
valuation strictly larger than −k. It follows that Hn has
5–valuation exactly −k; in particular, Hn has nonneg-
ative 5–valuation in this case if and only if k = 0, i.e.,
n = 1, 2, or 3.

Suppose now that bn/5kc= 4. Then we must also have
20≤ bn/5k−1c ≤ 24. The former condition implies that
the last term of the above sum is I4/5k = 1/(12 ·5k−2),
which has 5–valuation −(k−2).

It is clear that I20 ≡ I24 ≡ 0 (mod 25); hence if bn/5k−1c
equals 20 or 24, then the second–to–last term of the
above sum (if it exists) has valuation at least −(k−
3). The third–to–last term (if it exists) is of the form
Ir/5k−2, so that the sum of the last term and the third to
last term takes the form (Ir +1/12)/5k−2. Since Ir can
be congruent only to 0,1, or -1 (mod 5), and 1/12 ≡ 3
(mod 5), we conclude that the sum of the last term
and third–to–last term has valuation −(k− 2), while
all other terms have valuation strictly higher. Hence
Hn has nonnegative 5–valuation in this case only when
k ≤ 2, leading to the values n = 4 (arising from k = 0),
20,24 (arising from k = 1 and bn/5k−1c = 20 and 24
resp.), 101, 102, 103, and 104 (arising from k = 2,
bn/5k−1c = 20) and 120, 121, 122, 123, and 124 (aris-
ing from k = 2, bn/5k−1c= 24).

Finally, suppose bn/5kc = 4 and bn/5k−1c = 21, 22,
or 23. Then as before, the first condition implies that
the last term of the sum in (*) has valuation −(k− 2),
while the second condition implies that the second–to–
last term in the same sum has valuation−(k−1). Hence
all terms in the sum (*) have 5–valuation strictly higher
than −(k− 1), except for the second–to–last term, and
therefore Hn has 5–valuation −(k− 1) in this case. In
particular, Hn is integral (mod 5) in this case if and only
if k ≤ 1, which gives the additional values n = 21, 22,
and 23.

B–4 Let sk =∑i(−1)iak−1,i be the given sum (note that ak−1,i

is nonzero precisely for i = 0, . . . ,b 2k
3 c). Since

am+1,n = am,n +am,n−1 +am,n−2,
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we have

sk− sk−1 + sk+2 = ∑
i
(−1)i(an−i,i +an−i,i+1 +an−i,i+2)

= ∑
i
(−1)ian−i+1,i+2 = sk+3.

By computing s0 = 1,s1 = 1,s2 = 0, we may easily
verify by induction that s4 j = s4 j+1 = 1 and s4 j+2 =
s4 j+3 = 0 for all j≥ 0. (Alternate solution suggested by
John Rickert: write S(x,y) = ∑

∞
i=0(y+xy2 +x2y3)i, and

note note that sk is the coefficient of yk in S(−1,y) =
(1+ y)/(1− y4).)

B–5 Define the sequence x1 = 2, xn = 2xn−1 for n > 1. It suf-
fices to show that for every n, xm ≡ xm+1 ≡ ·· · (mod n)
for some m < n. We do this by induction on n, with
n = 2 being obvious.

Write n = 2ab, where b is odd. It suffices to show that
xm ≡ ·· · modulo 2a and modulo b, for some m < n.
For the former, we only need xn−1 ≥ a, but clearly
xn−1 ≥ n by induction on n. For the latter, note that
xm ≡ xm+1 ≡ ·· · (mod b) as long as xm−1 ≡ xm ≡ ·· ·
(mod φ(b)), where φ(n) is the Euler totient function.
By hypothesis, this occurs for some m < φ(b)+1 ≤ n.
(Thanks to Anoop Kulkarni for catching a lethal typo in
an earlier version.)

B–6 The answer is 25/13. Place the triangle on the cartesian
plane so that its vertices are at C =(0,0),A=(0,3),B=
(4,0). Define also the points D = (20/13,24/13), and
E = (27/13,0). We then compute that

25
13

= AD = BE = DE

27
13

= BC−CE = BE < BC

39
13

= AC <
√

AC2 +CE2 = AE

40
13

= AB−AD = BD < AB

and that AD < CD. In any dissection of the triangle
into four parts, some two of A,B,C,D,E must belong to
the same part, forcing the least diameter to be at least
25/13.

We now exhibit a dissection with least diameter 25/13.
(Some variations of this dissection are possible.) Put
F = (15/13,19/13), G = (15/13,0), H = (0,19/13),
J = (32/15,15/13), and divide ABC into the convex
polygonal regions ADFH, BEJ, CGFH, DFGEJ. To
check that this dissection has least diameter 25/13, it
suffices (by the following remark) to check that the dis-
tances

AD,AF,AH,BE,BJ,DE,CF,CG,CH,

DF,DG,DH,DJ,EF,EG,EJ,FG,FH,FJ,GJ

are all at most 25/13. This can be checked by a long
numerical calculation, which we omit in favor of some
shortcuts: note that ADFH and BEJ are contained in
circular sectors centered at A and B, respectively, of ra-
dius 25/13 and angle less than π/3, while CGFH is a
rectangle with diameter CF < 25/13.

Remark. The preceding argument uses implicitly the
fact that for P a simple closed polygon in the plane, if
we let S denote the set of points on or within P, then the
maximum distance between two points of S occurs be-
tween some pair of vertices of P. This is an immediate
consequence of the compactness of S (which guarantees
the existence of a maximum) and the convexity of the
function taking (x,y)∈ S×S to the squared distance be-
tween x and y (which is obvious in terms of Cartesian
coordinates).



The 59th William Lowell Putnam Mathematical Competition
Saturday, December 5, 1998

A–1 A right circular cone has base of radius 1 and height 3.
A cube is inscribed in the cone so that one face of the
cube is contained in the base of the cone. What is the
side-length of the cube?

A–2 Let s be any arc of the unit circle lying entirely in the
first quadrant. Let A be the area of the region lying be-
low s and above the x-axis and let B be the area of the
region lying to the right of the y-axis and to the left of
s. Prove that A+B depends only on the arc length, and
not on the position, of s.

A–3 Let f be a real function on the real line with continuous
third derivative. Prove that there exists a point a such
that

f (a) · f ′(a) · f ′′(a) · f ′′′(a)≥ 0.

A–4 Let A1 = 0 and A2 = 1. For n > 2, the number An is de-
fined by concatenating the decimal expansions of An−1
and An−2 from left to right. For example A3 = A2A1 =
10, A4 =A3A2 = 101, A5 =A4A3 = 10110, and so forth.
Determine all n such that 11 divides An.

A–5 Let F be a finite collection of open discs in R2 whose
union contains a set E ⊆ R2. Show that there is a pair-
wise disjoint subcollection D1, . . . ,Dn in F such that

E ⊆ ∪n
j=13D j.

Here, if D is the disc of radius r and center P, then 3D
is the disc of radius 3r and center P.

A–6 Let A,B,C denote distinct points with integer coordi-
nates in R2. Prove that if

(|AB|+ |BC|)2 < 8 · [ABC]+1

then A,B,C are three vertices of a square. Here |XY |
is the length of segment XY and [ABC] is the area of
triangle ABC.

B–1 Find the minimum value of

(x+1/x)6− (x6 +1/x6)−2
(x+1/x)3 +(x3 +1/x3)

for x > 0.

B–2 Given a point (a,b) with 0 < b < a, determine the min-
imum perimeter of a triangle with one vertex at (a,b),
one on the x-axis, and one on the line y = x. You may
assume that a triangle of minimum perimeter exists.

B–3 let H be the unit hemisphere {(x,y,z) : x2 + y2 + z2 =
1,z ≥ 0}, C the unit circle {(x,y,0) : x2 + y2 = 1}, and
P the regular pentagon inscribed in C. Determine the
surface area of that portion of H lying over the pla-
nar region inside P, and write your answer in the form
Asinα +Bcosβ , where A,B,α,β are real numbers.

B–4 Find necessary and sufficient conditions on positive in-
tegers m and n so that

mn−1

∑
i=0

(−1)bi/mc+bi/nc = 0.

B–5 Let N be the positive integer with 1998 decimal digits,
all of them 1; that is,

N = 1111 · · ·11.

Find the thousandth digit after the decimal point of
√

N.

B–6 Prove that, for any integers a,b,c, there exists a positive
integer n such that

√
n3 +an2 +bn+ c is not an integer.
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A–1 Consider the plane containing both the axis of the cone
and two opposite vertices of the cube’s bottom face.
The cross section of the cone and the cube in this plane
consists of a rectangle of sides s and s

√
2 inscribed in

an isosceles triangle of base 2 and height 3, where s is
the side-length of the cube. (The s

√
2 side of the rect-

angle lies on the base of the triangle.) Similar triangles
yield s/3 = (1− s

√
2/2)/1, or s = (9

√
2−6)/7.

A–2 First solution: to fix notation, let A be the area of re-
gion DEFG, and B be the area of DEIH; further let C
denote the area of sector ODE, which only depends on
the arc length of s. If [XY Z] denotes the area of trian-
gle [XY Z], then we have A = C+ [OEG]− [ODF ] and
B = C + [ODH]− [OEI]. But clearly [OEG] = [OEI]
and [ODF ] = [ODH], and so A+B = 2C.

O F G

E

D

I

H

Second solution: We may parametrize a point in s by
any of x, y, or θ = tan−1(y/x). Then A and B are just the
integrals of ydx and xdy over the appropriate intervals;
thus A+B is the integral of xdy− ydx (minus because
the limits of integration are reversed). But dθ = xdy−
ydx, and so A+B = ∆θ is precisely the radian measure
of s. (Of course, one can perfectly well do this problem
by computing the two integrals separately. But what’s
the fun in that?)

A–3 If at least one of f (a), f ′(a), f ′′(a), or f ′′′(a) vanishes
at some point a, then we are done. Hence we may as-
sume each of f (x), f ′(x), f ′′(x), and f ′′′(x) is either
strictly positive or strictly negative on the real line. By
replacing f (x) by − f (x) if necessary, we may assume
f ′′(x) > 0; by replacing f (x) by f (−x) if necessary,
we may assume f ′′′(x)> 0. (Notice that these substitu-
tions do not change the sign of f (x) f ′(x) f ′′(x) f ′′′(x).)
Now f ′′(x) > 0 implies that f ′(x) is increasing, and
f ′′′(x) > 0 implies that f ′(x) is convex, so that f ′(x+
a)> f ′(x)+a f ′′(x) for all x and a. By letting a increase
in the latter inequality, we see that f ′(x+ a) must be
positive for sufficiently large a; it follows that f ′(x)> 0

for all x. Similarly, f ′(x)> 0 and f ′′(x)> 0 imply that
f (x)> 0 for all x. Therefore f (x) f ′(x) f ′′(x) f ′′′(x)> 0
for all x, and we are done.

A–4 The number of digits in the decimal expansion of An is
the Fibonacci number Fn, where F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n > 2. It follows that the se-
quence {An}, modulo 11, satisfies the recursion An =
(−1)Fn−2An−1 +An−2. (Notice that the recursion for An
depends only on the value of Fn−2 modulo 2.) Using
these recursions, we find that A7≡ 0 and A8≡ 1 modulo
11, and that F7 ≡ 1 and F8 ≡ 1 modulo 2. It follows that
An ≡ An+6 (mod 11) for all n ≥ 1. We find that among
A1,A2,A3,A4,A5, and A6, only A1 vanishes modulo 11.
Thus 11 divides An if and only if n = 6k+ 1 for some
nonnegative integer k.

A–5 Define the sequence Di by the following greedy algo-
rithm: let D1 be the disc of largest radius (breaking ties
arbitrarily), let D2 be the disc of largest radius not meet-
ing D1, let D3 be the disc of largest radius not meeting
D1 or D2, and so on, up to some final disc Dn. To see
that E ⊆∪n

j=13D j, consider a point in E; if it lies in one
of the Di, we are done. Otherwise, it lies in a disc D of
radius r, which meets one of the Di having radius s≥ r
(this is the only reason a disc can be skipped in our al-
gorithm). Thus the centers lie at a distance t < s+r, and
so every point at distance less than r from the center of
D lies at distance at most r+ t < 3s from the center of
the corresponding Di.

A–6 Recall the inequalities |AB|2+ |BC|2≥ 2|AB||BC| (AM-
GM) and |AB||BC| ≥ 2[ABC] (Law of Sines). Also re-
call that the area of a triangle with integer coordinates
is half an integer (if its vertices lie at (0,0),(p,q),(r,s),
the area is |ps−qr|/2), and that if A and B have integer
coordinates, then |AB|2 is an integer (Pythagoras). Now
observe that

8[ABC]≤ |AB|2 + |BC|2 +4[ABC]

≤ |AB|2 + |BC|2 +2|AB||BC|
< 8[ABC]+1,

and that the first and second expressions are both in-
tegers. We conclude that 8[ABC] = |AB|2 + |BC|2 +
4[ABC], and so |AB|2 + |BC|2 = 2|AB||BC| = 4[ABC];
that is, B is a right angle and AB = BC, as desired.

B–1 Notice that

(x+1/x)6− (x6 +1/x6)−2
(x+1/x)3 +(x3 +1/x3)

=

(x+1/x)3− (x3 +1/x3) = 3(x+1/x)
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(difference of squares). The latter is easily seen (e.g., by
AM-GM) to have minimum value 6 (achieved at x = 1).

B–2 Consider a triangle as described by the problem; label
its vertices A,B,C so that A= (a,b), B lies on the x-axis,
and C lies on the line y = x. Further let D = (a,−b) be
the reflection of A in the x-axis, and let E = (b,a) be
the reflection of A in the line y = x. Then AB = DB and
AC = CE, and so the perimeter of ABC is DB+BC +

CE ≥ DE =
√

(a−b)2 +(a+b)2 =
√

2a2 +2b2. It is
clear that this lower bound can be achieved; just set B
(resp. C) to be the intersection between the segment
DE and the x-axis (resp. line x = y); thus the minimum
perimeter is in fact

√
2a2 +2b2.

B–3 We use the well-known result that the surface area of
the “sphere cap” {(x,y,z) |x2 + y2 + z2 = 1, z ≥ z0} is
simply 2π(1− z0). (This result is easily verified using
calculus; we omit the derivation here.) Now the desired
surface area is just 2π minus the surface areas of five
identical halves of sphere caps; these caps, up to isome-
try, correspond to z0 being the distance from the center
of the pentagon to any of its sides, i.e., z0 = cos π

5 . Thus
the desired area is 2π− 5

2

(
2π(1− cos π

5 )
)
= 5π cos π

5 −
3π (i.e., B = π/2).

B–4 For convenience, define fm,n(i) = b i
mc+ b

i
nc, so that

the given sum is S(m,n) = ∑
mn−1
i=0 (−1) fm,n(i). If m and

n are both odd, then S(m,n) is the sum of an odd num-
ber of ±1’s, and thus cannot be zero. Now consider
the case where m and n have opposite parity. Note that
b i

mc+ bk−
i+1
m c = k− 1 for all integers i,k,m. Thus

b i
mc+ b

mn−i−1
m c = n− 1 and b i

nc+ b
mn−i−1

n c = m− 1;
this implies that fm,n(i)+ fm,n(mn− i−1) =m+n−2 is
odd, and so (−1) fm,n(i) =−(−1) fm,n(mn−i−1) for all i. It
follows that S(m,n) = 0 if m and n have opposite parity.

Now suppose that m = 2k and n = 2l are both even.
Then b 2 j

2mc= b
2 j+1

2m c for all j, so S can be computed as
twice the sum over only even indices:

S(2k,2l) = 2
2kl−1

∑
i=0

(−1) fk,l(i) = S(k, l)(1+(−1)k+l).

Thus S(2k,2l) vanishes if and only if S(k, l) vanishes (if
1+(−1)k+l = 0, then k and l have opposite parity and
so S(k, l) also vanishes).

Piecing our various cases together, we easily deduce
that S(m,n) = 0 if and only if the highest powers of 2
dividing m and n are different.

B–5 Write N = (101998−1)/9. Then

√
N =

10999

3

√
1−10−1998

=
10999

3
(1− 1

2
10−1998 + r),

where r < 10−2000. Now the digits after the decimal
point of 10999/3 are given by .3333 . . ., while the dig-
its after the decimal point of 1

6 10−999 are given by
.00000 . . .1666666 . . .. It follows that the first 1000 dig-
its of

√
N are given by .33333 . . .3331; in particular, the

thousandth digit is 1.

B–6 First solution: Write p(n) = n3 + an2 + bn+ c. Note
that p(n) and p(n+ 2) have the same parity, and recall
that any perfect square is congruent to 0 or 1 (mod 4).
Thus if p(n) and p(n+ 2) are perfect squares, they are
congruent mod 4. But p(n+2)− p(n)≡ 2n2+2b (mod
4), which is not divisible by 4 if n and b have opposite
parity.

Second solution: We prove more generally that for any
polynomial P(z) with integer coefficients which is not
a perfect square, there exists a positive integer n such
that P(n) is not a perfect square. Of course it suffices
to assume P(z) has no repeated factors, which is to say
P(z) and its derivative P′(z) are relatively prime.

In particular, if we carry out the Euclidean algorithm
on P(z) and P′(z) without dividing, we get an integer
D (the discriminant of P) such that the greatest com-
mon divisor of P(n) and P′(n) divides D for any n.
Now there exist infinitely many primes p such that p
divides P(n) for some n: if there were only finitely
many, say, p1, . . . , pk, then for any n divisible by m =
P(0)p1 p2 · · · pk, we have P(n)≡ P(0) (mod m), that is,
P(n)/P(0) is not divisible by p1, . . . , pk, so must be±1,
but then P takes some value infinitely many times, con-
tradiction. In particular, we can choose some such p not
dividing D, and choose n such that p divides P(n). Then
P(n+kp)≡ P(n)+kpP′(n)(mod p) (write out the Tay-
lor series of the left side); in particular, since p does not
divide P′(n), we can find some k such that P(n+ kp)
is divisible by p but not by p2, and so is not a perfect
square.

Third solution: (from David Rusin, David Savitt, and
Richard Stanley independently) Assume that n3+an2+
bn+ c is a square for all n > 0. For sufficiently large n,

(n3/2 +
1
2

an1/2−1)2 < n3 +an2 +bn+ c

< (n3/2 +
1
2

an1/2 +1)2;

thus if n is a large even perfect square, we have n3 +
an2+bn+c = (n3/2+ 1

2 an1/2)2. We conclude this is an
equality of polynomials, but the right-hand side is not a
perfect square for n an even non-square, contradiction.
(The reader might try generalizing this approach to ar-
bitrary polynomials. A related argument, due to Greg
Kuperberg: write

√
n3 +an2 +bn+ c as n3/2 times a

power series in 1/n and take two finite differences to
get an expression which tends to 0 as n→∞, contradic-
tion.)

Note: in case n3 +an2 +bn+ c has no repeated factors,
it is a square for only finitely many n, by a theorem
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of Siegel; work of Baker gives an explicit (but large)
bound on such n. (I don’t know whether the graders
will accept this as a solution, though.)
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A–1 Find polynomials f (x),g(x), and h(x), if they exist, such
that for all x,

| f (x)|− |g(x)|+h(x) =


−1 if x <−1
3x+2 if −1≤ x≤ 0
−2x+2 if x > 0.

A–2 Let p(x) be a polynomial that is nonnegative for all
real x. Prove that for some k, there are polynomials
f1(x), . . . , fk(x) such that

p(x) =
k

∑
j=1

( f j(x))2.

A–3 Consider the power series expansion

1
1−2x− x2 =

∞

∑
n=0

anxn.

Prove that, for each integer n≥ 0, there is an integer m
such that

a2
n +a2

n+1 = am.

A–4 Sum the series

∞

∑
m=1

∞

∑
n=1

m2n
3m(n3m +m3n)

.

A–5 Prove that there is a constant C such that, if p(x) is a
polynomial of degree 1999, then

|p(0)| ≤C
∫ 1

−1
|p(x)|dx.

A–6 The sequence (an)n≥1 is defined by a1 = 1,a2 = 2,a3 =
24, and, for n≥ 4,

an =
6a2

n−1an−3−8an−1a2
n−2

an−2an−3
.

Show that, for all n, an is an integer multiple of n.

B–1 Right triangle ABC has right angle at C and ∠BAC = θ ;
the point D is chosen on AB so that |AC| = |AD| = 1;
the point E is chosen on BC so that ∠CDE = θ . The
perpendicular to BC at E meets AB at F . Evaluate
limθ→0 |EF |.

B–2 Let P(x) be a polynomial of degree n such that P(x) =
Q(x)P′′(x), where Q(x) is a quadratic polynomial and
P′′(x) is the second derivative of P(x). Show that if
P(x) has at least two distinct roots then it must have n
distinct roots.

B–3 Let A = {(x,y) : 0≤ x,y < 1}. For (x,y) ∈ A, let

S(x,y) = ∑
1
2≤

m
n ≤2

xmyn,

where the sum ranges over all pairs (m,n) of positive
integers satisfying the indicated inequalities. Evaluate

lim
(x,y)→(1,1),(x,y)∈A

(1− xy2)(1− x2y)S(x,y).

B–4 Let f be a real function with a continuous third deriva-
tive such that f (x), f ′(x), f ′′(x), f ′′′(x) are positive for
all x. Suppose that f ′′′(x) ≤ f (x) for all x. Show that
f ′(x)< 2 f (x) for all x.

B–5 For an integer n ≥ 3, let θ = 2π/n. Evaluate the de-
terminant of the n× n matrix I + A, where I is the
n× n identity matrix and A = (a jk) has entries a jk =
cos( jθ + kθ) for all j,k.

B–6 Let S be a finite set of integers, each greater than 1.
Suppose that for each integer n there is some s ∈ S such
that gcd(s,n) = 1 or gcd(s,n) = s. Show that there exist
s, t ∈ S such that gcd(s, t) is prime.
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A–1 Note that if r(x) and s(x) are any two functions, then

max(r,s) = (r+ s+ |r− s|)/2.

Therefore, if F(x) is the given function, we have

F(x) = max{−3x−3,0}−max{5x,0}+3x+2
= (−3x−3+ |3x+3|)/2
− (5x+ |5x|)/2+3x+2

= |(3x+3)/2|− |5x/2|− x+
1
2
,

so we may set f (x) = (3x + 3)/2, g(x) = 5x/2, and
h(x) =−x+ 1

2 .

A–2 First solution: First factor p(x) = q(x)r(x), where q has
all real roots and r has all complex roots. Notice that
each root of q has even multiplicity, otherwise p would
have a sign change at that root. Thus q(x) has a square
root s(x).

Now write r(x) = ∏
k
j=1(x− a j)(x− a j) (possible be-

cause r has roots in complex conjugate pairs). Write
∏

k
j=1(x−a j) = t(x)+ iu(x) with t,x having real coeffi-

cients. Then for x real,

p(x) = q(x)r(x)

= s(x)2(t(x)+ iu(x))(t(x)+ iu(x))

= (s(x)t(x))2 +(s(x)u(x))2.

(Alternatively, one can factor r(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)

Second solution: We proceed by induction on the de-
gree of p, with base case where p has degree 0. As in
the first solution, we may reduce to a smaller degree in
case p has any real roots, so assume it has none. Then
p(x)> 0 for all real x, and since p(x)→∞ for x→±∞,
p has a minimum value c. Now p(x)− c has real roots,
so as above, we deduce that p(x)−c is a sum of squares.
Now add one more square, namely (

√
c)2, to get p(x)

as a sum of squares.

A–3 First solution: Computing the coefficient of xn+1 in the
identity (1− 2x− x2)∑

∞
m=0 amxm = 1 yields the recur-

rence an+1 = 2an + an−1; the sequence {an} is then
characterized by this recurrence and the initial condi-
tions a0 = 1,a1 = 2.

Define the sequence {bn} by b2n = a2
n−1 +a2

n, b2n+1 =

an(an−1 +an+1). Then

2b2n+1 +b2n = 2anan+1 +2an−1an +a2
n−1 +a2

n

= 2anan+1 +an−1an+1 +a2
n

= a2
n+1 +a2

n = b2n+2,

and similarly 2b2n + b2n−1 = b2n+1, so that {bn} satis-
fies the same recurrence as {an}. Since further b0 =
1,b1 = 2 (where we use the recurrence for {an} to cal-
culate a−1 = 0), we deduce that bn = an for all n. In
particular, a2

n +a2
n+1 = b2n+2 = a2n+2.

Second solution: Note that

1
1−2x− x2

=
1

2
√

2

( √
2+1

1− (1+
√

2)x
+

√
2−1

1− (1−
√

2)x

)

and that

1
1+(1±

√
2)x

=
∞

∑
n=0

(1±
√

2)nxn,

so that

an =
1

2
√

2

(
(
√

2+1)n+1− (1−
√

2)n+1
)
.

A simple computation (omitted here) now shows that
a2

n +a2
n+1 = a2n+2.

Third solution (by Richard Stanley): Let A be the matrix(
0 1
1 2

)
. A simple induction argument shows that

An+2 =

(
an an+1

an+1 an+2

)
.

The desired result now follows from comparing the top
left corner entries of the equality An+2An+2 = A2n+4.

A–4 Denote the series by S, and let an = 3n/n. Note that

S =
∞

∑
m=1

∞

∑
n=1

1
am(am +an)

=
∞

∑
m=1

∞

∑
n=1

1
an(am +an)

,

where the second equality follows by interchanging m
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and n. Thus

2S = ∑
m

∑
n

(
1

am(am +an)
+

1
an(am +an)

)
= ∑

m
∑
n

1
aman

=

(
∞

∑
n=1

n
3n

)2

.

But
∞

∑
n=1

n
3n =

3
4

since, e.g., it’s f ′(1), where

f (x) =
∞

∑
n=0

xn

3n =
3

3− x
,

and we conclude that S = 9/32.

A–5 First solution: (by Reid Barton) Let r1, . . . ,r1999 be the
roots of P. Draw a disc of radius ε around each ri,
where ε < 1/3998; this disc covers a subinterval of
[−1/2,1/2] of length at most 2ε , and so of the 2000 (or
fewer) uncovered intervals in [−1/2,1/2], one, which
we call I, has length at least δ = (1−3998ε)/2000 > 0.
We will exhibit an explicit lower bound for the integral
of |P(x)|/P(0) over this interval, which will yield such
a bound for the entire integral.
Note that

|P(x)|
|P(0)|

=
1999

∏
i=1

|x− ri|
|ri|

.

Also note that by construction, |x− ri| ≥ ε for each x ∈
I. If |ri| ≤ 1, then we have |x−ri|

|ri| ≥ ε . If |ri|> 1, then

|x− ri|
|ri|

= |1− x/ri| ≥ 1−|x/ri| ≥= 1/2 > ε.

We conclude that
∫

I |P(x)/P(0)|dx ≥ δε , independent
of P.
Second solution: It will be a bit more convenient to
assume P(0) = 1 (which we may achieve by rescal-
ing unless P(0) = 0, in which case there is nothing to
prove) and to prove that there exists D > 0 such that∫ 1
−1 |P(x)|dx≥ D, or even such that

∫ 1
0 |P(x)|dx≥ D.

We first reduce to the case where P has all of its roots
in [0,1]. If this is not the case, we can factor P(x) as
Q(x)R(x), where Q has all roots in the interval and R has
none. Then R is either always positive or always neg-
ative on [0,1]; assume the former. Let k be the largest
positive real number such that R(x)− kx ≥ 0 on [0,1];
then∫ 1

−1
|P(x)|dx =

∫ 1

−1
|Q(x)R(x)|dx

>
∫ 1

−1
|Q(x)(R(x)− kx)|dx,

and Q(x)(R(x)−kx) has more roots in [0,1] than does P
(and has the same value at 0). Repeating this argument
shows that

∫ 1
0 |P(x)|dx is greater than the correspond-

ing integral for some polynomial with all of its roots in
[0,1].

Under this assumption, we have

P(x) = c
1999

∏
i=1

(x− ri)

for some ri ∈ (0,1]. Since

P(0) =−c∏ri = 1,

we have

|c| ≥∏ |r−1
i | ≥ 1.

Thus it suffices to prove that if Q(x) is a monic polyno-
mial of degree 1999 with all of its roots in [0,1], then∫ 1

0 |Q(x)|dx ≥ D for some constant D > 0. But the in-
tegral of

∫ 1
0 ∏

1999
i=1 |x− ri|dx is a continuous function for

ri ∈ [0,1]. The product of all of these intervals is com-
pact, so the integral achieves a minimum value for some
ri. This minimum is the desired D.

Third solution (by Abe Kunin): It suffices to prove the
stronger inequality

sup
x∈[−1,1]

|P(x)| ≤C
∫ 1

−1
|P(x)|dx

holds for some C. But this follows immediately from
the following standard fact: any two norms on a finite-
dimensional vector space (here the polynomials of de-
gree at most 1999) are equivalent. (The proof of this
statement is also a compactness argument: C can be
taken to be the maximum of the L1-norm divided by
the sup norm over the set of polynomials with L1-norm
1.)

Note: combining the first two approaches gives a con-
structive solution with a constant that is better than that
given by the first solution, but is still far from optimal. I
don’t know offhand whether it is even known what the
optimal constant and/or the polynomials achieving that
constant are.

A–6 Rearranging the given equation yields the much more
tractable equation

an

an−1
= 6

an−1

an−2
−8

an−2

an−3
.

Let bn = an/an−1; with the initial conditions b2 =
2,b3 = 12, one easily obtains bn = 2n−1(2n−2−1), and
so

an = 2n(n−1)/2
n−1

∏
i=1

(2i−1).
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To see that n divides an, factor n as 2km, with m odd.
Then note that k≤ n≤ n(n−1)/2, and that there exists
i ≤ m− 1 such that m divides 2i− 1, namely i = φ(m)
(Euler’s totient function: the number of integers in
{1, . . . ,m} relatively prime to m).

B–1 The answer is 1/3. Let G be the point obtained by re-
flecting C about the line AB. Since ∠ADC = π−θ

2 , we
find that ∠BDE = π − θ −∠ADC = π−θ

2 = ∠ADC =
π −∠BDC = π −∠BDG, so that E,D,G are collinear.
Hence

|EF |= |BE|
|BC|

=
|BE|
|BG|

=
sin(θ/2)

sin(3θ/2)
,

where we have used the law of sines in4BDG. But by
l’Hôpital’s Rule,

lim
θ→0

sin(θ/2)
sin(3θ/2)

= lim
θ→0

cos(θ/2)
3cos(3θ/2)

= 1/3.

B–2 First solution: Suppose that P does not have n dis-
tinct roots; then it has a root of multiplicity at least 2,
which we may assume is x = 0 without loss of general-
ity. Let xk be the greatest power of x dividing P(x), so
that P(x) = xkR(x) with R(0) 6= 0; a simple computation
yields

P′′(x) = (k2− k)xk−2R(x)+2kxk−1R′(x)+ xkR′′(x).

Since R(0) 6= 0 and k ≥ 2, we conclude that the great-
est power of x dividing P′′(x) is xk−2. But P(x) =
Q(x)P′′(x), and so x2 divides Q(x). We deduce (since Q
is quadratic) that Q(x) is a constant C times x2; in fact,
C = 1/(n(n− 1)) by inspection of the leading-degree
terms of P(x) and P′′(x).

Now if P(x) = ∑
n
j=0 a jx j, then the relation P(x) =

Cx2P′′(x) implies that a j =C j( j−1)a j for all j; hence
a j = 0 for j≤ n−1, and we conclude that P(x) = anxn,
which has all identical roots.

Second solution (by Greg Kuperberg): Let f (x) =
P′′(x)/P(x) = 1/Q(x). By hypothesis, f has at most
two poles (counting multiplicity).

Recall that for any complex polynomial P, the roots of
P′ lie within the convex hull of P. To show this, it suf-
fices to show that if the roots of P lie on one side of a
line, say on the positive side of the imaginary axis, then
P′ has no roots on the other side. That follows because
if r1, . . . ,rn are the roots of P,

P′(z)
P(z)

=
n

∑
i=1

1
z− ri

and if z has negative real part, so does 1/(z− ri) for
i = 1, . . . ,n, so the sum is nonzero.

The above argument also carries through if z lies on the
imaginary axis, provided that z is not equal to a root of

P. Thus we also have that no roots of P′ lie on the sides
of the convex hull of P, unless they are also roots of P.

From this we conclude that if r is a root of P which is
a vertex of the convex hull of the roots, and which is
not also a root of P′, then f has a single pole at r (as r
cannot be a root of P′′). On the other hand, if r is a root
of P which is also a root of P′, it is a multiple root, and
then f has a double pole at r.

If P has roots not all equal, the convex hull of its roots
has at least two vertices.

B–3 We first note that

∑
m,n>0

xmyn =
xy

(1− x)(1− y)
.

Subtracting S from this gives two sums, one of which is

∑
m≥2n+1

xmyn = ∑
n

yn x2n+1

1− x
=

x3y
(1− x)(1− x2y)

and the other of which sums to xy3/[(1− y)(1− xy2)].
Therefore

S(x,y) =
xy

(1− x)(1− y)
− x3y

(1− x)(1− x2y)

− xy3

(1− y)(1− xy2)

=
xy(1+ x+ y+ xy− x2y2)

(1− x2y)(1− xy2)

and the desired limit is

lim
(x,y)→(1,1)

xy(1+ x+ y+ xy− x2y2) = 3.

B–4 (based on work by Daniel Stronger) We make repeated
use of the following fact: if f is a differentiable function
on all of R, limx→−∞ f (x) ≥ 0, and f ′(x) > 0 for all
x ∈ R, then f (x) > 0 for all x ∈ R. (Proof: if f (y) < 0
for some x, then f (x)< f (y) for all x < y since f ′ > 0,
but then limx→−∞ f (x)≤ f (y)< 0.)

From the inequality f ′′′(x)≤ f (x) we obtain

f ′′ f ′′′(x)≤ f ′′(x) f (x)< f ′′(x) f (x)+ f ′(x)2

since f ′(x) is positive. Applying the fact to the differ-
ence between the right and left sides, we get

1
2
( f ′′(x))2 < f (x) f ′(x). (1)

On the other hand, since f (x) and f ′′′(x) are both posi-
tive for all x, we have

2 f ′(x) f ′′(x)< 2 f ′(x) f ′′(x)+2 f (x) f ′′′(x).

Applying the fact to the difference between the sides
yields

f ′(x)2 ≤ 2 f (x) f ′′(x). (2)
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Combining (1) and (2), we obtain

1
2

(
f ′(x)2

2 f (x)

)2

<
1
2
( f ′′(x))2

< f (x) f ′(x),

or ( f ′(x))3 < 8 f (x)3. We conclude f ′(x) < 2 f (x), as
desired.
Note: one can actually prove the result with a smaller
constant in place of 2, as follows. Adding 1

2 f ′(x) f ′′′(x)
to both sides of (1) and again invoking the original
bound f ′′′(x)≤ f (x), we get

1
2
[ f ′(x) f ′′′(x)+( f ′′(x))2]< f (x) f ′(x)+

1
2

f ′(x) f ′′′(x)

≤ 3
2

f (x) f ′(x).

Applying the fact again, we get

1
2

f ′(x) f ′′(x)<
3
4

f (x)2.

Multiplying both sides by f ′(x) and applying the fact
once more, we get

1
6
( f ′(x))3 <

1
4

f (x)3.

From this we deduce f ′(x)< (3/2)1/3 f (x)< 2 f (x), as
desired.
I don’t know what the best constant is, except that it
is not less than 1 (because f (x) = ex satisfies the given
conditions).

B–5 First solution: We claim that the eigenvalues of A are
0 with multiplicity n−2, and n/2 and −n/2, each with
multiplicity 1. To prove this claim, define vectors v(m),
0≤ m≤ n−1, componentwise by (v(m))k = eikmθ , and
note that the v(m) form a basis for Cn. (If we arrange the
v(m) into an n× n matrix, then the determinant of this
matrix is a Vandermonde product which is nonzero.)
Now note that

(Av(m)) j =
n

∑
k=1

cos( jθ + kθ)eikmθ

=
ei jθ

2

n

∑
k=1

eik(m+1)θ +
e−i jθ

2

n

∑
k=1

eik(m−1)θ .

Since ∑
n
k=1 eik`θ = 0 for integer ` unless n |`, we

conclude that Av(m) = 0 for m = 0 or for 2 ≤
m ≤ n − 1. In addition, we find that (Av(1)) j =
n
2 e−i jθ = n

2 (v
(n−1)) j and (Av(n−1)) j =

n
2 ei jθ = n

2 (v
(1)) j,

so that A(v(1) ± v(n−1)) = ± n
2 (v

(1) ± v(n−1)). Thus
{v(0),v(2),v(3), . . . ,v(n−2),v(1) + v(n−1),v(1)− v(n−1)} is
a basis for Cn of eigenvectors of A with the claimed
eigenvalues.
Finally, the determinant of I +A is the product of (1+
λ ) over all eigenvalues λ of A; in this case, det(I+A) =
(1+n/2)(1−n/2) = 1−n2/4.

Second solution (by Mohamed Omar): Set x = eiθ and
write

A =
1
2

uT u+
1
2

vT v =
1
2
(
uT vT

)(u
v

)
for

u =
(
x x2 · · · xn

)
,v =

(
x−1 x−2 · · · xn

)
.

We now use the fact that for R an n×m matrix and S an
m×n matrix,

det(In +RS) = det(Im +SR).

This yields

det(IN +A)

= det
(

In +
1
2
(
uT vT

)(u
v

))
= det

(
I2 +

1
2

(
u
v

)(
uT vT

))
=

1
4

det
(

2+uuT uvT

vuT 2+ vvT

)
=

1
4

det
(

2+(x2 + · · ·+ x2n) n
n 2+(x−2 + · · ·+ x−2n)

)
=

1
4

det
(

2 n
n 2

)
= 1− n2

4
.

B–6 First solution: Choose a sequence p1, p2, . . . of primes
as follows. Let p1 be any prime dividing an element of
S. To define p j+1 given p1, . . . , p j, choose an integer
N j ∈ S relatively prime to p1 · · · p j and let p j+1 be a
prime divisor of N j, or stop if no such N j exists.

Since S is finite, the above algorithm eventually termi-
nates in a finite sequence p1, . . . , pk. Let m be the small-
est integer such that p1 · · · pm has a divisor in S. (By the
assumption on S with n = p1 · · · pk, m = k has this prop-
erty, so m is well-defined.) If m= 1, then p1 ∈ S, and we
are done, so assume m ≥ 2. Any divisor d of p1 · · · pm
in S must be a multiple of pm, or else it would also be
a divisor of p1 · · · pm−1, contradicting the choice of m.
But now gcd(d,Nm−1) = pm, as desired.

Second solution (from sci.math): Let n be the small-
est integer such that gcd(s,n) > 1 for all s in n; note
that n obviously has no repeated prime factors. By the
condition on S, there exists s ∈ S which divides n.

On the other hand, if p is a prime divisor of s, then by
the choice of n, n/p is relatively prime to some ele-
ment t of S. Since n cannot be relatively prime to t, t
is divisible by p, but not by any other prime divisor of
n (as those primes divide n/p). Thus gcd(s, t) = p, as
desired.
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A–1 Let A be a positive real number. What are the possi-
ble values of ∑

∞
j=0 x2

j , given that x0,x1, . . . are positive
numbers for which ∑

∞
j=0 x j = A?

A–2 Prove that there exist infinitely many integers n such
that n,n+ 1,n+ 2 are each the sum of the squares of
two integers. [Example: 0 = 02 + 02, 1 = 02 + 12, 2 =
12 +12.]

A–3 The octagon P1P2P3P4P5P6P7P8 is inscribed in a circle,
with the vertices around the circumference in the given
order. Given that the polygon P1P3P5P7 is a square of
area 5, and the polygon P2P4P6P8 is a rectangle of area
4, find the maximum possible area of the octagon.

A–4 Show that the improper integral

lim
B→∞

∫ B

0
sin(x)sin(x2)dx

converges.

A–5 Three distinct points with integer coordinates lie in the
plane on a circle of radius r > 0. Show that two of these
points are separated by a distance of at least r1/3.

A–6 Let f (x) be a polynomial with integer coefficients. De-
fine a sequence a0,a1, . . . of integers such that a0 = 0
and an+1 = f (an) for all n≥ 0. Prove that if there exists
a positive integer m for which am = 0 then either a1 = 0
or a2 = 0.

B–1 Let a j,b j,c j be integers for 1≤ j≤N. Assume for each
j, at least one of a j,b j,c j is odd. Show that there exist
integers r, s, t such that ra j +sb j +tc j is odd for at least
4N/7 values of j, 1≤ j ≤ N.

B–2 Prove that the expression

gcd(m,n)
n

(
n
m

)
is an integer for all pairs of integers n≥ m≥ 1.

B–3 Let f (t) = ∑
N
j=1 a j sin(2π jt), where each a j is real and

aN is not equal to 0. Let Nk denote the number of zeroes
(including multiplicities) of dk f

dtk . Prove that

N0 ≤ N1 ≤ N2 ≤ ·· · and lim
k→∞

Nk = 2N.

[Editorial clarification: only zeroes in [0,1) should be
counted.]

B–4 Let f (x) be a continuous function such that f (2x2 −
1) = 2x f (x) for all x. Show that f (x) = 0 for −1 ≤
x≤ 1.

B–5 Let S0 be a finite set of positive integers. We define
finite sets S1,S2, . . . of positive integers as follows: the
integer a is in Sn+1 if and only if exactly one of a−1 or
a is in Sn. Show that there exist infinitely many integers
N for which SN = S0∪{N +a : a ∈ S0}.

B–6 Let B be a set of more than 2n+1/n distinct points
with coordinates of the form (±1,±1, . . . ,±1) in n-
dimensional space with n≥ 3. Show that there are three
distinct points in B which are the vertices of an equilat-
eral triangle.
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A–1 The possible values comprise the interval (0,A2).

To see that the values must lie in this interval, note that(
m

∑
j=0

x j

)2

=
m

∑
j=0

x2
j + ∑

0≤ j<k≤m
2x jxk,

so ∑
m
j=0 x2

j ≤ A2 − 2x0x1. Letting m → ∞, we have
∑

∞
j=0 x2

j ≤ A2−2x0x1 < A2.

To show that all values in (0,A2) can be obtained, we
use geometric progressions with x1/x0 = x2/x1 = · · ·=
d for variable d. Then ∑

∞
j=0 x j = x0/(1−d) and

∞

∑
j=0

x2
j =

x2
0

1−d2 =
1−d
1+d

(
∞

∑
j=0

x j

)2

.

As d increases from 0 to 1, (1− d)/(1+ d) decreases
from 1 to 0. Thus if we take geometric progressions
with ∑

∞
j=0 x j = A, ∑

∞
j=0 x2

j ranges from 0 to A2. Thus the
possible values are indeed those in the interval (0,A2),
as claimed.

A–2 First solution: Let a be an even integer such that a2 +1
is not prime. (For example, choose a ≡ 2 (mod 5), so
that a2+1 is divisible by 5.) Then we can write a2+1 as
a difference of squares x2−b2, by factoring a2+1 as rs
with r ≥ s > 1, and setting x = (r+ s)/2, b = (r− s)/2.
Finally, put n = x2−1, so that n = a2 +b2, n+1 = x2,
n+2 = x2 +1.

Second solution: It is well-known that the equation
x2 − 2y2 = 1 has infinitely many solutions (the so-
called “Pell” equation). Thus setting n = 2y2 (so that
n = y2 + y2, n + 1 = x2 + 02, n + 2 = x2 + 12) yields
infinitely many n with the desired property.

Third solution: As in the first solution, it suffices to ex-
hibit x such that x2− 1 is the sum of two squares. We
will take x = 32n

, and show that x2−1 is the sum of two
squares by induction on n: if 32n −1 = a2 +b2, then

(32n+1 −1) = (32n −1)(32n
+1)

= (32n−1
a+b)2 +(a−32n−1

b)2.

Fourth solution (by Jonathan Weinstein): Let n = 4k4+
4k2 = (2k2)2 +(2k)2 for any integer k. Then n+ 1 =
(2k2 +1)2 +02 and n+2 = (2k2 +1)2 +12.

A–3 The maximum area is 3
√

5.

We deduce from the area of P1P3P5P7 that the radius
of the circle is

√
5/2. An easy calculation using the

Pythagorean Theorem then shows that the rectangle
P2P4P6P8 has sides

√
2 and 2

√
2. For notational ease,

denote the area of a polygon by putting brackets around
the name of the polygon.

By symmetry, the area of the octagon can be expressed
as

[P2P4P6P8]+2[P2P3P4]+2[P4P5P6].

Note that [P2P3P4] is
√

2 times the distance from P3 to
P2P4, which is maximized when P3 lies on the midpoint
of arc P2P4; similarly, [P4P5P6] is

√
2/2 times the dis-

tance from P5 to P4P6, which is maximized when P5
lies on the midpoint of arc P4P6. Thus the area of
the octagon is maximized when P3 is the midpoint of
arc P2P4 and P5 is the midpoint of arc P4P6. In this
case, it is easy to calculate that [P2P3P4] =

√
5− 1 and

[P4P5P6] =
√

5/2− 1, and so the area of the octagon is
3
√

5.

A–4 To avoid some improper integrals at 0, we may as well
replace the left endpoint of integration by some ε > 0.
We now use integration by parts:∫ B

ε

sinxsinx2 dx =
∫ B

ε

sinx
2x

sinx2(2xdx)

= − sinx
2x

cosx2
∣∣∣∣B
ε

+
∫ B

ε

(
cosx
2x
− sinx

2x2

)
cosx2 dx.

Now sinx
2x cosx2 tends to 0 as B→ ∞, and the integral

of sinx
2x2 cosx2 converges absolutely by comparison with

1/x2. Thus it suffices to note that∫ B

ε

cosx
2x

cosx2 dx =
∫ B

ε

cosx
4x2 cosx2(2xdx)

=
cosx
4x2 sinx2

∣∣∣B
ε

−
∫ B

ε

2xcosx− sinx
4x3 sinx2 dx,

and that the final integral converges absolutely by com-
parison to 1/x3.

An alternate approach is to first rewrite sinxsinx2 as
1
2 (cos(x2− x)− cos(x2 + x)). Then

∫ B

ε

cos(x2 + x)dx =− sin(x2 + x)
2x+1

∣∣∣∣B
ε

−
∫ B

ε

2sin(x2 + x)
(2x+1)2 dx
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converges absolutely, and
∫ B

0 cos(x2− x) can be treated
similarly.

A–5 Let a,b,c be the distances between the points. Then the
area of the triangle with the three points as vertices is
abc/4r. On the other hand, the area of a triangle whose
vertices have integer coordinates is at least 1/2 (for ex-
ample, by Pick’s Theorem). Thus abc/4r ≥ 1/2, and
so

max{a,b,c} ≥ (abc)1/3 ≥ (2r)1/3 > r1/3.

A–6 Recall that if f (x) is a polynomial with integer coeffi-
cients, then m−n divides f (m)− f (n) for any integers
m and n. In particular, if we put bn = an+1−an, then bn
divides bn+1 for all n. On the other hand, we are given
that a0 = am = 0, which implies that a1 = am+1 and so
b0 = bm. If b0 = 0, then a0 = a1 = · · ·= am and we are
done. Otherwise, |b0| = |b1| = |b2| = · · · , so bn = ±b0
for all n.

Now b0 + · · ·+bm−1 = am−a0 = 0, so half of the inte-
gers b0, . . . ,bm−1 are positive and half are negative. In
particular, there exists an integer 0 < k < m such that
bk−1 = −bk, which is to say, ak−1 = ak+1. From this it
follows that an = an+2 for all n ≥ k− 1; in particular,
for m = n, we have

a0 = am = am+2 = f ( f (a0)) = a2.

B–1 Consider the seven triples (a,b,c) with a,b,c ∈ {0,1}
not all zero. Notice that if r j,s j, t j are not all even, then
four of the sums ar j +bs j + ct j with a,b,c ∈ {0,1} are
even and four are odd. Of course the sum with a = b =
c = 0 is even, so at least four of the seven triples with
a,b,c not all zero yield an odd sum. In other words, at
least 4N of the tuples (a,b,c, j) yield odd sums. By the
pigeonhole principle, there is a triple (a,b,c) for which
at least 4N/7 of the sums are odd.

B–2 Since gcd(m,n) is an integer linear combination of m
and n, it follows that

gcd(m,n)
n

(
n
m

)
is an integer linear combination of the integers

m
n

(
n
m

)
=

(
n−1
m−1

)
and

n
n

(
n
m

)
=

(
n
m

)
and hence is itself an integer.

B–3 Put fk(t) =
d f k

dtk . Recall Rolle’s theorem: if f (t) is dif-
ferentiable, then between any two zeroes of f (t) there
exists a zero of f ′(t). This also applies when the zeroes
are not all distinct: if f has a zero of multiplicity m at
t = x, then f ′ has a zero of multiplicity at least m− 1
there.

Therefore, if 0 ≤ a0 ≤ a1 ≤ ·· · ≤ ar < 1 are the roots
of fk in [0,1), then fk+1 has a root in each of the in-
tervals (a0,a1),(a1,a2), . . . ,(ar−1,ar), so long as we
adopt the convention that the empty interval (t, t) ac-
tually contains the point t itself. There is also a root in
the “wraparound” interval (ar,a0). Thus Nk+1 ≥ Nk.

Next, note that if we set z = e2πit ; then

f4k(t) =
1
2i

N

∑
j=1

j4ka j(z j− z− j)

is equal to z−N times a polynomial of degree 2N. Hence
as a function of z, it has at most 2N roots; therefore fk(t)
has at most 2N roots in [0,1]. That is, Nk ≤ 2N for all
N.

To establish that Nk → 2N, we make precise the obser-
vation that

fk(t) =
N

∑
j=1

j4ka j sin(2π jt)

is dominated by the term with j = N. At the points
t = (2i + 1)/(2N) for i = 0,1, . . . ,N − 1, we have
N4kaN sin(2πNt) = ±N4kaN . If k is chosen large
enough so that

|aN |N4k > |a1|14k + · · ·+ |aN−1|(N−1)4k,

then fk((2i + 1)/2N) has the same sign as
aN sin(2πNat), which is to say, the sequence
fk(1/2N), fk(3/2N), . . . alternates in sign. Thus be-
tween these points (again including the “wraparound”
interval) we find 2N sign changes of fk. Therefore
limk→∞ Nk = 2N.

B–4 For t real and not a multiple of π , write g(t) = f (cos t)
sin t .

Then g(t +π) = g(t); furthermore, the given equation
implies that

g(2t) =
f (2cos2 t−1)

sin(2t)
=

2(cos t) f (cos t)
sin(2t)

= g(t).

In particular, for any integer n and k, we have

g(1+nπ/2k) = g(2k +nπ) = g(2k) = g(1).

Since f is continuous, g is continuous where it is de-
fined; but the set {1+ nπ/2k|n,k ∈ Z} is dense in the
reals, and so g must be constant on its domain. Since
g(−t) = −g(t) for all t, we must have g(t) = 0 when t
is not a multiple of π . Hence f (x) = 0 for x ∈ (−1,1).
Finally, setting x = 0 and x = 1 in the given equation
yields f (−1) = f (1) = 0.

B–5 We claim that all integers N of the form 2k, with k a
positive integer and N > max{S0}, satisfy the desired
conditions.
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It follows from the definition of Sn, and induction on n,
that

∑
j∈Sn

x j ≡ (1+ x) ∑
j∈Sn−1

x j

≡ (1+ x)n
∑
j∈S0

x j (mod 2).

From the identity (x+ y)2 ≡ x2 + y2 (mod 2) and in-
duction on n, we have (x+ y)2n ≡ x2n

+ y2n
(mod 2).

Hence if we choose N to be a power of 2 greater than
max{S0}, then

∑
j∈Sn

≡ (1+ xN) ∑
j∈S0

x j

and SN = S0∪{N +a : a ∈ S0}, as desired.

B–6 For each point P in B, let SP be the set of points with
all coordinates equal to ±1 which differ from P in ex-
actly one coordinate. Since there are more than 2n+1/n
points in B, and each SP has n elements, the cardinali-
ties of the sets SP add up to more than 2n+1, which is to
say, more than twice the total number of points. By the
pigeonhole principle, there must be a point in three of
the sets, say SP,SQ,SR. But then any two of P,Q,R dif-
fer in exactly two coordinates, so PQR is an equilateral
triangle, as desired.



The 62nd William Lowell Putnam Mathematical Competition
Saturday, December 1, 2001

A1 Consider a set S and a binary operation ∗, i.e., for each
a,b∈ S, a∗b∈ S. Assume (a∗b)∗a = b for all a,b∈ S.
Prove that a∗ (b∗a) = b for all a,b ∈ S.

A2 You have coins C1,C2, . . . ,Cn. For each k, Ck is biased
so that, when tossed, it has probability 1/(2k + 1) of
falling heads. If the n coins are tossed, what is the
probability that the number of heads is odd? Express
the answer as a rational function of n.

A3 For each integer m, consider the polynomial

Pm(x) = x4− (2m+4)x2 +(m−2)2.

For what values of m is Pm(x) the product of two non-
constant polynomials with integer coefficients?

A4 Triangle ABC has an area 1. Points E,F,G lie, respec-
tively, on sides BC, CA, AB such that AE bisects BF at
point R, BF bisects CG at point S, and CG bisects AE
at point T . Find the area of the triangle RST .

A5 Prove that there are unique positive integers a, n such
that an+1− (a+1)n = 2001.

A6 Can an arc of a parabola inside a circle of radius 1 have
a length greater than 4?

B1 Let n be an even positive integer. Write the numbers
1,2, . . . ,n2 in the squares of an n× n grid so that the
k-th row, from left to right, is

(k−1)n+1,(k−1)n+2, . . . ,(k−1)n+n.

Color the squares of the grid so that half of the squares
in each row and in each column are red and the other
half are black (a checkerboard coloring is one possi-
bility). Prove that for each coloring, the sum of the

numbers on the red squares is equal to the sum of the
numbers on the black squares.

B2 Find all pairs of real numbers (x,y) satisfying the sys-
tem of equations

1
x
+

1
2y

= (x2 +3y2)(3x2 + y2)

1
x
− 1

2y
= 2(y4− x4).

B3 For any positive integer n, let 〈n〉 denote the closest in-
teger to

√
n. Evaluate

∞

∑
n=1

2〈n〉+2−〈n〉

2n .

B4 Let S denote the set of rational numbers different from
{−1,0,1}. Define f : S→ S by f (x) = x− 1/x. Prove
or disprove that

∞⋂
n=1

f (n)(S) = /0,

where f (n) denotes f composed with itself n times.

B5 Let a and b be real numbers in the interval (0,1/2),
and let g be a continuous real-valued function such that
g(g(x)) = ag(x)+bx for all real x. Prove that g(x) = cx
for some constant c.

B6 Assume that (an)n≥1 is an increasing sequence of pos-
itive real numbers such that liman/n = 0. Must there
exist infinitely many positive integers n such that an−i+
an+i < 2an for i = 1,2, . . . ,n−1?
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A–1 The hypothesis implies ((b∗a)∗b)∗ (b∗a) = b for all
a,b∈ S (by replacing a by b∗a), and hence a∗(b∗a) =
b for all a,b ∈ S (using (b∗a)∗b = a).

A–2 Let Pn denote the desired probability. Then P1 = 1/3,
and, for n > 1,

Pn =

(
2n

2n+1

)
Pn−1 +

(
1

2n+1

)
(1−Pn−1)

=

(
2n−1
2n+1

)
Pn−1 +

1
2n+1

.

The recurrence yields P2 = 2/5, P3 = 3/7, and by a sim-
ple induction, one then checks that for general n one has
Pn = n/(2n+1).

Note: Richard Stanley points out the following nonin-
ductive argument. Put f (x) = ∏

n
k=1(x+ 2k)/(2k+ 1);

then the coefficient of xi in f (x) is the probability of
getting exactly i heads. Thus the desired number is
( f (1)− f (−1))/2, and both values of f can be com-
puted directly: f (1) = 1, and

f (−1) =
1
3
× 3

5
×·· ·× 2n−1

2n+1
=

1
2n+1

.

A–3 By the quadratic formula, if Pm(x) = 0, then x2 = m±
2
√

2m+2, and hence the four roots of Pm are given by
S = {±

√
m±
√

2}. If Pm factors into two nonconstant
polynomials over the integers, then some subset of S
consisting of one or two elements form the roots of a
polynomial with integer coefficients.

First suppose this subset has a single element, say√
m±
√

2; this element must be a rational number.
Then (

√
m±
√

2)2 = 2+m± 2
√

2m is an integer, so
m is twice a perfect square, say m = 2n2. But then√

m±
√

2 = (n± 1)
√

2 is only rational if n = ±1, i.e.,
if m = 2.

Next, suppose that the subset contains two elements;
then we can take it to be one of {

√
m±
√

2}, {
√

2±√
m} or {±(

√
m+
√

2)}. In all cases, the sum and the
product of the elements of the subset must be a rational
number. In the first case, this means 2

√
m ∈Q, so m is

a perfect square. In the second case, we have 2
√

2 ∈Q,
contradiction. In the third case, we have (

√
m+
√

2)2 ∈
Q, or m+2+2

√
2m ∈Q, which means that m is twice

a perfect square.

We conclude that Pm(x) factors into two nonconstant
polynomials over the integers if and only if m is either
a square or twice a square.

Note: a more sophisticated interpretation of this argu-
ment can be given using Galois theory. Namely, if m

is neither a square nor twice a square, then the number
fields Q(

√
m) and Q(

√
2) are distinct quadratic fields,

so their compositum is a number field of degree 4,
whose Galois group acts transitively on {±

√
m±
√

2}.
Thus Pm is irreducible.

A–4 Choose r,s, t so that EC = rBC,FA = sCA,GB = tCB,
and let [XY Z] denote the area of triangle XY Z. Then
[ABE] = [AFE] since the triangles have the same alti-
tude and base. Also [ABE] = (BE/BC)[ABC] = 1− r,
and [ECF ] = (EC/BC)(CF/CA)[ABC] = r(1− s) (e.g.,
by the law of sines). Adding this all up yields

1 = [ABE]+ [ABF ]+ [ECF ]

= 2(1− r)+ r(1− s) = 2− r− rs

or r(1+ s) = 1. Similarly s(1+ t) = t(1+ r) = 1.

Let f : [0,∞)→ [0,∞) be the function given by f (x) =
1/(1 + x); then f ( f ( f (r))) = r. However, f (x) is
strictly decreasing in x, so f ( f (x)) is increasing and
f ( f ( f (x))) is decreasing. Thus there is at most one x
such that f ( f ( f (x))) = x; in fact, since the equation
f (z) = z has a positive root z = (−1+

√
5)/2, we must

have r = s = t = z.

We now compute [ABF ] = (AF/AC)[ABC] = z, [ABR] =
(BR/BF)[ABF ] = z/2, analogously [BCS] = [CAT ] =
z/2, and [RST ] = |[ABC]− [ABR]− [BCS]− [CAT ]| =
|1−3z/2|= 7−3

√
5

4 .

Note: the key relation r(1+ s) = 1 can also be derived
by computing using homogeneous coordinates or vec-
tors.

A–5 Suppose an+1− (a+ 1)n = 2001. Notice that an+1 +
[(a+ 1)n− 1] is a multiple of a; thus a divides 2002 =
2×7×11×13.

Since 2001 is divisible by 3, we must have a ≡ 1
(mod 3), otherwise one of an+1 and (a+1)n is a multi-
ple of 3 and the other is not, so their difference cannot
be divisible by 3. Now an+1 ≡ 1 (mod 3), so we must
have (a+1)n ≡ 1 (mod 3), which forces n to be even,
and in particular at least 2.

If a is even, then an+1−(a+1)n ≡−(a+1)n (mod 4).
Since n is even, −(a + 1)n ≡ −1 (mod 4). Since
2001 ≡ 1 (mod 4), this is impossible. Thus a is odd,
and so must divide 1001 = 7× 11× 13. Moreover,
an+1− (a+1)n ≡ a (mod 4), so a≡ 1 (mod 4).

Of the divisors of 7×11×13, those congruent to 1 mod
3 are precisely those not divisible by 11 (since 7 and 13
are both congruent to 1 mod 3). Thus a divides 7×13.
Now a≡ 1 (mod 4) is only possible if a divides 13.
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We cannot have a = 1, since 1− 2n 6= 2001 for any n.
Thus the only possibility is a = 13. One easily checks
that a = 13,n = 2 is a solution; all that remains is to
check that no other n works. In fact, if n > 2, then
13n+1 ≡ 2001 ≡ 1 (mod 8). But 13n+1 ≡ 13 (mod 8)
since n is even, contradiction. Thus a = 13,n = 2 is the
unique solution.

Note: once one has that n is even, one can use that
2002 = an+1 +1− (a+1)n is divisible by a+1 to rule
out cases.

A–6 The answer is yes. Consider the arc of the parabola
y = Ax2 inside the circle x2 +(y− 1)2 = 1, where we
initially assume that A > 1/2. This intersects the circle
in three points, (0,0) and (±

√
2A−1/A,(2A− 1)/A).

We claim that for A sufficiently large, the length L of
the parabolic arc between (0,0) and (

√
2A−1/A,(2A−

1)/A) is greater than 2, which implies the desired result
by symmetry. We express L using the usual formula for
arclength:

L =
∫ √2A−1/A

0

√
1+(2Ax)2 dx

=
1

2A

∫ 2
√

2A−1

0

√
1+ x2 dx

= 2+
1

2A

(∫ 2
√

2A−1

0
(
√

1+ x2− x)dx−2

)
,

where we have artificially introduced −x into the inte-
grand in the last step. Now, for x≥ 0,√
1+ x2− x =

1√
1+ x2 + x

>
1

2
√

1+ x2
≥ 1

2(x+1)
;

since
∫

∞

0 dx/(2(x+1)) diverges, so does
∫

∞

0 (
√

1+ x2−
x)dx. Hence, for sufficiently large A, we have∫ 2
√

2A−1
0 (

√
1+ x2− x)dx > 2, and hence L > 2.

Note: a numerical computation shows that one must
take A > 34.7 to obtain L > 2, and that the maximum
value of L is about 4.0027, achieved for A≈ 94.1.

B–1 Let R (resp. B) denote the set of red (resp. black) squares
in such a coloring, and for s∈ R∪B, let f (s)n+g(s)+1
denote the number written in square s, where 0 ≤
f (s),g(s) ≤ n− 1. Then it is clear that the value of
f (s) depends only on the row of s, while the value of
g(s) depends only on the column of s. Since every row
contains exactly n/2 elements of R and n/2 elements of
B,

∑
s∈R

f (s) = ∑
s∈B

f (s).

Similarly, because every column contains exactly n/2
elements of R and n/2 elements of B,

∑
s∈R

g(s) = ∑
s∈B

g(s).

It follows that

∑
s∈R

f (s)n+g(s)+1 = ∑
s∈B

f (s)n+g(s)+1,

as desired.

Note: Richard Stanley points out a theorem of Ryser
(see Ryser, Combinatorial Mathematics, Theorem 3.1)
that can also be applied. Namely, if A and B are 0−
1 matrices with the same row and column sums, then
there is a sequence of operations on 2× 2 matrices of
the form (

0 1
1 0

)
→
(

1 0
0 1

)
or vice versa, which transforms A into B. If we iden-
tify 0 and 1 with red and black, then the given color-
ing and the checkerboard coloring both satisfy the sum
condition. Since the desired result is clearly true for the
checkerboard coloring, and performing the matrix op-
erations does not affect this, the desired result follows
in general.

B–2 By adding and subtracting the two given equations, we
obtain the equivalent pair of equations

2/x = x4 +10x2y2 +5y4

1/y = 5x4 +10x2y2 + y4.

Multiplying the former by x and the latter by y, then
adding and subtracting the two resulting equations, we
obtain another pair of equations equivalent to the given
ones,

3 = (x+ y)5, 1 = (x− y)5.

It follows that x = (31/5 +1)/2 and y = (31/5−1)/2 is
the unique solution satisfying the given equations.

B–3 Since (k−1/2)2 = k2− k+1/4 and (k+1/2)2 = k2 +
k+1/4, we have that 〈n〉= k if and only if k2−k+1≤
n≤ k2 + k. Hence

∞

∑
n=1

2〈n〉+2−〈n〉

2n =
∞

∑
k=1

∑
n,〈n〉=k

2〈n〉+2−〈n〉

2n

=
∞

∑
k=1

k2+k

∑
n=k2−k+1

2k +2−k

2n

=
∞

∑
k=1

(2k +2−k)(2−k2+k−2−k2−k)

=
∞

∑
k=1

(2−k(k−2)−2−k(k+2))

=
∞

∑
k=1

2−k(k−2)−
∞

∑
k=3

2−k(k−2)

= 3.
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Alternate solution: rewrite the sum as ∑
∞
n=1 2−(n+〈n〉)+

∑
∞
n=1 2−(n−〈n〉). Note that 〈n〉 6= 〈n+ 1〉 if and only if

n = m2 +m for some m. Thus n+ 〈n〉 and n−〈n〉 each
increase by 1 except at n = m2 +m, where the former
skips from m2+2m to m2+2m+2 and the latter repeats
the value m2. Thus the sums are

∞

∑
n=1

2−n−
∞

∑
m=1

2−m2
+

∞

∑
n=0

2−n +
∞

∑
m=1

2−m2
= 2+1 = 3.

B–4 For a rational number p/q expressed in lowest terms,
define its height H(p/q) to be |p|+ |q|. Then for
any p/q ∈ S expressed in lowest terms, we have
H( f (p/q)) = |q2− p2|+ |pq|; since by assumption p
and q are nonzero integers with |p| 6= |q|, we have

H( f (p/q))−H(p/q) = |q2− p2|+ |pq|− |p|− |q|
≥ 3+ |pq|− |p|− |q|
= (|p|−1)(|q|−1)+2≥ 2.

It follows that f (n)(S) consists solely of numbers of
height strictly larger than 2n+2, and hence

∩∞
n=1 f (n)(S) = /0.

Note: many choices for the height function are possible:
one can take H(p/q) = max |p|, |q|, or H(p/q) equal to
the total number of prime factors of p and q, and so
on. The key properties of the height function are that
on one hand, there are only finitely many rationals with
height below any finite bound, and on the other hand,
the height function is a sufficiently “algebraic” function
of its argument that one can relate the heights of p/q
and f (p/q).

B–5 Note that g(x) = g(y) implies that g(g(x)) = g(g(y))
and hence x = y from the given equation. That is, g is
injective. Since g is also continuous, g is either strictly
increasing or strictly decreasing. Moreover, g cannot
tend to a finite limit L as x→ +∞, or else we’d have
g(g(x))− ag(x) = bx, with the left side bounded and
the right side unbounded. Similarly, g cannot tend to
a finite limit as x→−∞. Together with monotonicity,
this yields that g is also surjective.

Pick x0 arbitrary, and define xn for all n ∈ Z recursively
by xn+1 = g(xn) for n> 0, and xn−1 = g−1(xn) for n< 0.
Let r1 = (a+

√
a2 +4b)/2 and r2 = (a−

√
a2 +4b)/2

and r2 be the roots of x2−ax−b= 0, so that r1 > 0> r2
and 1 > |r1|> |r2|. Then there exist c1,c2 ∈R such that
xn = c1rn

1 + c2rn
2 for all n ∈ Z.

Suppose g is strictly increasing. If c2 6= 0 for some
choice of x0, then xn is dominated by rn

2 for n suffi-
ciently negative. But taking xn and xn+2 for n suffi-
ciently negative of the right parity, we get 0 < xn < xn+2
but g(xn) > g(xn+2), contradiction. Thus c2 = 0; since
x0 = c1 and x1 = c1r1, we have g(x) = r1x for all x.
Analogously, if g is strictly decreasing, then c2 = 0 or
else xn is dominated by rn

1 for n sufficiently positive.
But taking xn and xn+2 for n sufficiently positive of the
right parity, we get 0 < xn+2 < xn but g(xn+2) < g(xn),
contradiction. Thus in that case, g(x) = r2x for all x.

B–6 Yes, there must exist infinitely many such n. Let S be
the convex hull of the set of points (n,an) for n≥ 0. Ge-
ometrically, S is the intersection of all convex sets (or
even all halfplanes) containing the points (n,an); alge-
braically, S is the set of points (x,y) which can be writ-
ten as c1(n1,an1)+ · · ·+ ck(nk,ank) for some c1, . . . ,ck
which are nonnegative of sum 1.

We prove that for infinitely many n, (n,an) is a vertex
on the upper boundary of S, and that these n satisfy the
given condition. The condition that (n,an) is a vertex on
the upper boundary of S is equivalent to the existence of
a line passing through (n,an) with all other points of S
below it. That is, there should exist m > 0 such that

ak < an +m(k−n) ∀k ≥ 1. (1)

We first show that n = 1 satisfies (1). The condition
ak/k→ 0 as k→ ∞ implies that (ak−a1)/(k−1)→ 0
as well. Thus the set {(ak− a1)/(k− 1)} has an upper
bound m, and now ak ≤ a1 +m(k−1), as desired.

Next, we show that given one n satisfying (1), there ex-
ists a larger one also satisfying (1). Again, the condition
ak/k→ 0 as k→ ∞ implies that (ak−an)/(k−n)→ 0
as k→ ∞. Thus the sequence {(ak − an)/(k− n)}k>n
has a maximum element; suppose k = r is the largest
value that achieves this maximum, and put m = (ar −
an)/(r−n). Then the line through (r,ar) of slope m lies
strictly above (k,ak) for k > r and passes through or lies
above (k,ak) for k < r. Thus (1) holds for n = r with m
replaced by m− ε for suitably small ε > 0.

By induction, we have that (1) holds for infinitely many
n. For any such n there exists m > 0 such that for i =
1, . . . ,n− 1, the points (n− i,an−i) and (n+ i,an+i) lie
below the line through (n,an) of slope m. That means
an+i < an+mi and an−i < an−mi; adding these together
gives an−i +an+i < 2an, as desired.
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A1 Let k be a fixed positive integer. The n-th derivative of
1

xk−1 has the form Pn(x)
(xk−1)n+1 where Pn(x) is a polynomial.

Find Pn(1).

A2 Given any five points on a sphere, show that some four
of them must lie on a closed hemisphere.

A3 Let n ≥ 2 be an integer and Tn be the number of non-
empty subsets S of {1,2,3, . . . ,n} with the property that
the average of the elements of S is an integer. Prove that
Tn−n is always even.

A4 In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an
empty 3×3 matrix. Player 0 counters with a 0 in a va-
cant position, and play continues in turn until the 3×3
matrix is completed with five 1’s and four 0’s. Player
0 wins if the determinant is 0 and player 1 wins other-
wise. Assuming both players pursue optimal strategies,
who will win and how?

A5 Define a sequence by a0 = 1, together with the rules
a2n+1 = an and a2n+2 = an+an+1 for each integer n≥ 0.
Prove that every positive rational number appears in the
set {

an−1

an
: n≥ 1

}
=

{
1
1
,

1
2
,

2
1
,

1
3
,

3
2
, . . .

}
.

A6 Fix an integer b ≥ 2. Let f (1) = 1, f (2) = 2, and for
each n≥ 3, define f (n) = n f (d), where d is the number
of base-b digits of n. For which values of b does

∞

∑
n=1

1
f (n)

converge?

B1 Shanille O’Keal shoots free throws on a basketball
court. She hits the first and misses the second, and
thereafter the probability that she hits the next shot is
equal to the proportion of shots she has hit so far. What
is the probability she hits exactly 50 of her first 100
shots?

B2 Consider a polyhedron with at least five faces such that
exactly three edges emerge from each of its vertices.
Two players play the following game:

Each player, in turn, signs his or her
name on a previously unsigned face. The
winner is the player who first succeeds in
signing three faces that share a common
vertex.

Show that the player who signs first will always win by
playing as well as possible.

B3 Show that, for all integers n > 1,

1
2ne

<
1
e
−
(

1− 1
n

)n

<
1
ne

.

B4 An integer n, unknown to you, has been randomly
chosen in the interval [1,2002] with uniform probabil-
ity. Your objective is to select n in an odd number of
guesses. After each incorrect guess, you are informed
whether n is higher or lower, and you must guess an in-
teger on your next turn among the numbers that are still
feasibly correct. Show that you have a strategy so that
the chance of winning is greater than 2/3.

B5 A palindrome in base b is a positive integer whose base-
b digits read the same backwards and forwards; for ex-
ample, 2002 is a 4-digit palindrome in base 10. Note
that 200 is not a palindrome in base 10, but it is the 3-
digit palindrome 242 in base 9, and 404 in base 7. Prove
that there is an integer which is a 3-digit palindrome in
base b for at least 2002 different values of b.

B6 Let p be a prime number. Prove that the determinant of
the matrix  x y z

xp yp zp

xp2
yp2

zp2


is congruent modulo p to a product of polynomials of
the form ax+ by+ cz, where a,b,c are integers. (We
say two integer polynomials are congruent modulo p if
corresponding coefficients are congruent modulo p.)
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A–1 By differentiating Pn(x)/(xk − 1)n+1, we find that
Pn+1(x) = (xk − 1)P′n(x)− (n + 1)kxk−1Pn(x); substi-
tuting x = 1 yields Pn+1(1) = −(n+ 1)kPn(1). Since
P0(1) = 1, an easy induction gives Pn(1) = (−k)nn! for
all n≥ 0.

Note: one can also argue by expanding in Taylor series
around 1. Namely, we have

1
xk−1

=
1

k(x−1)+ · · ·
=

1
k
(x−1)−1 + · · · ,

so

dn

dxn
1

xk−1
=

(−1)nn!
k(x−1)−n−1

and

Pn(x) = (xk−1)n+1 dn

dxn
1

xk−1

= (k(x−1)+ · · ·)n+1
(
(−1)nn!

k
(x−1)−n−1 + · · ·

)
= (−k)nn!+ · · · .

A–2 Draw a great circle through two of the points. There are
two closed hemispheres with this great circle as bound-
ary, and each of the other three points lies in one of
them. By the pigeonhole principle, two of those three
points lie in the same hemisphere, and that hemisphere
thus contains four of the five given points.

Note: by a similar argument, one can prove that among
any n+3 points on an n-dimensional sphere, some n+2
of them lie on a closed hemisphere. (One cannot get by
with only n+2 points: put them at the vertices of a reg-
ular simplex.) Namely, any n of the points lie on a great
sphere, which forms the boundary of two hemispheres;
of the remaining three points, some two lie in the same
hemisphere.

A–3 Note that each of the sets {1},{2}, . . . ,{n} has the de-
sired property. Moreover, for each set S with inte-
ger average m that does not contain m, S ∪ {m} also
has average m, while for each set T of more than
one element with integer average m that contains m,
T \{m} also has average m. Thus the subsets other than
{1},{2}, . . . ,{n} can be grouped in pairs, so Tn− n is
even.

A–4 (partly due to David Savitt) Player 0 wins with opti-
mal play. In fact, we prove that Player 1 cannot prevent
Player 0 from creating a row of all zeroes, a column of
all zeroes, or a 2× 2 submatrix of all zeroes. Each of
these forces the determinant of the matrix to be zero.

For i, j = 1,2,3, let Ai j denote the position in row i and
column j. Without loss of generality, we may assume
that Player 1’s first move is at A11. Player 0 then plays
at A22: 1 ∗ ∗

∗ 0 ∗
∗ ∗ ∗


After Player 1’s second move, at least one of A23 and
A32 remains vacant. Without loss of generality, assume
A23 remains vacant; Player 0 then plays there.

After Player 1’s third move, Player 0 wins by playing
at A21 if that position is unoccupied. So assume instead
that Player 1 has played there. Thus of Player 1’s three
moves so far, two are at A11 and A21. Hence for i equal
to one of 1 or 3, and for j equal to one of 2 or 3, the
following are both true:

(a) The 2× 2 submatrix formed by rows 2 and i and
by columns 2 and 3 contains two zeroes and two
empty positions.

(b) Column j contains one zero and two empty posi-
tions.

Player 0 next plays at Ai j. To prevent a zero column,
Player 1 must play in column j, upon which Player 0
completes the 2×2 submatrix in (a) for the win.

Note: one can also solve this problem directly by mak-
ing a tree of possible play sequences. This tree can be
considerably collapsed using symmetries: the symme-
try between rows and columns, the invariance of the
outcome under reordering of rows or columns, and the
fact that the scenario after a sequence of moves does
not depend on the order of the moves (sometimes called
“transposition invariance”).

Note (due to Paul Cheng): one can reduce Determi-
nant Tic-Tac-Toe to a variant of ordinary tic-tac-toe.
Namely, consider a tic-tac-toe grid labeled as follows:

A11 A22 A33

A23 A31 A12

A32 A13 A21

Then each term in the expansion of the determinant oc-
curs in a row or column of the grid. Suppose Player
1 first plays in the top left. Player 0 wins by playing
first in the top row, and second in the left column. Then
there are only one row and column left for Player 1 to
threaten, and Player 1 cannot already threaten both on
the third move, so Player 0 has time to block both.
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A–5 It suffices to prove that for any relatively prime positive
integers r,s, there exists an integer n with an = r and
an+1 = s. We prove this by induction on r+ s, the case
r+s= 2 following from the fact that a0 = a1 = 1. Given
r and s not both 1 with gcd(r,s) = 1, we must have r 6=
s. If r > s, then by the induction hypothesis we have
an = r− s and an+1 = s for some n; then a2n+2 = r and
a2n+3 = s. If r < s, then we have an = r and an+1 = s−r
for some n; then a2n+1 = r and a2n+2 = s.

Note: a related problem is as follows. Starting with the
sequence

0
1
,

1
0
,

repeat the following operation: insert between each pair
a
b and c

d the pair a+c
b+d . Prove that each positive rational

number eventually appears.

Observe that by induction, if a
b and c

d are consecutive
terms in the sequence, then bc−ad = 1. The same holds
for consecutive terms of the n-th Farey sequence, the
sequence of rational numbers in [0,1] with denominator
(in lowest terms) at most n.

A–6 The sum converges for b= 2 and diverges for b≥ 3. We
first consider b ≥ 3. Suppose the sum converges; then
the fact that f (n) = n f (d) whenever bd−1 ≤ n≤ bd−1
yields

∞

∑
n=1

1
f (n)

=
∞

∑
d=1

1
f (d)

bd−1

∑
n=bd−1

1
n
. (1)

However, by comparing the integral of 1/x with a Rie-
mann sum, we see that

bd−1

∑
n=bd−1

1
n
>
∫ bd

bd−1

dx
x

= log(bd)− log(bd−1) = logb,

where log denotes the natural logarithm. Thus (1) yields

∞

∑
n=1

1
f (n)

> (logb)
∞

∑
n=1

1
f (n)

,

a contradiction since logb > 1 for b≥ 3. Therefore the
sum diverges.

For b = 2, we have a slightly different identity because
f (2) 6= 2 f (2). Instead, for any positive integer i, we
have

2i−1

∑
n=1

1
f (n)

= 1+
1
2
+

1
6
+

i

∑
d=3

1
f (d)

2d−1

∑
n=2d−1

1
n
. (2)

Again comparing an integral to a Riemann sum, we see

that for d ≥ 3,

2d−1

∑
n=2d−1

1
n
<

1
2d−1 −

1
2d +

∫ 2d

2d−1

dx
x

=
1
2d + log2

≤ 1
8
+ log2 < 0.125+0.7 < 1.

Put c = 1
8 + log2 and L = 1+ 1

2 +
1

6(1−c) . Then we can

prove that ∑
2i−1
n=1

1
f (n) < L for all i≥ 2 by induction on i.

The case i = 2 is clear. For the induction, note that by
(2),

2i−1

∑
n=1

1
f (n)

< 1+
1
2
+

1
6
+ c

i

∑
d=3

1
f (d)

< 1+
1
2
+

1
6
+ c

1
6(1− c)

= 1+
1
2
+

1
6(1− c)

= L,

as desired. We conclude that ∑
∞
n=1

1
f (n) converges to a

limit less than or equal to L.

Note: the above argument proves that the sum for b = 2
is at most L < 2.417. One can also obtain a lower
bound by the same technique, namely 1+ 1

2 +
1

6(1−c′)
with c′ = log2. This bound exceeds 2.043. (By con-
trast, summing the first 100000 terms of the series only
yields a lower bound of 1.906.) Repeating the same ar-
guments with d ≥ 4 as the cutoff yields the upper bound
2.185 and the lower bound 2.079.

B–1 The probability is 1/99. In fact, we show by induction
on n that after n shots, the probability of having made
any number of shots from 1 to n−1 is equal to 1/(n−
1). This is evident for n = 2. Given the result for n,
we see that the probability of making i shots after n+1
attempts is

i−1
n

1
n−1

+

(
1− i

n

)
1

n−1
=

(i−1)+(n− i)
n(n−1)

=
1
n
,

as claimed.

B–2 (Note: the problem statement assumes that all polyhe-
dra are connected and that no two edges share more than
one face, so we will do likewise. In particular, these are
true for all convex polyhedra.) We show that in fact
the first player can win on the third move. Suppose the
polyhedron has a face A with at least four edges. If the
first player plays there first, after the second player’s
first move there will be three consecutive faces B,C,D
adjacent to A which are all unoccupied. The first player
wins by playing in C; after the second player’s second
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move, at least one of B and D remains unoccupied, and
either is a winning move for the first player.

It remains to show that the polyhedron has a face with
at least four edges. (Thanks to Russ Mann for suggest-
ing the following argument.) Suppose on the contrary
that each face has only three edges. Starting with any
face F1 with vertices v1,v2,v3, let v4 be the other end-
point of the third edge out of v1. Then the faces ad-
jacent to F1 must have vertices v1,v2,v4; v1,v3,v4; and
v2,v3,v4. Thus v1,v2,v3,v4 form a polyhedron by them-
selves, contradicting the fact that the given polyhedron
is connected and has at least five vertices. (One can also
deduce this using Euler’s formula V −E +F = 2−2g,
where V,E,F are the numbers of vertices, edges and
faces, respectively, and g is the genus of the polyhe-
dron. For a convex polyhedron, g = 0 and you get the
“usual” Euler’s formula.)

Note: Walter Stromquist points out the following coun-
terexample if one relaxes the assumption that a pair of
faces may not share multiple edges. Take a tetrahedron
and remove a smaller tetrahedron from the center of an
edge; this creates two small triangular faces and turns
two of the original faces into hexagons. Then the sec-
ond player can draw by signing one of the hexagons,
one of the large triangles, and one of the small trian-
gles. (He does this by “mirroring”: wherever the first
player signs, the second player signs the other face of
the same type.)

B–3 The desired inequalities can be rewritten as

1− 1
n
< exp

(
1+n log

(
1− 1

n

))
< 1− 1

2n
.

By taking logarithms, we can rewrite the desired in-
equalities as

− log
(

1− 1
2n

)
<−1−n log

(
1− 1

n

)
<− log

(
1− 1

n

)
.

Rewriting these in terms of the Taylor expansion of
− log(1−x), we see that the desired result is also equiv-
alent to

∞

∑
i=1

1
i2ini <

∞

∑
i=1

1
(i+1)ni <

∞

∑
i=1

1
ini ,

which is evident because the inequalities hold term by
term.

Note: David Savitt points out that the upper bound can
be improved from 1/(ne) to 2/(3ne) with a slightly
more complicated argument. (In fact, for any c > 1/2,
one has an upper bound of c/(ne), but only for n above
a certain bound depending on c.)

B–4 Use the following strategy: guess 1,3,4,6,7,9, . . . until
the target number n is revealed to be equal to or lower

than one of these guesses. If n ≡ 1 (mod 3), it will be
guessed on an odd turn. If n ≡ 0 (mod 3), it will be
guessed on an even turn. If n ≡ 2 (mod 3), then n+ 1
will be guessed on an even turn, forcing a guess of n on
the next turn. Thus the probability of success with this
strategy is 1335/2002 > 2/3.

Note: for any positive integer m, this strategy wins
when the number is being guessed from [1,m] with
probability 1

mb
2m+1

3 c. We can prove that this is best
possible as follows. Let am denote m times the proba-
bility of winning when playing optimally. Also, let bm
denote m times the corresponding probability of win-
ning if the objective is to select the number in an even
number of guesses instead. (For definiteness, extend the
definitions to incorporate a0 = 0 and b0 = 0.)

We first claim that am = 1+max1≤k≤m{bk−1 + bm−k}
and bm = max1≤k≤m{ak−1 + am−k} for m ≥ 1. To
establish the first recursive identity, suppose that our
first guess is some integer k. We automatically win if
n = k, with probability 1/m. If n < k, with probability
(k−1)/m, then we wish to guess an integer in [1,k−1]
in an even number of guesses; the probability of success
when playing optimally is bk−1/(k−1), by assumption.
Similarly, if n < k, with probability (m−k)/m, then the
subsequent probability of winning is bm−k/(m− k). In
sum, the overall probability of winning if k is our first
guess is (1+bk−1 +bm−k)/m. For optimal strategy, we
choose k such that this quantity is maximized. (Note
that this argument still holds if k = 1 or k = m, by our
definitions of a0 and b0.) The first recursion follows,
and the second recursion is established similarly.

We now prove by induction that am = b(2m+1)/3c and
bm = b2m/3c for m≥ 0. The inductive step relies on the
inequality bxc+ byc ≤ bx+ yc, with equality when one
of x,y is an integer. Now suppose that ai = b(2i+1)/3c
and bi = b2i/3c for i < m. Then

1+bk−1 +bm−k = 1+
⌊

2(k−1)
3

⌋
+

⌊
2(m− k)

3

⌋
≤
⌊

2m
3

⌋
and similarly ak−1 +am−k ≤ b(2m+1)/3c, with equal-
ity in both cases attained, e.g., when k = 1. The induc-
tive formula for am and bm follows.

B–5 (due to Dan Bernstein) Put N = 2002!. Then for d =
1, . . . ,2002, the number N2 written in base b = N/d−1
has digits d2,2d2,d2. (Note that these really are digits
because 2(2002)2 < (2002!)2/2002−1.)

Note: one can also produce an integer N which has base
b digits 1,∗,1 for n different values of b, as follows.
Choose c with 0 < c < 21/n. For m a large positive in-
teger, put N = 1+(m+ 1) · · ·(m+ n)bcmcn−2. For m
sufficiently large, the bases

b =
N−1

(m+ i)mn−2 = ∏
j 6=i

(m+ j)
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for i = 1, . . . ,n will have the properties that N ≡ 1
(mod b) and b2 < N < 2b2 for m sufficiently large.

Note (due to Russ Mann): one can also give a “noncon-
structive” argument. Let N be a large positive integer.
For b ∈ (N2,N3), the number of 3-digit base-b palin-
dromes in the range [b2,N6−1] is at least⌊

N6−b2

b

⌋
−1≥ N6

b2 −b−2,

since there is a palindrome in each interval [kb,(k +
1)b− 1] for k = b, . . . ,b2− 1. Thus the average num-
ber of bases for which a number in [1,N6−1] is at least

1
N6

N3−1

∑
b=N2+1

(
N6

b
−b−2

)
≥ log(N)− c

for some constant c > 0. Take N so that the right side
exceeds 2002; then at least one number in [1,N6−1] is
a base-b palindrome for at least 2002 values of b.

B–6 We prove that the determinant is congruent modulo p to

x
p−1

∏
i=0

(y+ ix)
p−1

∏
i, j=0

(z+ ix+ jy). (3)

We first check that

p−1

∏
i=0

(y+ ix)≡ yp− xp−1y (mod p). (4)

Since both sides are homogeneous as polynomials in x
and y, it suffices to check (4) for x = 1, as a congruence
between polynomials. Now note that the right side has
0,1, . . . , p− 1 as roots modulo p, as does the left side.
Moreover, both sides have the same leading coefficient.
Since they both have degree only p, they must then co-
incide.

We thus have

x
p−1

∏
i=0

(y+ ix)
p−1

∏
i, j=0

(z+ ix+ jy)

≡ x(yp− xp−1y)
p−1

∏
j=0

((z+ jy)p− xp−1(z+ jy))

≡ (xyp− xpy)
p−1

∏
j=0

(zp− xp−1z+ jyp− jxp−1y)

≡ (xyp− xpy)((zp− xp−1z)p

− (yp− xp−1y)p−1(zp− xp−1z))

≡ (xyp− xpy)(zp2 − xp2−pzp)

− x(yp− xp−1y)p(zp− xp−1z)

≡ xypzp2 − xpyzp2 − xp2−p+1ypzp + xp2
yzp

− xyp2
zp + xp2−p+1ypzp + xpyp2

z− xp2
ypz

≡ xypzp2
+ yzpxp2

+ zxpyp2

− xzpyp2 − yxpzp2 − zypxp2
,

which is precisely the desired determinant.

Note: a simpler conceptual proof is as follows. (Every-
thing in this paragraph will be modulo p.) Note that
for any integers a,b,c, the column vector [ax + by +
cz,(ax + by + cz)p,(ax + by + cz)p2

] is a linear com-
bination of the columns of the given matrix. Thus
ax+ by+ cz divides the determinant. In particular, all
of the factors of (3) divide the determinant; since both
(3) and the determinant have degree p2 + p+ 1, they
agree up to a scalar multiple. Moreover, they have the
same coefficient of zp2

ypx (since this term only appears
in the expansion of (3) when you choose the first term
in each factor). Thus the determinant is congruent to
(3), as desired.

Either argument can be used to generalize to a corre-
sponding n× n determinant, called a Moore determi-
nant; we leave the precise formulation to the reader.
Note the similarity with the classical Vandermonde de-
terminant: if A is the n× n matrix with Ai j = x j

i for
i, j = 0, . . . ,n−1, then

det(A) = ∏
1≤i< j≤n

(x j− xi).
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A1 Let n be a fixed positive integer. How many ways are
there to write n as a sum of positive integers,

n = a1 +a2 + · · ·+ak,

with k an arbitrary positive integer and a1 ≤ a2 ≤ ·· · ≤
ak ≤ a1 + 1? For example, with n = 4 there are four
ways: 4, 2+2, 1+1+2, 1+1+1+1.

A2 Let a1,a2, . . . ,an and b1,b2, . . . ,bn be nonnegative real
numbers. Show that

(a1a2 · · ·an)
1/n +(b1b2 · · ·bn)

1/n

≤ [(a1 +b1)(a2 +b2) · · ·(an +bn)]
1/n.

A3 Find the minimum value of

|sinx+ cosx+ tanx+ cotx+ secx+ cscx|

for real numbers x.

A4 Suppose that a,b,c,A,B,C are real numbers, a 6= 0 and
A 6= 0, such that

|ax2 +bx+ c| ≤ |Ax2 +Bx+C|

for all real numbers x. Show that

|b2−4ac| ≤ |B2−4AC|.

A5 A Dyck n-path is a lattice path of n upsteps (1,1) and n
downsteps (1,−1) that starts at the origin O and never
dips below the x-axis. A return is a maximal sequence
of contiguous downsteps that terminates on the x-axis.
For example, the Dyck 5-path illustrated has two re-
turns, of length 3 and 1 respectively.

O

Show that there is a one-to-one correspondence be-
tween the Dyck n-paths with no return of even length
and the Dyck (n−1)-paths.

A6 For a set S of nonnegative integers, let rS(n) denote the
number of ordered pairs (s1,s2) such that s1 ∈ S, s2 ∈ S,
s1 6= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way
that rA(n) = rB(n) for all n ?

B1 Do there exist polynomials a(x),b(x),c(y),d(y) such
that

1+ xy+ x2y2 = a(x)c(y)+b(x)d(y)

holds identically?

B2 Let n be a positive integer. Starting with the sequence
1, 1

2 ,
1
3 , . . . ,

1
n , form a new sequence of n− 1 entries

3
4 ,

5
12 , . . . ,

2n−1
2n(n−1) by taking the averages of two consec-

utive entries in the first sequence. Repeat the averaging
of neighbors on the second sequence to obtain a third
sequence of n−2 entries, and continue until the final se-
quence produced consists of a single number xn. Show
that xn < 2/n.

B3 Show that for each positive integer n,

n! =
n

∏
i=1

lcm{1,2, . . . ,bn/ic}.

(Here lcm denotes the least common multiple, and bxc
denotes the greatest integer ≤ x.)

B4 Let f (z) = az4 + bz3 + cz2 + dz + e = a(z− r1)(z−
r2)(z− r3)(z− r4) where a,b,c,d,e are integers, a 6= 0.
Show that if r1 + r2 is a rational number and r1 + r2 6=
r3 + r4, then r1r2 is a rational number.

B5 Let A,B, and C be equidistant points on the circumfer-
ence of a circle of unit radius centered at O, and let P
be any point in the circle’s interior. Let a,b,c be the
distance from P to A,B,C, respectively. Show that there
is a triangle with side lengths a,b,c, and that the area of
this triangle depends only on the distance from P to O.

B6 Let f (x) be a continuous real-valued function defined
on the interval [0,1]. Show that∫ 1

0

∫ 1

0
| f (x)+ f (y)|dxdy≥

∫ 1

0
| f (x)|dx.
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A1 There are n such sums. More precisely, there is exactly
one such sum with k terms for each of k = 1, . . . ,n (and
clearly no others). To see this, note that if n = a1+a2+
· · ·+ak with a1 ≤ a2 ≤ ·· · ≤ ak ≤ a1 +1, then

ka1 = a1 +a1 + · · ·+a1

≤ n≤ a1 +(a1 +1)+ · · ·+(a1 +1)
= ka1 + k−1.

However, there is a unique integer a1 satisfying these
inequalities, namely a1 = bn/kc. Moreover, once a1 is
fixed, there are k different possibilities for the sum a1 +
a2 + · · ·+ ak: if i is the last integer such that ai = a1,
then the sum equals ka1 +(i− 1). The possible values
of i are 1, . . . ,k, and exactly one of these sums comes
out equal to n, proving our claim.

Note: In summary, there is a unique partition of n with
k terms that is “as equally spaced as possible”. One
can also obtain essentially the same construction induc-
tively: except for the all-ones sum, each partition of n is
obtained by “augmenting” a unique partition of n−1.

A2 First solution: Assume without loss of generality that
ai+bi > 0 for each i (otherwise both sides of the desired
inequality are zero). Then the AM-GM inequality gives

(
a1 · · ·an

(a1 +b1) · · ·(an +bn)

)1/n

≤ 1
n

(
a1

a1 +b1
+ · · ·+ an

an +bn

)
,

and likewise with the roles of a and b reversed. Adding
these two inequalities and clearing denominators yields
the desired result.

Second solution: Write the desired inequality in the
form

(a1 +b1) · · ·(an +bn)≥ [(a1 · · ·an)
1/n +(b1 · · ·bn)

1/n]n,

expand both sides, and compare the terms on both sides
in which k of the terms are among the ai. On the
left, one has the product of each k-element subset of
{1, . . . ,n}; on the right, one has(

n
k

)
(a1 · · ·an)

k/n · · ·(b1 . . .bn)
(n−k)/n,

which is precisely
(n

k

)
times the geometric mean of

the terms on the left. Thus AM-GM shows that the
terms under consideration on the left exceed those on
the right; adding these inequalities over all k yields the
desired result.

Third solution: Since both sides are continuous in each
ai, it is sufficient to prove the claim with a1, . . . ,an all
positive (the general case follows by taking limits as
some of the ai tend to zero). Put ri = bi/ai; then the
given inequality is equivalent to

(1+ r1)
1/n · · ·(1+ rn)

1/n ≥ 1+(r1 · · ·rn)
1/n.

In terms of the function

f (x) = log(1+ ex)

and the quantities si = logri, we can rewrite the desired
inequality as

1
n
( f (s1)+ · · ·+ f (sn))≥ f

(
s1 + · · ·+ sn

n

)
.

This will follow from Jensen’s inequality if we can ver-
ify that f is a convex function; it is enough to check that
f ′′(x)> 0 for all x. In fact,

f ′(x) =
ex

1+ ex = 1− 1
1+ ex

is an increasing function of x, so f ′′(x)> 0 and Jensen’s
inequality thus yields the desired result. (As long as the
ai are all positive, equality holds when s1 = · · · = sn,
i.e., when the vectors (a1, . . . ,an) and (b1, . . . ,bn). Of
course other equality cases crop up if some of the ai
vanish, i.e., if a1 = b1 = 0.)

Fourth solution: We apply induction on n, the case n=
1 being evident. First we verify the auxiliary inequality

(an +bn)(cn +dn)n−1 ≥ (acn−1 +bdn−1)n

for a,b,c,d ≥ 0. The left side can be written as

ancn(n−1)+bndn(n−1)

+
n−1

∑
i=1

(
n−1

i

)
bncnidn(n−1−i)

+
n−1

∑
i=1

(
n−1
i−1

)
ancn(i−1)dn(n−i).

Applying the weighted AM-GM inequality between
matching terms in the two sums yields

(an +bn)(cn +dn)n−1 ≥ ancn(n−1)+bndn(n−1)

+
n−1

∑
i=1

(
n
i

)
aibn−ic(n−1)id(n−1)(n−i),
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proving the auxiliary inequality.

Now given the auxiliary inequality and the n− 1 case
of the desired inequality, we apply the auxiliary in-
equality with a = a1/n

1 , b = b1/n
1 , c = (a2 · · ·an)

1/n(n−1),
d = (b2 . . .bn)

1/n(n−1). The right side will be the n-th
power of the desired inequality. The left side comes out
to

(a1 +b1)((a2 · · ·an)
1/(n−1)+(b2 · · ·bn)

1/(n−1))n−1,

and by the induction hypothesis, the second factor is
less than (a2 +b2) · · ·(an +bn). This yields the desired
result.

Note: Equality holds if and only if ai = bi = 0 for
some i or if the vectors (a1, . . . ,an) and (b1, . . . ,bn)
are proportional. As pointed out by Naoki Sato, the
problem also appeared on the 1992 Irish Mathematical
Olympiad. It is also a special case of a classical in-
equality, known as Hölder’s inequality, which general-
izes the Cauchy-Schwarz inequality (this is visible from
the n = 2 case); the first solution above is adapted from
the standard proof of Hölder’s inequality. We don’t
know whether the declaration “Apply Hölder’s inequal-
ity” by itself is considered an acceptable solution to this
problem.

A3 First solution: Write

f (x) = sinx+ cosx+ tanx+ cotx+ secx+ cscx

= sinx+ cosx+
1

sinxcosx
+

sinx+ cosx
sinxcosx

.

We can write sinx+ cosx =
√

2cos(π/4− x); this sug-
gests making the substitution y = π/4− x. In this new
coordinate,

sinxcosx =
1
2

sin2x =
1
2

cos2y,

and writing c =
√

2cosy, we have

f (y) = (1+ c)
(

1+
2

c2−1

)
−1

= c+
2

c−1
.

We must analyze this function of c in the range
[−
√

2,
√

2]. Its value at c =−
√

2 is 2−3
√

2 <−2.24,
and at c =

√
2 is 2 + 3

√
2 > 6.24. Its derivative is

1−2/(c−1)2, which vanishes when (c−1)2 = 2, i.e.,
where c = 1±

√
2. Only the value c = 1−

√
2 is in

bounds, at which the value of f is 1− 2
√

2 > −1.83.
As for the pole at c = 1, we observe that f decreases as
c approaches from below (so takes negative values for
all c < 1) and increases as c approaches from above (so
takes positive values for all c > 1); from the data col-
lected so far, we see that f has no sign crossings, so the
minimum of | f | is achieved at a critical point of f . We
conclude that the minimum of | f | is 2

√
2−1.

Alternate derivation (due to Zuming Feng): We can also
minimize |c+2/(c−1)| without calculus (or worrying
about boundary conditions). For c > 1, we have

1+(c−1)+
2

c−1
≥ 1+2

√
2

by AM-GM on the last two terms, with equality for c−
1 =
√

2 (which is out of range). For c < 1, we similarly
have

−1+1− c+
2

1− c
≥−1+2

√
2,

here with equality for 1− c =
√

2.

Second solution: Write

f (a,b) = a+b+
1

ab
+

a+b
ab

.

Then the problem is to minimize | f (a,b)| subject to
the constraint a2 + b2− 1 = 0. Since the constraint re-
gion has no boundary, it is enough to check the value
at each critical point and each potential discontinuity
(i.e., where ab = 0) and select the smallest value (after
checking that f has no sign crossings).

We locate the critical points using the Lagrange mul-
tiplier condition: the gradient of f should be parallel
to that of the constraint, which is to say, to the vector
(a,b). Since

∂ f
∂a

= 1− 1
a2b
− 1

a2

and similarly for b, the proportionality yields

a2b3−a3b2 +a3−b3 +a2−b2 = 0.

The irreducible factors of the left side are 1+ a, 1+ b,
a−b, and ab−a−b. So we must check what happens
when any of those factors, or a or b, vanishes.

If 1+ a = 0, then b = 0, and the singularity of f be-
comes removable when restricted to the circle. Namely,
we have

f = a+b+
1
a
+

b+1
ab

and a2+b2−1= 0 implies (1+b)/a= a/(1−b). Thus
we have f =−2; the same occurs when 1+b = 0.

If a− b = 0, then a = b = ±
√

2/2 and either f = 2+
3
√

2 > 6.24, or f = 2−3
√

2 <−2.24.

If a = 0, then either b =−1 as discussed above, or b =
1. In the latter case, f blows up as one approaches this
point, so there cannot be a global minimum there.

Finally, if ab−a−b = 0, then

a2b2 = (a+b)2 = 2ab+1
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and so ab = 1±
√

2. The plus sign is impossible since
|ab| ≤ 1, so ab = 1−

√
2 and

f (a,b) = ab+
1

ab
+1

= 1−2
√

2 >−1.83.

This yields the smallest value of | f | in the list (and in-
deed no sign crossings are possible), so 2

√
2− 1 is the

desired minimum of | f |.
Note: Instead of using the geometry of the graph of f
to rule out sign crossings, one can verify explicitly that
f cannot take the value 0. In the first solution, note that
c+2/(c−1) = 0 implies c2− c+2 = 0, which has no
real roots. In the second solution, we would have

a2b+ab2 +a+b =−1.

Squaring both sides and simplifying yields

2a3b3 +5a2b2 +4ab = 0,

whose only real root is ab = 0. But the cases with ab =
0 do not yield f = 0, as verified above.

A4 We split into three cases. Note first that |A| ≥ |a|, by
applying the condition for large x.

Case 1: B2−4AC > 0. In this case Ax2+Bx+C has two
distinct real roots r1 and r2. The condition implies that
ax2 +bx+c also vanishes at r1 and r2, so b2−4ac > 0.
Now

B2−4AC = A2(r1− r2)
2

≥ a2(r1− r2)
2

= b2−4ac.

Case 2: B2−4AC≤ 0 and b2−4ac≤ 0. Assume with-
out loss of generality that A≥ a > 0, and that B = 0 (by
shifting x). Then Ax2 +Bx+C ≥ ax2 + bx+ c ≥ 0 for
all x; in particular, C ≥ c≥ 0. Thus

4AC−B2 = 4AC
≥ 4ac

≥ 4ac−b2.

Alternate derivation (due to Robin Chapman): the el-
lipse Ax2+Bxy+Cy2 = 1 is contained within the ellipse
ax2 +bxy+cy2 = 1, and their respective enclosed areas
are π/(4AC−B2) and π/(4ac−b2).

Case 3: B2− 4AC ≤ 0 and b2− 4ac > 0. Since Ax2 +
Bx+C has a graph not crossing the x-axis, so do (Ax2+
Bx+C)± (ax2 +bx+ c). Thus

(B−b)2−4(A−a)(C− c)≤ 0,

(B+b)2−4(A+a)(C+ c)≤ 0

and adding these together yields

2(B2−4AC)+2(b2−4ac)≤ 0.

Hence b2−4ac≤ 4AC−B2, as desired.

A5 First solution: We represent a Dyck n-path by a
sequence a1 · · ·a2n, where each ai is either (1,1) or
(1,−1).

Given an (n− 1)-path P = a1 · · ·a2n−2, we distinguish
two cases. If P has no returns of even-length, then let
f (P) denote the n-path (1,1)(1,−1)P. Otherwise, let
aiai+1 · · ·a j denote the rightmost even-length return in
P, and let f (P) = (1,1)a1a2 · · ·a j(1,−1)a j+1 · · ·a2n−2.
Then f clearly maps the set of Dyck (n−1)-paths to the
set of Dyck n-paths having no even return.

We claim that f is bijective; to see this, we simply
construct the inverse mapping. Given an n-path P, let
R = aiai+1...a j denote the leftmost return in P, and let
g(P) denote the path obtained by removing a1 and a j
from P. Then evidently f ◦g and g◦ f are identity maps,
proving the claim.

Second solution: (by Dan Bernstein) Let Cn be the
number of Dyck paths of length n, let On be the number
of Dyck paths whose final return has odd length, and let
Xn be the number of Dyck paths with no return of even
length.

We first exhibit a recursion for On; note that O0 = 0.
Given a Dyck n-path whose final return has odd length,
split it just after its next-to-last return. For some k (pos-
sibly zero), this yields a Dyck k-path, an upstep, a Dyck
(n− k−1)-path whose odd return has even length, and
a downstep. Thus for n≥ 1,

On =
n−1

∑
k=0

Ck(Cn−k−1−On−k−1).

We next exhibit a similar recursion for Xn; note that
X0 = 1. Given a Dyck n-path with no even return, split-
ting as above yields for some k a Dyck k-path with no
even return, an upstep, a Dyck (n− k− 1)-path whose
final return has even length, then a downstep. Thus for
n≥ 1,

Xn =
n−1

∑
k=0

Xk(Cn−k−1−On−k−1).

To conclude, we verify that Xn = Cn−1 for n ≥ 1, by
induction on n. This is clear for n= 1 since X1 =C0 = 1.
Given Xk =Ck−1 for k < n, we have

Xn =
n−1

∑
k=0

Xk(Cn−k−1−On−k−1)

=Cn−1−On−1 +
n−1

∑
k=1

Ck−1(Cn−k−1−On−k−1)

=Cn−1−On−1 +On−1

=Cn−1,

as desired.

Note: Since the problem only asked about the existence
of a one-to-one correspondence, we believe that any
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proof, bijective or not, that the two sets have the same
cardinality is an acceptable solution. (Indeed, it would
be highly unusual to insist on using or not using a spe-
cific proof technique!) The second solution above can
also be phrased in terms of generating functions. Also,
the Cn are well-known to equal the Catalan numbers

1
n+1

(2n
n

)
; the problem at hand is part of a famous exer-

cise in Richard Stanley’s Enumerative Combinatorics,
Volume 1 giving 66 combinatorial interpretations of the
Catalan numbers.

A6 First solution: Yes, such a partition is possible. To
achieve it, place each integer into A if it has an even
number of 1s in its binary representation, and into B if
it has an odd number. (One discovers this by simply
attempting to place the first few numbers by hand and
noticing the resulting pattern.)

To show that rA(n) = rB(n), we exhibit a bijection be-
tween the pairs (a1,a2) of distinct elements of A with
a1 + a2 = n and the pairs (b1,b2) of distinct elements
of B with b1 + b2 = n. Namely, given a pair (a1,a2)
with a1 + a2 = n, write both numbers in binary and
find the lowest-order place in which they differ (such
a place exists because a1 6= a2). Change both numbers
in that place and call the resulting numbers b1,b2. Then
a1 + a2 = b1 + b2 = n, but the parity of the number of
1s in b1 is opposite that of a1, and likewise between b2
and a2. This yields the desired bijection.

Second solution: (by Micah Smukler) Write b(n) for
the number of 1s in the base 2 expansion of n, and
f (n) = (−1)b(n). Then the desired partition can be
described as A = f−1(1) and B = f−1(−1). Since
f (2n)+ f (2n+1) = 0, we have

n

∑
i=0

f (n) =

{
0 n odd
f (n) n even.

If p,q are both in A, then f (p)+ f (q) = 2; if p,q are
both in B, then f (p)+ f (q) =−2; if p,q are in different
sets, then f (p)+ f (q) = 0. In other words,

2(rA(n)− rB(n)) = ∑
p+q=n,p<q

( f (p)+ f (q))

and it suffices to show that the sum on the right is always
zero. If n is odd, that sum is visibly ∑

n
i=0 f (i) = 0. If n

is even, the sum equals(
n

∑
i=0

f (i)

)
− f (n/2) = f (n)− f (n/2) = 0.

This yields the desired result.

Third solution: (by Dan Bernstein) Put f (x) = ∑n∈A xn

and g(x) =∑n∈B xn; then the value of rA(n) (resp. rB(n))
is the coefficient of xn in f (x)2− f (x2) (resp. g(x)2−

g(x2)). From the evident identities

1
1− x

= f (x)+g(x)

f (x) = f (x2)+ xg(x2)

g(x) = g(x2)+ x f (x2),

we have

f (x)−g(x) = f (x2)−g(x2)+ xg(x2)− x f (x2)

= (1− x)( f (x2)−g(x2))

=
f (x2)−g(x2)

f (x)+g(x)
.

We deduce that f (x)2−g(x)2 = f (x2)−g(x2), yielding
the desired equality.

Note: This partition is actually unique, up to inter-
changing A and B. More precisely, the condition that
0∈A and rA(n) = rB(n) for n= 1, . . . ,m uniquely deter-
mines the positions of 0, . . . ,m. We see this by induction
on m: given the result for m−1, switching the location
of m changes rA(m) by one and does not change rB(m),
so it is not possible for both positions to work. Robin
Chapman points out this problem is solved in D.J. New-
man’s Analytic Number Theory (Springer, 1998); in that
solution, one uses generating functions to find the par-
tition and establish its uniqueness, not just verify it.

B1 No, there do not.

First solution: Suppose the contrary. By setting y =
−1,0,1 in succession, we see that the polynomials
1− x+ x2,1,1+ x+ x2 are linear combinations of a(x)
and b(x). But these three polynomials are linearly inde-
pendent, so cannot all be written as linear combinations
of two other polynomials, contradiction.

Alternate formulation: the given equation expresses a
diagonal matrix with 1,1,1 and zeroes on the diagonal,
which has rank 3, as the sum of two matrices of rank 1.
But the rank of a sum of matrices is at most the sum of
the ranks of the individual matrices.

Second solution: It is equivalent (by relabeling and
rescaling) to show that 1 + xy + x2y2 cannot be writ-
ten as a(x)d(y)−b(x)c(y). Write a(x) = ∑aixi, b(x) =
∑bixi, c(y) = ∑c jy j, d(y) = ∑d jy j. We now start com-
paring coefficients of 1+ xy+ x2y2. By comparing co-
efficients of 1+ xy+ x2y2 and a(x)d(y)− b(x)c(y), we
get

1 = aidi−bici (i = 0,1,2)
0 = aid j−bic j (i 6= j).

The first equation says that ai and bi cannot both vanish,
and ci and di cannot both vanish. The second equation
says that ai/bi = c j/d j when i 6= j, where both sides
should be viewed in R∪ {∞} (and neither is undeter-
mined if i, j ∈ {0,1,2}). But then

a0/b0 = c1/d1 = a2/b2 = c0/d0
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contradicting the equation a0d0−b0c0 = 1.

Third solution: We work over the complex numbers,
in which we have a primitive cube root ω of 1. We also
use without further comment unique factorization for
polynomials in two variables over a field. And we keep
the relabeling of the second solution.

Suppose the contrary. Since 1 + xy + x2y2 = (1 −
xy/ω)(1− xy/ω2), the rational function a(ω/y)d(y)−
b(ω/y)c(y) must vanish identically (that is, coefficient
by coefficient). If one of the polynomials, say a, van-
ished identically, then one of b or c would also, and the
desired inequality could not hold. So none of them van-
ish identically, and we can write

c(y)
d(y)

=
a(ω/y)
b(ω/y)

.

Likewise,

c(y)
d(y)

=
a(ω2/y)
b(ω2/y)

.

Put f (x) = a(x)/b(x); then we have f (ωx) = f (x)
identically. That is, a(x)b(ωx) = b(x)a(ωx). Since a
and b have no common factor (otherwise 1+ xy+ x2y2

would have a factor divisible only by x, which it doesn’t
since it doesn’t vanish identically for any particular x),
a(x) divides a(ωx). Since they have the same degree,
they are equal up to scalars. It follows that one of
a(x),xa(x),x2a(x) is a polynomial in x3 alone, and like-
wise for b (with the same power of x).

If xa(x) and xb(x), or x2a(x) and x2b(x), are polyno-
mials in x3, then a and b are divisible by x, but we
know a and b have no common factor. Hence a(x)
and b(x) are polynomials in x3. Likewise, c(y) and
d(y) are polynomials in y3. But then 1+ xy+ x2y2 =
a(x)d(y)− b(x)c(y) is a polynomial in x3 and y3, con-
tradiction.

Note: The third solution only works over fields of char-
acteristic not equal to 3, whereas the other two work
over arbitrary fields. (In the first solution, one must re-
place −1 by another value if working in characteristic
2.)

B2 It is easy to see by induction that the j-th entry
of the k-th sequence (where the original sequence is
k = 1) is ∑

k
i=1
(k−1

i−1

)
/(2k−1(i + j − 1)), and so xn =

1
2n−1 ∑

n
i=1
(n−1

i−1

)
/i. Now

(n−1
i−1

)
/i =

(n
i

)
/n; hence

xn =
1

n2n−1

n

∑
i=1

(
n
i

)
=

2n−1
n2n−1 < 2/n,

as desired.

B3 First solution: It is enough to show that for each prime
p, the exponent of p in the prime factorization of both

sides is the same. On the left side, it is well-known that
the exponent of p in the prime factorization of n! is

n

∑
i=1

⌊
n
pi

⌋
.

(To see this, note that the i-th term counts the multiples
of pi among 1, . . . ,n, so that a number divisible exactly
by pi gets counted exactly i times.) This number can
be reinterpreted as the cardinality of the set S of points
in the plane with positive integer coordinates lying on
or under the curve y = np−x: namely, each summand is
the number of points of S with x = i.

On the right side, the exponent of p in the prime
factorization of lcm(1, . . . ,bn/ic) is blogpbn/icc =

blogp(n/i)c. However, this is precisely the number of
points of S with y = i. Thus

n

∑
i=1
blogpbn/icc=

n

∑
i=1

⌊
n
pi

⌋
,

and the desired result follows.

Second solution: We prove the result by induction on
n, the case n = 1 being obvious. What we actually show
is that going from n− 1 to n changes both sides by the
same multiplicative factor, that is,

n =
n−1

∏
i=1

lcm{1,2, . . . ,bn/ic}
lcm{1,2, . . . ,b(n−1)/ic}

.

Note that the i-th term in the product is equal to 1 if n/i
is not an integer, i.e., if n/i is not a divisor of n. It is
also equal to 1 if n/i is a divisor of n but not a prime
power, since any composite number divides the lcm of
all smaller numbers. However, if n/i is a power of p,
then the i-th term is equal to p.

Since n/i runs over all proper divisors of n, the product
on the right side includes one factor of the prime p for
each factor of p in the prime factorization of n. Thus
the whole product is indeed equal to n, completing the
induction.

B4 First solution: Put g = r1 + r2, h = r3 + r4, u = r1r2,
v = r3r4. We are given that g is rational. The following
are also rational:

−b
a

= g+h

c
a
= gh+u+ v

−d
a

= gv+hu

From the first line, h is rational. From the second line,
u+ v is rational. From the third line, g(u+ v)− (gv+
hu) = (g−h)u is rational. Since g 6= h, u is rational, as
desired.

Second solution: This solution uses some basic Galois
theory. We may assume r1 6= r2, since otherwise they
are both rational and so then is r1r2.
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Let τ be an automorphism of the field of algebraic num-
bers; then τ maps each ri to another one, and fixes
the rational number r1 + r2. If τ(r1) equals one of r1
or r2, then τ(r2) must equal the other one, and vice
versa. Thus τ either fixes the set {r1,r2} or moves it
to {r3,r4}. But if the latter happened, we would have
r1 + r2 = r3 + r4, contrary to hypothesis. Thus τ fixes
the set {r1,r2} and in particular the number r1r2. Since
this is true for any τ , r1r2 must be rational.

Note: The conclusion fails if we allow r1+r2 = r3+r4.
For instance, take the polynomial x4− 2 and label its
roots so that (x−r1)(x−r2) = x2−

√
2 and (x−r3)(x−

r4) = x2 +
√

2.

B5 First solution: Place the unit circle on the complex
plane so that A,B,C correspond to the complex num-
bers 1,ω,ω2, where ω = e2πi/3, and let P correspond
to the complex number x. The distances a,b,c are then
|x−1|, |x−ω|, |x−ω2|. Now the identity

(x−1)+ω(x−ω)+ω
2(x−ω

2) = 0

implies that there is a triangle whose sides, as vec-
tors, correspond to the complex numbers x− 1,ω(x−
ω),ω2(x−ω2); this triangle has sides of length a,b,c.

To calculate the area of this triangle, we first note a more
general formula. If a triangle in the plane has vertices
at 0, v1 = s1 + it1, v2 = s2 + it2, then it is well known
that the area of the triangle is |s1t2− s2t1|/2 = |v1v2−
v2v1|/4. In our case, we have v1 = x−1 and v2 =ω(x−
ω); then

v1v2− v2v1 = (ω2−ω)(xx−1) = i
√

3(|x|2−1).

Hence the area of the triangle is
√

3(1−|x|2)/4, which
depends only on the distance |x| from P to O.

Second solution: (by Florian Herzig) Let A′, B′, C′

be the points obtained by intersecting the lines AP,
BP, CP with the unit circle. Let d denote OP. Then
A′P = (1−d2)/a, etc., by using the power of the point
P. As triangles A′B′P and BAP are similar, we get
that A′B′ = AB ·A′P/b =

√
3(1− d2)/(ab). It follows

that triangle A′B′C′ has sides proportional to a, b, c,
by a factor of

√
3(1− d2)/(abc). In particular, there

is a triangle with sides a, b, c, and it has circumra-
dius R = (abc)/(

√
3(1− d2)). Its area is abc/(4R) =√

3(1−d2)/4.

Third solution: (by Samuel Li) Consider the rotation
by the angle π/3 around A carrying B to C, and let PA
be the image of P; define PB,PC similarly. Let A′ be the
intersection of the tangents to the circle at B,C; define
B′,C′, similarly. Put `= AB = BC =CA; we then have

AB′ = AC′ = BC′ = BA′ =CA′ =CB′ = `

PA = PPA = PAA = PBC′ = PCA′ = a

PB = PPB = PBB = PCA′ = PAC′ = b

PC = PPC = PCC = PAB′ = PBA′ = c.

The triangle4A′B′C′ has area four times that of4ABC.
We may dissect it into twelve triangles by first split-
ting it into three quadrilaterals PAC′B, PBC′A,PCA′B,
then splitting each of these in four around the respec-
tive interior points PB,PC,PA. Of the resulting twelve
triangles, three have side lengths a,b,c, while three are
equilateral triangles of respective sides lengths a,b,c.
The other six are isomorphic to two copies each of
4PAB,4PBC,4PCA, so their total area is twice that
of4ABC.

It thus suffices to compute a2 + b2 + c2 in terms of the
radius of the circle and the distance OP. This can be
done readily in terms of OP using vectors, Cartesian
coordinates, or complex numbers as in the first solution.

B6 First solution: (composite of solutions by Feng Xie
and David Pritchard) Let µ denote Lebesgue measure
on [0,1]. Define

E+ = {x ∈ [0,1] : f (x)≥ 0}
E− = {x ∈ [0,1] : f (x)< 0};

then E+, E− are measurable and µ(E+)+ µ(E−) = 1.
Write µ+ and µ− for µ(E+) and µ(E−). Also define

I+ =
∫

E+

| f (x)|dx

I− =
∫

E−
| f (x)|dx,

so that
∫ 1

0 | f (x)|dx = I++ I−.

From the triangle inequality |a+ b| ≥ ±(|a| − |b|), we
have the inequality∫∫

E+×E−
| f (x)+ f (y)|dxdy

≥±
∫∫

E+×E−
(| f (x)|− | f (y)|)dxdy

=±(µ−I+−µ+I−),

and likewise with + and − switched. Adding these in-
equalities together and allowing all possible choices of
the signs, we get∫∫

(E+×E−)∪(E−×E+)
| f (x)+ f (y)|dxdy

≥max{0,2(µ−I+−µ+I−),2(µ+I−−µ−I+)} .

To this inequality, we add the equalities∫∫
E+×E+

| f (x)+ f (y)|dxdy = 2µ+I+∫∫
E−×E−

| f (x)+ f (y)|dxdy = 2µ−I−

−
∫ 1

0
| f (x)|dx =−(µ++µ−)(I++ I−)
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to obtain∫ 1

0

∫ 1

0
| f (x)+ f (y)|dxdy−

∫ 1

0
| f (x)|dx

≥max{(µ+−µ−)(I++ I−)+2µ−(I−− I+),
(µ+−µ−)(I+− I−),
(µ−−µ+)(I++ I−)+2µ+(I+− I−)}.

Now simply note that for each of the possible compar-
isons between µ+ and µ−, and between I+ and I−, one
of the three terms above is manifestly nonnegative. This
yields the desired result.

Second solution: We will show at the end that it is
enough to prove a discrete analogue: if x1, . . . ,xn are
real numbers, then

1
n2

n

∑
i, j=1
|xi + x j| ≥

1
n

n

∑
i=1
|xi|.

In the meantime, we concentrate on this assertion.

Let f (x1, . . . ,xn) denote the difference between the two
sides. We induct on the number of nonzero values of
|xi|. We leave for later the base case, where there is at
most one such value. Suppose instead for now that there
are two or more. Let s be the smallest, and suppose
without loss of generality that x1 = · · ·= xa = s, xa+1 =
· · ·= xa+b =−s, and for i > a+b, either xi = 0 or |xi|>
s. (One of a,b might be zero.)

Now consider

f (
a terms︷ ︸︸ ︷
t, · · · , t ,

b terms︷ ︸︸ ︷
−t, · · · ,−t,xa+b+1, · · · ,xn)

as a function of t. It is piecewise linear near s; in fact,
it is linear between 0 and the smallest nonzero value
among |xa+b+1|, . . . , |xn| (which exists by hypothesis).
Thus its minimum is achieved by one (or both) of those
two endpoints. In other words, we can reduce the num-
ber of distinct nonzero absolute values among the xi
without increasing f . This yields the induction, pending
verification of the base case.

As for the base case, suppose that x1 = · · ·= xa = s > 0,
xa+1 = · · · = xa+b = −s, and xa+b+1 = · · · = xn = 0.
(Here one or even both of a,b could be zero, though the
latter case is trivial.) Then

f (x1, . . . ,xn) =
s

n2 (2a2 +2b2 +(a+b)(n−a−b))

− s
n
(a+b) =

s
n2 (a

2−2ab+b2)≥ 0.

This proves the base case of the induction, completing
the solution of the discrete analogue.

To deduce the original statement from the discrete ana-
logue, approximate both integrals by equally-spaced
Riemann sums and take limits. This works because
given a continuous function on a product of closed in-
tervals, any sequence of Riemann sums with mesh size

tending to zero converges to the integral. (The domain
is compact, so the function is uniformly continuous.
Hence for any ε > 0 there is a cutoff below which any
mesh size forces the discrepancy between the Riemann
sum and the integral to be less than ε .)

Alternate derivation (based on a solution by Dan Bern-
stein): from the discrete analogue, we have

∑
1≤i< j≤n

| f (xi)+ f (x j)| ≥
n−2

2

n

∑
i=1
| f (xi)|,

for all x1, . . . ,xn ∈ [0,1]. Integrating both sides as
(x1, . . . ,xn) runs over [0,1]n yields

n(n−1)
2

∫ 1

0

∫ 1

0
| f (x)+ f (y)|dydx

≥ n(n−2)
2

∫ 1

0
| f (x)|dx,

or∫ 1

0

∫ 1

0
| f (x)+ f (y)|dydx≥ n−2

n−1

∫ 1

0
| f (x)|dx.

Taking the limit as n→∞ now yields the desired result.

Third solution: (by David Savitt) We give an argument
which yields the following improved result. Let µp and
µn be the measure of the sets {x : f (x) > 0} and {x :
f (x)< 0} respectively, and let µ ≤ 1/2 be min(µp,µn).
Then ∫ 1

0

∫ 1

0
| f (x)+ f (y)|dxdy

≥ (1+(1−2µ)2)
∫ 1

0
| f (x)|dx.

Note that the constant can be seen to be best possible
by considering a sequence of functions tending towards
the step function which is 1 on [0,µ] and −1 on (µ,1].

Suppose without loss of generality that µ = µp. As in
the second solution, it suffices to prove a strengthened
discrete analogue, namely

1
n2 ∑

i, j
|ai +a j| ≥

(
1+
(

1− 2p
n

)2
)(

1
n

n

∑
i=1
|ai|

)
,

where p ≤ n/2 is the number of a1, . . . ,an which are
positive. (We need only make sure to choose meshes so
that p/n→ µ as n→ ∞.) An equivalent inequality is

∑
1≤i< j≤n

|ai +a j| ≥
(

n−1−2p+
2p2

n

) n

∑
i=1
|ai|.

Write ri = |ai|, and assume without loss of generality
that ri≥ ri+1 for each i. Then for i< j, |ai+a j|= ri+r j
if ai and a j have the same sign, and is ri−r j if they have
opposite signs. The left-hand side is therefore equal to

n

∑
i=1

(n− i)ri +
n

∑
j=1

r jC j,
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where

C j = #{i < j : sgn(ai) = sgn(a j)}
−#{i < j : sgn(ai) 6= sgn(a j)}.

Consider the partial sum Pk = ∑
k
j=1 C j. If exactly pk of

a1, . . . ,ak are positive, then this sum is equal to(
pk

2

)
+

(
k− pk

2

)
−
[(

k
2

)
−
(

pk

2

)
−
(

k− pk

2

)]
,

which expands and simplifies to

−2pk(k− pk)+

(
k
2

)
.

For k ≤ 2p even, this partial sum would be minimized
with pk =

k
2 , and would then equal − k

2 ; for k < 2p odd,
this partial sum would be minimized with pk =

k±1
2 , and

would then equal− k−1
2 . Either way, Pk ≥−b k

2c. On the
other hand, if k > 2p, then

−2pk(k− pk)+

(
k
2

)
≥−2p(k− p)+

(
k
2

)
since pk is at most p. Define Qk to be −b k

2c if k ≤ 2p
and −2p(k− p)+

(k
2

)
if k ≥ 2p, so that Pk ≥ Qk. Note

that Q1 = 0.

Partial summation gives

n

∑
j=1

r jC j = rnPn +
n

∑
j=2

(r j−1− r j)Pj−1

≥ rnQn +
n

∑
j=2

(r j−1− r j)Q j−1

=
n

∑
j=2

r j(Q j−Q j−1)

=−r2− r4−·· ·− r2p +
n

∑
j=2p+1

( j−1−2p)r j.

It follows that

∑
1≤i< j≤n

|ai +a j|=
n

∑
i=1

(n− i)ri +
n

∑
j=1

r jC j

≥
2p

∑
i=1

(n− i− [i even])ri

+
n

∑
i=2p+1

(n−1−2p)ri

= (n−1−2p)
n

∑
i=1

ri

+
2p

∑
i=1

(2p+1− i− [i even])ri

≥ (n−1−2p)
n

∑
i=1

ri + p
2p

∑
i=1

ri

≥ (n−1−2p)
n

∑
i=1

ri + p
2p
n

n

∑
i=1

ri ,

as desired. The next-to-last and last inequalities each
follow from the monotonicity of the ri’s, the former by
pairing the ith term with the (2p+1− i)th.

Note: Compare the closely related Problem 6 from the
2000 USA Mathematical Olympiad: prove that for any
nonnegative real numbers a1, . . . ,an,b1, . . . ,bn, one has

n

∑
i, j=1

min{aia j,bib j} ≤
n

∑
i, j=1

min{aib j,a jbi}.



The 65th William Lowell Putnam Mathematical Competition
Saturday, December 4, 2004

A1 Basketball star Shanille O’Keal’s team statistician
keeps track of the number, S(N), of successful free
throws she has made in her first N attempts of the sea-
son. Early in the season, S(N) was less than 80% of N,
but by the end of the season, S(N) was more than 80%
of N. Was there necessarily a moment in between when
S(N) was exactly 80% of N?

A2 For i = 1,2 let Ti be a triangle with side lengths ai,bi,ci,
and area Ai. Suppose that a1 ≤ a2,b1 ≤ b2,c1 ≤ c2, and
that T2 is an acute triangle. Does it follow that A1 ≤ A2?

A3 Define a sequence {un}∞
n=0 by u0 = u1 = u2 = 1, and

thereafter by the condition that

det
(

un un+1
un+2 un+3

)
= n!

for all n ≥ 0. Show that un is an integer for all n. (By
convention, 0! = 1.)

A4 Show that for any positive integer n there is an integer N
such that the product x1x2 · · ·xn can be expressed iden-
tically in the form

x1x2 · · ·xn =
N

∑
i=1

ci(ai1x1 +ai2x2 + · · ·+ainxn)
n

where the ci are rational numbers and each ai j is one of
the numbers −1,0,1.

A5 An m × n checkerboard is colored randomly: each
square is independently assigned red or black with
probability 1/2. We say that two squares, p and q, are
in the same connected monochromatic region if there is
a sequence of squares, all of the same color, starting at
p and ending at q, in which successive squares in the
sequence share a common side. Show that the expected
number of connected monochromatic regions is greater
than mn/8.

A6 Suppose that f (x,y) is a continuous real-valued func-
tion on the unit square 0≤ x≤ 1,0≤ y≤ 1. Show that

∫ 1

0

(∫ 1

0
f (x,y)dx

)2

dy+
∫ 1

0

(∫ 1

0
f (x,y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x,y)dxdy

)2

+
∫ 1

0

∫ 1

0
[ f (x,y)]2 dxdy.

B1 Let P(x) = cnxn + cn−1xn−1 + · · ·+ c0 be a polynomial
with integer coefficients. Suppose that r is a rational
number such that P(r) = 0. Show that the n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r2 + cn−2r,

. . . , cnrn + cn−1rn−1 + · · ·+ c1r

are integers.
B2 Let m and n be positive integers. Show that

(m+n)!
(m+n)m+n <

m!
mm

n!
nn .

B3 Determine all real numbers a > 0 for which there exists
a nonnegative continuous function f (x) defined on [0,a]
with the property that the region

R = {(x,y);0≤ x≤ a,0≤ y≤ f (x)}

has perimeter k units and area k square units for some
real number k.

B4 Let n be a positive integer, n≥ 2, and put θ = 2π/n. De-
fine points Pk = (k,0) in the xy-plane, for k = 1,2, . . . ,n.
Let Rk be the map that rotates the plane counterclock-
wise by the angle θ about the point Pk. Let R denote
the map obtained by applying, in order, R1, then R2, . . . ,
then Rn. For an arbitrary point (x,y), find, and simplify,
the coordinates of R(x,y).

B5 Evaluate

lim
x→1−

∞

∏
n=0

(
1+ xn+1

1+ xn

)xn

.

B6 Let A be a non-empty set of positive integers, and let
N(x) denote the number of elements of A not exceed-
ing x. Let B denote the set of positive integers b that
can be written in the form b = a− a′ with a ∈ A and
a′ ∈A . Let b1 < b2 < · · · be the members of B, listed
in increasing order. Show that if the sequence bi+1−bi
is unbounded, then

lim
x→∞

N(x)/x = 0.



Solutions to the 65th William Lowell Putnam Mathematical Competition
Saturday, December 4, 2004

Kiran Kedlaya and Lenny Ng

A–1 Yes. Suppose otherwise. Then there would be an N
such that S(N)< .8N and S(N+1)> .8(N+1); that is,
O’Keal’s free throw percentage is under 80% at some
point, and after one subsequent free throw (necessarily
made), her percentage is over 80%. If she makes m
of her first N free throws, then m/N < 4/5 and (m+
1)/(N +1)> 4/5. This means that 5m < 4n < 5m+1,
which is impossible since then 4n is an integer between
the consecutive integers 5m and 5m+1.

Remark: This same argument works for any fraction
of the form (n− 1)/n for some integer n > 1, but not
for any other real number between 0 and 1.

A–2 First solution: (partly due to Ravi Vakil) Yes, it does
follow. For i = 1,2, let Pi,Qi,Ri be the vertices of Ti
opposide the sides of length ai,bi,ci, respectively.

We first check the case where a1 = a2 (or b1 = b2 or
c1 = c2, by the same argument after relabeling). Imag-
ine T2 as being drawn with the base Q2R2 horizontal
and the point P2 above the line Q2R2. We may then po-
sition T1 so that Q1 = Q2, R1 = R2, and P1 lies above
the line Q1R1 = Q2R2. Then P1 also lies inside the re-
gion bounded by the circles through P2 centered at Q2
and R2. Since ∠Q2 and ∠R2 are acute, the part of this
region above the line Q2R2 lies within T2. In particu-
lar, the distance from P1 to the line Q2R2 is less than or
equal to the distance from P2 to the line Q2R2; hence
A1 ≤ A2.

To deduce the general case, put

r = max{a1/a2,b1/b2,c1/c2}.

Let T3 be the triangle with sides ra2,rb2,rc2, which has
area r2A2. Applying the special case to T1 and T3, we
deduce that A1 ≤ r2A2; since r ≤ 1 by hypothesis, we
have A1 ≤ A2 as desired.

Remark: Another geometric argument in the case a1 =
a2 is that since angles ∠Q2 and ∠R2 are acute, the per-
pendicular to Q2R2 through P2 separates Q2 from R2.
If A1 > A2, then P1 lies above the parallel to Q2R2
through P2; if then it lies on or to the left of the vertical
line through P2, we have c1 > c2 because the inequality
holds for both horizontal and vertical components (pos-
sibly with equality for one, but not both). Similarly, if
P1 lies to the right of the vertical, then b1 > b2.

Second solution: (attribution unknown) Retain nota-
tion as in the first paragraph of the first solution. Since
the angle measures in any triangle add up to π , some
angle of T1 must have measure less than or equal to its
counterpart in T2. Without loss of generality assume

that ∠P1 ≤ ∠P2. Since the latter is acute (because T2 is
acute), we have sin∠P1 ≤ sin∠P2. By the Law of Sines,

A1 =
1
2

b1c1 sin∠P1 ≤
1
2

b2c2 sin∠P2 = A2.

Remark: Many other solutions are possible; for in-
stance, one uses Heron’s formula for the area of a tri-
angle in terms of its side lengths.

A–3 Define a sequence vn by vn = (n−1)(n−3) · · ·(4)(2) if
n is odd and vn = (n− 1)(n− 3) · · ·(3)(1) if n is even;
it suffices to prove that un = vn for all n ≥ 2. Now
vn+3vn = (n+ 2)(n)(n− 1)! and vn+2vn+1 = (n+ 1)!,
and so vn+3vn−vn+2vn+1 = n!. Since we can check that
un = vn for n = 2,3,4, and un and vn satisfy the same
recurrence, it follows by induction that un = vn for all
n≥ 2, as desired.

A–4 It suffices to verify that

x1 · · ·xn =
1

2nn! ∑
ei∈{−1,1}

(e1 · · ·en)(e1x1 + · · ·+ enxn)
n.

To check this, first note that the right side vanishes iden-
tically for x1 = 0, because each term cancels the corre-
sponding term with e1 flipped. Hence the right side, as
a polynomial, is divisible by x1; similarly it is divisi-
ble by x2, . . . ,xn. Thus the right side is equal to x1 · · ·xn
times a scalar. (Another way to see this: the right side is
clearly odd as a polynomial in each individual variable,
but the only degree n monomial in x1, . . . ,xn with that
property is x1 · · ·xn.) Since each summand contributes
1
2n x1 · · ·xn to the sum, the scalar factor is 1 and we are
done.

Remark: Several variants on the above construction are
possible; for instance,

x1 · · ·xn =
1
n! ∑

ei∈{0,1}
(−1)n−e1−···−en(e1x1 + · · ·+ enxn)

n

by the same argument as above.

Remark: These construction work over any field of
characteristic greater than n (at least for n > 1). On
the other hand, no construction is possible over a field
of characteristic p ≤ n, since the coefficient of x1 · · ·xn
in the expansion of (e1x1 + · · ·+ enxn)

n is zero for any
ei.

Remark: Richard Stanley asks whether one can use
fewer than 2n terms, and what the smallest possible
number is.
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A–5 First solution: First recall that any graph with n ver-
tices and e edges has at least n− e connected com-
ponents (add each edge one at a time, and note that
it reduces the number of components by at most 1).
Now imagine the squares of the checkerboard as a
graph, whose vertices are connected if the correspond-
ing squares share a side and are the same color. Let A
be the number of edges in the graph, and let B be the
number of 4-cycles (formed by monochromatic 2× 2
squares). If we remove the bottom edge of each 4-cycle,
the resulting graph has the same number of connected
components as the original one; hence this number is at
least

mn−A+B.

By the linearity of expectation, the expected number of
connected components is at least

mn−E(A)+E(B).

Moreover, we may compute E(A) by summing over
the individual pairs of adjacent squares, and we may
compute E(B) by summing over the individual 2× 2
squares. Thus

E(A) =
1
2
(m(n−1)+(m−1)n),

E(B) =
1
8
(m−1)(n−1),

and so the expected number of components is at least

mn− 1
2
(m(n−1)+(m−1)n)+

1
8
(m−1)(n−1)

=
mn+3m+3n+1

8
>

mn
8
.

Remark: A “dual” approach is to consider the graph
whose vertices are the corners of the squares of the
checkerboard, with two vertices joined if they are ad-
jacent and the edge between then does not separate two
squares of the same color. In this approach, the 4-cycles
become isolated vertices, and the bound on components
is replaced by a call to Euler’s formula relating the ver-
tices, edges and faces of a planar figure. (One must be
careful, however, to correctly handle faces which are
not simply connected.)

Second solution: (by Noam Elkies) Number the
squares of the checkerboard 1, . . . ,mn by numbering the
first row from left to right, then the second row, and so
on. We prove by induction on i that if we just consider
the figure formed by the first i squares, its expected
number of monochromatic components is at least i/8.
For i = 1, this is clear.

Suppose the i-th square does not abut the left edge or
the top row of the board. Then we may divide into three
cases.

– With probability 1/4, the i-th square is opposite in
color from the adjacent squares directly above and
to the left of it. In this case adding the i-th square
adds one component.

– With probability 1/8, the i-th square is the same
in color as the adjacent squares directly above and
to the left of it, but opposite in color from its diag-
onal neighbor above and to the left. In this case,
adding the i-th square either removes a component
or leaves the number unchanged.

– In all other cases, the number of components re-
mains unchanged upon adding the i-th square.

Hence adding the i-th square increases the expected
number of components by 1/4−1/8 = 1/8.

If the i-th square does abut the left edge of the board,
the situation is even simpler: if the i-th square differs in
color from the square above it, one component is added,
otherwise the number does not change. Hence adding
the i-th square increases the expected number of com-
ponents by 1/2; likewise if the i-th square abuts the top
edge of the board. Thus the expected number of com-
ponents is at least i/8 by induction, as desired.

Remark: Some solvers attempted to consider adding
one row at a time, rather than one square; this must be
handled with great care, as it is possible that the num-
ber of components can drop rather precipitously upon
adding an entire row.

A–6 By approximating each integral with a Riemann sum,
we may reduce to proving the discrete analogue: for
xi j ∈ R for i, j = 1, . . . ,n,

n
n

∑
i=1

(
n

∑
j=1

xi j

)2

+n
n

∑
j=1

(
n

∑
i=1

xi j

)2

≤

(
n

∑
i=1

n

∑
j=1

xi j

)2

+n2
n

∑
i=1

n

∑
j=1

x2
i j.

The difference between the right side and the left side
is

1
4

n

∑
i, j,k,l=1

(xi j + xkl− xil− xk j)
2,

which is evidently nonnegative. If you prefer not to dis-
cretize, you may rewrite the original inequality as∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F(x,y,z,w)2 dxdydzdw≥ 0

for

F(x,y,z,w) = f (x,y)+ f (z,w)− f (x,w)− f (z,y).

Remark: (by Po-Ning Chen) The discrete inequality
can be arrived at more systematically by repeatedly ap-
plying the following identity: for any real a1, . . . ,an,

∑
1≤i< j≤n

(xi− x j)
2 = n

n

∑
i=1

x2
i −

(
n

∑
i=1

xi

)2

.
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Remark: (by David Savitt) The discrete inequality can
also be interpreted as follows. For c,d ∈ {1, . . . ,n−1}
and ζn = e2πi/n, put

zc,d = ∑
i, j

ζ
ci+d j
n xi j.

Then the given inequality is equivalent to

n−1

∑
c,d=1
|zc,d |2 ≥ 0.

B–1 Let k be an integer, 0 ≤ k ≤ n− 1. Since P(r)/rk = 0,
we have

cnrn−k + cn−1rn−k+1 + · · ·+ ck+1r

=−(ck + ck−1r−1 + · · ·+ c0r−k).

Write r = p/q where p and q are relatively prime. Then
the left hand side of the above equation can be written as
a fraction with denominator qn−k, while the right hand
side is a fraction with denominator pk. Since p and q
are relatively prime, both sides of the equation must be
an integer, and the result follows.

Remark: If we write r = a/b in lowest terms, then
P(x) factors as (bx− a)Q(x), where the polynomial Q
has integer coefficients because you can either do the
long division from the left and get denominators divis-
ible only by primes dividing b, or do it from the right
and get denominators divisible only by primes dividing
a. The numbers given in the problem are none other
than a times the coefficients of Q. More generally, if
P(x) is divisible, as a polynomial over the rationals, by
a polynomial R(x) with integer coefficients, then P/R
also has integer coefficients; this is known as “Gauss’s
lemma” and holds in any unique factorization domain.

B–2 First solution: We have

(m+n)m+n >

(
m+n

m

)
mmnn

because the binomial expansion of (m+n)m+n includes
the term on the right as well as some others. Rearrang-
ing this inequality yields the claim.

Remark: One can also interpret this argument combi-
natorially. Suppose that we choose m+ n times (with
replacement) uniformly randomly from a set of m+ n
balls, of which m are red and n are blue. Then the proba-
bility of picking each ball exactly once is (m+n)!/(m+
n)m+n. On the other hand, if p is the probability of pick-
ing exactly m red balls, then p < 1 and the probability
of picking each ball exactly once is p(mm/m!)(nn/n!).

Second solution: (by David Savitt) Define

Sk = {i/k : i = 1, . . . ,k}

and rewrite the desired inequality as

∏
x∈Sm

x ∏
y∈Sn

y > ∏
z∈Sm+n

z.

To prove this, it suffices to check that if we sort the
multiplicands on both sides into increasing order, the i-
th term on the left side is greater than or equal to the i-th
term on the right side. (The equality is strict already for
i = 1, so you do get a strict inequality above.)

Another way to say this is that for any i, the number of
factors on the left side which are less than i/(m+n) is
less than i. But since j/m < i/(m+ n) is equivalent to
j < im/(m+n), that number is⌈

im
m+n

⌉
−1+

⌈
in

m+n

⌉
−1

≤ im
m+n

+
in

m+n
−1 = i−1.

Third solution: Put f (x) = x(log(x+ 1)− logx); then
for x > 0,

f ′(x) = log(1+1/x)− 1
x+1

f ′′(x) =− 1
x(x+1)2 .

Hence f ′′(x) < 0 for all x; since f ′(x)→ 0 as x→ ∞,
we have f ′(x)> 0 for x > 0, so f is strictly increasing.

Put g(m) = m logm− log(m!); then g(m+1)−g(m) =
f (m), so g(m+1)−g(m) increases with m. By induc-
tion, g(m+n)−g(m) increases with n for any positive
integer n, so in particular

g(m+n)−g(m)> g(n)−g(1)+ f (m)

≥ g(n)

since g(1) = 0. Exponentiating yields the desired in-
equality.

Fourth solution: (by W.G. Boskoff and Bogdan
Suceavă) We prove the claim by induction on m + n.
The base case is m = n = 1, in which case the de-
sired inequality is obviously true: 2!/22 = 1/2 < 1 =
(1!/11)(1!/11). To prove the induction step, suppose
m+ n > 2; we must then have m > 1 or n > 1 or both.
Because the desired result is symmetric in m and n, we
may as well assume n > 1. By the induction hypothesis,
we have

(m+n−1)!
(m+n−1)m+n−1 <

m!
mm

(n−1)!
(n−1)n−1 .

To obtain the desired inequality, it will suffice to check
that

(m+n−1)m+n−1

(m+n−1)!
(m+n)!

(m+n)m+n <
(n−1)n−1

(n−1)!
n!
(n)n
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or in other words(
1− 1

m+n

)m+n−1

<

(
1− 1

n

)n−1

.

To show this, we check that the function f (x) = (1−
1/x)x−1 is strictly decreasing for x > 1; while this can
be achieved using the weighted arithmetic-geometric
mean inequality, we give a simple calculus proof in-
stead. The derivative of log f (x) is log(1−1/x)+1/x,
so it is enough to check that this is negative for x > 1.
An equivalent statement is that log(1− x)+ x < 0 for
0< x< 1; this in turn holds because the function g(x) =
log(1− x)+ x tends to 0 as x→ 0+ and has derivative
1− 1

1−x < 0 for 0 < x < 1.

B–3 The answer is {a |a > 2}. If a > 2, then the func-
tion f (x) = 2a/(a− 2) has the desired property; both
perimeter and area of R in this case are 2a2/(a− 2).
Now suppose that a ≤ 2, and let f (x) be a nonnega-
tive continuous function on [0,a]. Let P = (x0,y0) be a
point on the graph of f (x) with maximal y-coordinate;
then the area of R is at most ay0 since it lies below the
line y = y0. On the other hand, the points (0,0), (a,0),
and P divide the boundary of R into three sections. The
length of the section between (0,0) and P is at least the
distance between (0,0) and P, which is at least y0; the
length of the section between P and (a,0) is similarly
at least y0; and the length of the section between (0,0)
and (a,0) is a. Since a≤ 2, we have 2y0 +a > ay0 and
hence the perimeter of R is strictly greater than the area
of R.

B–4 First solution: Identify the xy-plane with the complex
plane C, so that Pk is the real number k. If z is sent to
z′ by a counterclockwise rotation by θ about Pk, then
z′−k = eiθ (z−k); hence the rotation Rk sends z to ζ z+
k(1−ζ ), where ζ = e2πi/n. It follows that R1 followed
by R2 sends z to ζ (ζ z+(1− ζ ))+ 2(1− ζ ) = ζ 2z+
(1− ζ )(ζ + 2), and so forth; an easy induction shows
that R sends z to

ζ
nz+(1−ζ )(ζ n−1 +2ζ

n−2 + · · ·+(n−1)ζ +n).

Expanding the product (1− ζ )(ζ n−1 + 2ζ n−2 + · · ·+
(n−1)ζ +n) yields−ζ n−ζ n−1−·· ·−ζ +n= n. Thus
R sends z to z+ n; in cartesian coordinates, R(x,y) =
(x+n,y).

Second solution: (by Andy Lutomirski, via Ravi Vakil)
Imagine a regular n-gon of side length 1 placed with
its top edge on the x-axis and the left endpoint of that
edge at the origin. Then the rotations correspond to
rolling this n-gon along the x-axis; after the n rotations,
it clearly ends up in its original rotation and translated
n units to the right. Hence the whole plane must do so
as well.

Third solution: (attribution unknown) Viewing each
Rk as a function of a complex number z as in the first
solution, the function Rn ◦Rn−1 ◦ · · · ◦R1(z) is linear in

z with slope ζ n = 1. It thus equals z+T for some T ∈C.
Since f1(1) = 1, we can write 1+T = Rn ◦ · · · ◦R2(1).
However, we also have

Rn ◦ · · · ◦R2(1) = Rn−1 ◦R1(0)+1

by the symmetry in how the Ri are defined. Hence

Rn(1+T ) = Rn ◦R1(0)+Rn(1) = T +Rn(1);

that is, Rn(T ) = T . Hence T = n, as desired.

B–5 First solution: By taking logarithms, we
see that the desired limit is exp(L), where
L = limx→1−∑

∞
n=0 xn

(
ln(1+ xn+1)− ln(1+ xn)

)
.

Now

N

∑
n=0

xn (ln(1+ xn+1)− ln(1+ xn)
)

= 1/x
N

∑
n=0

xn+1 ln(1+ xn+1)−
N

∑
n=0

xn ln(1+ xn)

= xN ln(1+ xN+1)− ln2+(1/x−1)
N

∑
n=1

xn ln(1+ xn);

since limN→∞(xN ln(1+ xN+1)) = 0 for 0 < x < 1, we
conclude that L =− ln2+ limx→1− f (x), where

f (x) = (1/x−1)
∞

∑
n=1

xn ln(1+ xn)

= (1/x−1)
∞

∑
n=1

∞

∑
m=1

(−1)m+1xn+mn/m.

This final double sum converges absolutely when 0 <
x < 1, since

∞

∑
n=1

∞

∑
m=1

xn+mn/m =
∞

∑
n=1

xn(− ln(1− xn))

<
∞

∑
n=1

xn(− ln(1− x)),

which converges. (Note that − ln(1− x) and − ln(1−
xn) are positive.) Hence we may interchange the sum-
mations in f (x) to obtain

f (x) = (1/x−1)
∞

∑
m=1

∞

∑
n=1

(−1)m+1x(m+1)n

m

= (1/x−1)
∞

∑
m=1

(−1)m+1

m

(
xm(1− x)
1− xm+1

)
.

This last sum converges absolutely uniformly in x, so
it is legitimate to take limits term by term. Since
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limx→1−
xm1−x

1−xm+1 = 1
m+1 for fixed m, we have

lim
x→1−

f (x) =
∞

∑
m=1

(−1)m+1

m(m+1)

=
∞

∑
m=1

(−1)m+1
(

1
m
− 1

m+1

)

= 2

(
∞

∑
m=1

(−1)m+1

m

)
−1

= 2ln2−1,

and hence L = ln2−1 and the desired limit is 2/e.

Remark: Note that the last series is not absolutely con-
vergent, so the recombination must be done without re-
arranging terms.

Second solution: (by Greg Price, via Tony Zhang and
Anders Kaseorg) Put tn(x) = ln(1+ xn); we can then
write xn = exp(tn(x))−1, and

L = lim
x→1−

∞

∑
n=0

(tn(x)− tn+1(x))(1− exp(tn(x))).

The expression on the right is a Riemann sum approxi-
mating the integral

∫ ln2
0 (1− et)dt, over the subdivision

of [0, ln(2)) given by the tn(x). As x→ 1−, the max-
imum difference between consecutive tn(x) tends to 0,
so the Riemann sum tends to the value of the integral.
Hence L =

∫ ln2
0 (1− et)dt = ln2−1, as desired.

B–6 First solution: (based on a solution of Dan Bernstein)
Note that for any b, the condition that b /∈ B already
forces limsupN(x)/x to be at most 1/2: pair off 2mb+n
with (2m+1)b+n for n= 1, . . . ,b, and note that at most
one member of each pair may belong to A . The idea of
the proof is to do something similar with pairs replaced
by larger clumps, using long runs of excluded elements
of B.

Suppose we have positive integers b0 = 1,b1, . . . ,bn
with the following properties:

(a) For i = 1, . . . ,n, ci = bi/(2bi−1) is an integer.

(b) For ei ∈ {−1,0,1}, |e1b1 + · · ·+ enbn| /∈B.

Each nonnegative integer a has a unique “base expan-
sion”

a = a0b0 + · · ·+an−1bn−1 +mbn (0≤ ai < 2ci);

if two integers have expansions with the same value
of m, and values of ai differing by at most 1 for i =
0, . . . ,n− 1, then their difference is not in B, so at
most one of them lies in A . In particular, for any
di ∈ {0, . . . ,ci−1}, any m0 ∈ {0,2c0−1} and any mn,
the set

{m0b0 +(2d1 + e1)b0 + · · ·
+(2dn−1 + en−1)bn−1 +(2mn + en)bn},

where each ei runs over {0,1}, contains at most one
element of A ; consequently, limsupN(x)/x≤ 1/2n.

We now produce such bi recursively, starting with b0 =
1 (and both (a) and (b) holding vacuously). Given
b0, . . . ,bn satisfying (a) and (b), note that b0 + · · ·+
bn−1 < bn by induction on n. By the hypotheses of the
problem, we can find a set Sn of 6bn consecutive in-
tegers, none of which belongs to B. Let bn+1 be the
second-smallest multiple of 2bn in Sn; then bn+1 + x ∈
Sn for −2bn ≤ x ≤ 0 clearly, and also for 0 ≤ x ≤ 2bn
because there are most 4bn− 1 elements of Sn preced-
ing bn+1. In particular, the analogue of (b) with n re-
placed by n+1 holds for en+1 6= 0; of course it holds for
en+1 = 0 because (b) was already known. Since the ana-
logue of (a) holds by construction, we have completed
this step of the construction and the recursion may con-
tinue.

Since we can construct b0, . . . ,bn satisfying (a) and (b)
for any n, we have limsupN(x)/x ≤ 1/2n for any n,
yielding limN(x)/x = 0 as desired.

Second solution: (by Paul Pollack) Let S be the set
of possible values of limsupN(x)/x; since S ⊆ [0,1]
is bounded, it has a least upper bound L. Suppose by
way of contradiction that L > 0; we can then choose
A ,B satisfying the conditions of the problem such that
limsupN(x)/x > 3L/4.

To begin with, we can certainly find some positive inte-
ger m /∈B, so that A is disjoint from A +m = {a+m :
a ∈ A }. Put A ′ = A ∪ (A +m) and let N′(x) be the
size of A ′ ∩{1, . . . ,x}; then limsupN′(x)/x = 3L/2 >
L, so A ′ cannot obey the conditions of the problem
statement. That is, if we let B′ be the set of positive
integers that occur as differences between elements of
A ′, then there exists an integer n such that among any
n consecutive integers, at least one lies in B′. But

B′ ⊆ {b+ em : b ∈B,e ∈ {−1,0,1}},

so among any n+2m consecutive integers, at least one
lies in B. This contradicts the condition of the problem
statement.

We conclude that it is impossible to have L> 0, so L= 0
and limN(x)/x = 0 as desired.

Remark: A hybrid between these two arguments is
to note that if we can produce c1, . . . ,cn such that
|ci− c j| /∈B for i, j = 1, . . . ,n, then the translates A +
c1, . . . ,A +cn are disjoint and so limsupN(x)/x≤ 1/n.
Given c1 ≤ ·· · ≤ cn as above, we can then choose cn+1
to be the largest element of a run of cn +1 consecutive
integers, none of which lie in B.
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A1 Show that every positive integer is a sum of one or more
numbers of the form 2r3s, where r and s are nonnegative
integers and no summand divides another. (For exam-
ple, 23 = 9 + 8 + 6.)

A2 Let S = {(a,b)|a = 1,2, . . . ,n,b = 1,2,3}. A rook tour
of S is a polygonal path made up of line segments con-
necting points p1, p2, . . . , p3n in sequence such that

(i) pi ∈ S,

(ii) pi and pi+1 are a unit distance apart, for 1 ≤ i <
3n,

(iii) for each p ∈ S there is a unique i such that pi = p.
How many rook tours are there that begin at (1,1)
and end at (n,1)?

(An example of such a rook tour for n = 5 was depicted
in the original.)

A3 Let p(z) be a polynomial of degree n all of whose zeros
have absolute value 1 in the complex plane. Put g(z) =
p(z)/zn/2. Show that all zeros of g′(z)= 0 have absolute
value 1.

A4 Let H be an n× n matrix all of whose entries are ±1
and whose rows are mutually orthogonal. Suppose H
has an a× b submatrix whose entries are all 1. Show
that ab≤ n.

A5 Evaluate
∫ 1

0
ln(x+1)

x2+1 dx.

A6 Let n be given, n ≥ 4, and suppose that P1,P2, . . . ,Pn
are n randomly, independently and uniformly, chosen
points on a circle. Consider the convex n-gon whose
vertices are the Pi. What is the probability that at least
one of the vertex angles of this polygon is acute?

B1 Find a nonzero polynomial P(x,y) such that
P(bac,b2ac) = 0 for all real numbers a. (Note:
bνc is the greatest integer less than or equal to ν .)

B2 Find all positive integers n,k1, . . . ,kn such that k1+ · · ·+
kn = 5n−4 and

1
k1

+ · · ·+ 1
kn

= 1.

B3 Find all differentiable functions f : (0,∞)→ (0,∞) for
which there is a positive real number a such that

f ′
(a

x

)
=

x
f (x)

for all x > 0.

B4 For positive integers m and n, let f (m,n) denote the
number of n-tuples (x1,x2, . . . ,xn) of integers such that
|x1|+ |x2|+ · · ·+ |xn| ≤m. Show that f (m,n) = f (n,m).

B5 Let P(x1, . . . ,xn) denote a polynomial with real coeffi-
cients in the variables x1, . . . ,xn, and suppose that(
∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n

)
P(x1, . . . ,xn) = 0 (identically)

and that

x2
1 + · · ·+ x2

n divides P(x1, . . . ,xn).

Show that P = 0 identically.

B6 Let Sn denote the set of all permutations of the numbers
1,2, . . . ,n. For π ∈ Sn, let σ(π) = 1 if π is an even
permutation and σ(π) =−1 if π is an odd permutation.
Also, let ν(π) denote the number of fixed points of π .
Show that

∑
π∈Sn

σ(π)

ν(π)+1
= (−1)n+1 n

n+1
.
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A–1 We proceed by induction, with base case 1= 2030. Sup-
pose all integers less than n− 1 can be represented. If
n is even, then we can take a representation of n/2 and
multiply each term by 2 to obtain a representation of n.
If n is odd, put m = blog3 nc, so that 3m ≤ n < 3m+1. If
3m = n, we are done. Otherwise, choose a representa-
tion (n−3m)/2= s1+ · · ·+sk in the desired form. Then

n = 3m +2s1 + · · ·+2sk,

and clearly none of the 2si divide each other or 3m.
Moreover, since 2si ≤ n− 3m < 3m+1 − 3m, we have
si < 3m, so 3m cannot divide 2si either. Thus n has a
representation of the desired form in all cases, complet-
ing the induction.

Remarks: This problem is originally due to Paul Erdős.
Note that the representations need not be unique: for
instance,

11 = 2+9 = 3+8.

A–2 We will assume n ≥ 2 hereafter, since the answer is 0
for n = 1.

First solution: We show that the set of rook tours from
(1,1) to (n,1) is in bijection with the set of subsets of
{1,2, ...,n} that include n and contain an even number
of elements in total. Since the latter set evidently con-
tains 2n−2 elements, so does the former.

We now construct the bijection. Given a rook tour P
from (1,1) to (n,1), let S = S(P) denote the set of
all i ∈ {1,2, . . . ,n} for which there is either a directed
edge from (i,1) to (i,2) or from (i,3) to (i,2). It is
clear that this set S includes n and must contain an
even number of elements. Conversely, given a subset
S= {a1,a2, . . . ,a2r = n}⊂{1,2, . . . ,n} of this type with
a1 < a2 < · · ·< a2r, we notice that there is a unique path
P containing (ai,2+(−1)i),(a1,2) for i = 1,2, . . . ,2r.
This establishes the desired bijection.

Second solution: Let An denote the set of rook tours
beginning at (1,1) and ending at (n,1), and let Bn de-
note the set of rook tours beginning at (1,1) and ending
at (n,3).

For n ≥ 2, we construct a bijection between An and
An−1 ∪Bn−1. Any path P in An contains either the line
segment P1 between (n−1,1) and (n,1), or the line seg-
ment P2 between (n,2) and (n,1). In the former case, P
must also contain the subpath P′1 which joins (n−1,3),
(n,3), (n,2), and (n−1,2) consecutively; then deleting
P1 and P′1 from P and adding the line segment joining
(n− 1,3) to (n− 1,2) results in a path in An−1. (This

construction is reversible, lengthening any path in An−1
to a path in An.) In the latter case, P contains the sub-
path P′2 which joins (n− 1,3), (n,3), (n,2), (n,1) con-
secutively; deleting P′2 results in a path in Bn−1, and
this construction is also reversible. The desired bijec-
tion follows.

Similarly, there is a bijection between Bn and An−1 ∪
Bn−1 for n ≥ 2. It follows by induction that for n ≥ 2,
|An|= |Bn|= 2n−2(|A1|+ |B1|). But |A1|= 0 and |B1|=
1, and hence the desired answer is |An|= 2n−2.

Remarks: Other bijective arguments are possible: for
instance, Noam Elkies points out that each element
of An ∪ Bn contains a different one of the possible
sets of segments of the form (i,2),(i + 1,2) for i =
1, . . . ,n− 1. Richard Stanley provides the reference:
K.L. Collins and L.B. Krompart, The number of Hamil-
tonian paths in a rectangular grid, Discrete Math. 169
(1997), 29–38. This problem is Theorem 1 of that
paper; the cases of 4× n and 5× n grids are also
treated. The paper can also be found online at the URL
kcollins.web.wesleyan.edu/vita.htm.

A–3 Note that it is implicit in the problem that p is noncon-
stant, one may take any branch of the square root, and
that z = 0 should be ignored.

First solution: Write p(z) = c∏
n
j=1(z− r j), so that

g′(z)
g(z)

=
1
2z

n

∑
j=1

z+ r j

z− r j
.

Now if z 6= r j for all j,then

z+ r j

z− r j
=

(z+ r j)(z− r j)

|z− r j|2
=
|z|2−1+2Im(zr j)

|z− r j|2
,

and so

Re
zg′(z)
g(z)

=
|z|2−1

2

(
∑

j

1
|z− r j|2

)
.

Since the quantity in parentheses is positive, g′(z)/g(z)
can be 0 only if |z| = 1. If on the other hand z = r j for
some j, then |z|= 1 anyway.

Second solution: Write p(z) = c∏
n
j=1(z− r j), so that

g′(z)
g(z)

=
n

∑
j=1

(
1

z− r j
− 1

2z

)
.

We first check that g′(z) 6= 0 whenever z is real and z >
1. In this case, for r j = eiθ j , we have z− r j = (z−



2

cos(θ j))+ sin(θ j)i, so the real part of 1
z−r j
− 1

2z is

z− cos(θ j)

z2−2zcos(θ j)+1
− 1

2z
=

z2−1
2z(z2−2zcos(θ j)+1)

> 0.

Hence g′(z)/g(z) has positive real part, so g′(z)/g(z)
and hence g(z) are nonzero.

Applying the same argument after replacing p(z) by
p(eiθ z), we deduce that g′ cannot have any roots out-
side the unit circle. Applying the same argument after
replacing p(z) by zn p(1/z), we also deduce that g′ can-
not have any roots inside the unit circle. Hence all roots
of g′ have absolute value 1, as desired.

Third solution: Write p(z) = c∏
n
j=1(z− r j) and put

r j = e2iθ j . Note that g(e2iθ ) is equal to a nonzero con-
stant times

h(θ) =
n

∏
j=1

ei(θ+θ j)− e−i(θ+θ j)

2i
=

n

∏
j=1

sin(θ +θ j).

Since h has at least 2n roots (counting multiplicity) in
the interval [0,2π), h′ does also by repeated application
of Rolle’s theorem. Since g′(e2iθ ) = 2ie2iθ h′(θ), g′(z2)
has at least 2n roots on the unit circle. Since g′(z2) is
equal to z−n−1 times a polynomial of degree 2n, g′(z2)
has all roots on the unit circle, as then does g′(z).

Remarks: The second solution imitates the proof of
the Gauss-Lucas theorem: the roots of the derivative of
a complex polynomial lie in the convex hull of the roots
of the original polynomial. The second solution is close
to problem B3 from the 2000 Putnam. A hybrid be-
tween the first and third solutions is to check that on the
unit circle, Re(zg′(z)/g(z)) = 0 while between any two
roots of p, Im(zg′(z)/g(z)) runs from +∞ to−∞ and so
must have a zero crossing. (This only works when p has
distinct roots, but the general case follows by the con-
tinuity of the roots of a polynomial as functions of the
coefficients.) One can also construct a solution using
Rouché’s theorem.

A–4 First solution: Choose a set of a rows r1, . . . ,ra con-
taining an a×b submatrix whose entries are all 1. Then
for i, j ∈ {1, . . . ,a}, we have ri · r j = n if i = j and 0
otherwise. Hence

a

∑
i, j=1

ri · r j = an.

On the other hand, the term on the left is the dot product
of r1 + · · ·+ ra with itself, i.e., its squared length. Since
this vector has a in each of its first b coordinates, the dot
product is at least a2b. Hence an≥ a2b, whence n≥ ab
as desired.

Second solution: (by Richard Stanley) Suppose with-
out loss of generality that the a×b submatrix occupies
the first a rows and the first b columns. Let M be the
submatrix occupying the first a rows and the last n− b

columns. Then the hypothesis implies that the matrix
MMT has n− b’s on the main diagonal and −b’s else-
where. Hence the column vector v of length a consist-
ing of all 1’s satisfies MMT v = (n− ab)v, so n− ab is
an eigenvalue of MMT . But MMT is semidefinite, so
its eigenvalues are all nonnegative real numbers. Hence
n−ab≥ 0.

Remarks: A matrix as in the problem is called
a Hadamard matrix, because it meets the equality
condition of Hadamard’s inequality: any n× n matrix
with ±1 entries has absolute determinant at most nn/2,
with equality if and only if the rows are mutually
orthogonal (from the interpretation of the determinant
as the volume of a paralellepiped whose edges are
parallel to the row vectors). Note that this implies
that the columns are also mutually orthogonal. A
generalization of this problem, with a similar proof,
is known as Lindsey’s lemma: the sum of the entries
in any a× b submatrix of a Hadamard matrix is at
most

√
abn. Stanley notes that Ryser (1981) asked

for the smallest size of a Hadamard matrix contain-
ing an r × s submatrix of all 1’s, and refers to the
URL www3.interscience.wiley.com/cgi-bin/
abstract/110550861/ABSTRACT for more informa-
tion.

A–5 First solution: We make the substitution x = tanθ ,
rewriting the desired integral as∫

π/4

0
log(tan(θ)+1)dθ .

Write

log(tan(θ)+1) = log(sin(θ)+ cos(θ))− log(cos(θ))

and then note that sin(θ)+ cos(θ) =
√

2cos(π/4−θ).
We may thus rewrite the integrand as

1
2

log(2)+ log(cos(π/4−θ))− log(cos(θ)).

But over the interval [0,π/4], the integrals of
log(cos(θ)) and log(cos(π/4− θ)) are equal, so their
contributions cancel out. The desired integral is then
just the integral of 1

2 log(2) over the interval [0,π/4],
which is π log(2)/8.

Second solution: (by Roger Nelsen) Let I denote the
desired integral. We make the substitution x = (1−
u)/(1+u) to obtain

I =
∫ 1

0

(1+u)2 log(2/(1+u))
2(1+u2)

2du
(1+u)2

=
∫ 1

0

log(2)− log(1+u)
1+u2 du

= log(2)
∫ 1

0

du
1+u2 − I,
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yielding

I =
1
2

log(2)
∫ 1

0

du
1+u2 =

π log(2)
8

.

Third solution: (attributed to Steven Sivek) Define the
function

f (t) =
∫ 1

0

log(xt +1)
x2 +1

dx

so that f (0) = 0 and the desired integral is f (1). Then
by differentiation under the integral,

f ′(t) =
∫ 1

0

x
(xt +1)(x2 +1)

dx.

By partial fractions, we obtain

f ′(t) =
2t arctan(x)−2log(tx+1)+ log(x2 +1)

2(t2 +1)

∣∣∣∣x=1

x=0

=
πt +2log(2)−4log(t +1)

4(t2 +1)
,

whence

f (t) =
log(2)arctan(t)

2
+

π log(t2 +1)
8

−
∫ t

0

log(t +1)
t2 +1

dt

and hence

f (1) =
π log(2)

4
−
∫ 1

0

log(t +1)
t2 +1

dt.

But the integral on the right is again the desired integral
f (1), so we may move it to the left to obtain

2 f (1) =
π log(2)

4

and hence f (1) = π log(2)/8 as desired.

Fourth solution: (by David Rusin) We have

∫ 1

0

log(x+1)
x2 +1

dx =
∫ 1

0

(
∞

∑
n=1

(−1)n−1xn

n(x2 +1)

)
dx.

We next justify moving the sum through the integral
sign. Note that

∞

∑
n=1

∫ 1

0

(−1)n−1xn dx
n(x2 +1)

is an alternating series whose terms strictly decrease to
zero, so it converges. Moreover, its partial sums alter-
nately bound the previous integral above and below, so
the sum of the series coincides with the integral.

Put

Jn =
∫ 1

0

xn dx
x2 +1

;

then J0 = arctan(1) = π

4 and J1 =
1
2 log(2). Moreover,

Jn + Jn+2 =
∫ 1

0
xn dx =

1
n+1

.

Write

Am =
m

∑
i=1

(−1)i−1

2i−1

Bm =
m

∑
i=1

(−1)i−1

2i
;

then

J2n = (−1)n(J0−An)

J2n+1 = (−1)n(J1−Bn).

Now the 2N-th partial sum of our series equals

N

∑
n=1

[
J2n−1

2n−1
− J2n

2n

]
=

N

∑
n=1

(−1)n−1

2n−1

[
(J1−Bn−1)−

(−1)n

2n
(J0−An)

]
= AN(J1−BN−1)+BN(J0−AN)+ANBN .

As N→ ∞, AN → J0 and BN → J1, so the sum tends to
J0J1 = π log(2)/8.

Fifth solution: (suggested by Alin Bostan) Note that

log(1+ x) =
∫ 1

0

xdy
1+ xy

,

so the desired integral I may be written as

I =
∫ 1

0

∫ 1

0

xdydx
(1+ xy)(1+ x2)

.

We may interchange x and y in this expression, then use
Fubini’s theorem to interchange the order of summa-
tion, to obtain

I =
∫ 1

0

∫ 1

0

ydydx
(1+ xy)(1+ y2)

.

We then add these expressions to obtain

2I =
∫ 1

0

∫ 1

0

(
x

1+ x2 +
y

1+ y2

)
dydx
1+ xy

=
∫ 1

0

∫ 1

0

x+ y+ xy2 + x2y
(1+ x2)(1+ y2)

dydx
1+ xy

=
∫ 1

0

∫ 1

0

(x+ y)dydx
(1+ x2)(1+ y2)

.

By another symmetry argument, we have

2I = 2
∫ 1

0

∫ 1

0

xdydx
(1+ x2)(1+ y2)

,
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so

I =
(∫ 1

0

xdx
1+ x2

)(∫ 1

0

1
1+ y2

)
= log(2) · π

8
.

Remarks: The first two solutions are related by the
fact that if x = tan(θ), then 1− x/(1+ x) = tan(π/4−
θ). The strategy of the third solution (introducing
a parameter then differentiating it) was a favorite of
physics Nobelist (and Putnam Fellow) Richard Feyn-
man. The fifth solution resembles Gauss’s evaluation
of
∫

∞

−∞
exp(−x2)dx. Noam Elkies notes that this inte-

gral is number 2.491#8 in Gradshteyn and Ryzhik, Ta-
ble of integrals, series, and products. The Mathemat-
ica computer algebra system (version 5.2) successfully
computes this integral, but we do not know how.

A–6 First solution: The angle at a vertex P is acute if and
only if all of the other points lie on an open semicir-
cle. We first deduce from this that if there are any
two acute angles at all, they must occur consecutively.
Suppose the contrary; label the vertices Q1, . . . ,Qn in
counterclockwise order (starting anywhere), and sup-
pose that the angles at Q1 and Qi are acute for some
i with 3 ≤ i ≤ n− 1. Then the open semicircle start-
ing at Q2 and proceeding counterclockwise must con-
tain all of Q3, . . . ,Qn, while the open semicircle start-
ing at Qi and proceeding counterclockwise must contain
Qi+1, . . . ,Qn,Q1, . . . ,Qi−1. Thus two open semicircles
cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive vertices Q1,Q2 in counter-
clockwise order for which ∠Q2 is acute and ∠Q1 is
not acute. Then the remaining points all lie in the arc
from the antipode of Q1 to Q1, but Q2 cannot lie in the
arc, and the remaining points cannot all lie in the arc
from the antipode of Q1 to the antipode of Q2. Given
the choice of Q1,Q2, let x be the measure of the coun-
terclockwise arc from Q1 to Q2; then the probability
that the other points fall into position is 2−n+2−xn−2 if
x≤ 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with a given choice of which two points will
act as Q1 and Q2 is∫ 1/2

0
(2−n+2− xn−2)dx =

n−2
n−1

2−n+1.

Since there are n(n− 1) choices for which two points
act as Q1 and Q2, the probability of at least one acute
angle is n(n−2)2−n+1.

Second solution: (by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the points Q1, the angle at Q1 is not acute but
the following angle is, and then multiply by n. Imag-
ine picking the points by first choosing Q1, then pick-
ing n−1 pairs of antipodal points and then picking one

member of each pair. Let R2, . . . ,Rn be the points of the
pairs which lie in the semicircle, taken in order away
from Q1, and let S2, . . . ,Sn be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of the Si, and we can-
not take Rn and the other Si or else ∠Q1 will be acute.
That gives us (n− 2) good choices out of 2n−1; since
we could have chosen Q1 to be any of the n points, the
probability is again n(n−2)2−n+1.

B–1 Take P(x,y) = (y− 2x)(y− 2x− 1). To see that this
works, first note that if m = bac, then 2m is an integer
less than or equal to 2a, so 2m ≤ b2ac. On the other
hand, m+1 is an integer strictly greater than a, so 2m+
2 is an integer strictly greater than 2a, so b2ac≤ 2m+1.

B–2 By the arithmetic-harmonic mean inequality or the
Cauchy-Schwarz inequality,

(k1 + · · ·+ kn)

(
1
k1

+ · · ·+ 1
kn

)
≥ n2.

We must thus have 5n−4≥ n2, so n≤ 4. Without loss
of generality, we may suppose that k1 ≤ ·· · ≤ kn.

If n = 1, we must have k1 = 1, which works. Note that
hereafter we cannot have k1 = 1.

If n = 2, we have (k1,k2) ∈ {(2,4),(3,3)}, neither of
which work.

If n = 3, we have k1 + k2 + k3 = 11, so 2 ≤ k1 ≤ 3.
Hence

(k1,k2,k3) ∈ {(2,2,7),(2,3,6),(2,4,5),(3,3,5),(3,4,4)},

and only (2,3,6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens when k1 = k2 = k3 = k4 = 4.

Hence the solutions are n = 1 and k1 = 1, n = 3 and
(k1,k2,k3) is a permutation of (2,3,6), and n = 4 and
(k1,k2,k3,k4) = (4,4,4,4).

Remark: In the cases n = 2,3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tions of 1/k1+ · · ·+1/kn = 1 with k1 ≤ ·· · ≤ kn. This is
easily done by proceeding in lexicographic order: one
obtains (2,2) for n = 2, and (2,3,6),(2,4,4),(3,3,3)
for n = 3, and only (2,3,6) contributes to the final an-
swer.

B–3 First solution: The functions are precisely f (x) = cxd

for c,d > 0 arbitrary except that we must take c = 1 in
case d = 1. To see that these work, note that f ′(a/x) =
dc(a/x)d−1 and x/ f (x) = 1/(cxd−1), so the given equa-
tion holds if and only if dc2ad−1 = 1. If d 6= 1, we may
solve for a no matter what c is; if d = 1, we must have
c = 1. (Thanks to Brad Rodgers for pointing out the
d = 1 restriction.)

To check that these are all solutions, put b = log(a) and
y = log(a/x); rewrite the given equation as

f (eb−y) f ′(ey) = eb−y.
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Put

g(y) = log f (ey);

then the given equation rewrites as

g(b− y)+ logg′(y)+g(y)− y = b− y,

or

logg′(y) = b−g(y)−g(b− y).

By the symmetry of the right side, we have g′(b− y) =
g′(y). Hence the function g(y) + g(b− y) has zero
derivative and so is constant, as then is g′(y). From this
we deduce that f (x) = cxd for some c,d, both necessar-
ily positive since f ′(x)> 0 for all x.

Second solution: (suggested by several people) Substi-
tute a/x for x in the given equation:

f ′(x) =
a

x f (a/x)
.

Differentiate:

f ′′(x) =− a
x2 f (a/x)

+
a2 f ′(a/x)
x3 f (a/x)2 .

Now substitute to eliminate evaluations at a/x:

f ′′(x) =− f ′(x)
x

+
f ′(x)2

f (x)
.

Clear denominators:

x f (x) f ′′(x)+ f (x) f ′(x) = x f ′(x)2.

Divide through by f (x)2 and rearrange:

0 =
f ′(x)
f (x)

+
x f ′′(x)

f (x)
− x f ′(x)2

f (x)2 .

The right side is the derivative of x f ′(x)/ f (x), so that
quantity is constant. That is, for some d,

f ′(x)
f (x)

=
d
x
.

Integrating yields f (x) = cxd , as desired.

B–4 First solution: Define f (m,n,k) as the number of n-
tuples (x1,x2, . . . ,xn) of integers such that |x1|+ · · ·+
|xn| ≤ m and exactly k of x1, . . . ,xn are nonzero. To
choose such a tuple, we may choose the k nonzero posi-
tions, the signs of those k numbers, and then an ordered
k-tuple of positive integers with sum ≤ m. There are(n

k

)
options for the first choice, and 2k for the second.

As for the third, we have
(m

k

)
options by a “stars and

bars” argument: depict the k-tuple by drawing a num-
ber of stars for each term, separated by bars, and adding
stars at the end to get a total of m stars. Then each tuple

corresponds to placing k bars, each in a different posi-
tion behind one of the m fixed stars.

We conclude that

f (m,n,k) = 2k
(

m
k

)(
n
k

)
= f (n,m,k);

summing over k gives f (m,n)= f (n,m). (One may also
extract easily a bijective interpretation of the equality.)

Second solution: (by Greg Kuperberg) It will be con-
venient to extend the definition of f (m,n) to m,n ≥ 0,
in which case we have f (0,m) = f (n,0) = 1.

Let Sm,n be the set of n-tuples (x1, . . . ,xn) of inte-
gers such that |x1|+ · · ·+ |xn| ≤ m. Then elements of
Sm,n can be classified into three types. Tuples with
|x1|+ · · ·+ |xn|< m also belong to Sm−1,n. Tuples with
|x1|+ · · ·+ |xn|= m and xn ≥ 0 correspond to elements
of Sm,n−1 by dropping xn. Tuples with |x1|+ · · ·+ |xn|=
m and xn < 0 correspond to elements of Sm−1,n−1 by
dropping xn. It follows that

f (m,n) = f (m−1,n)+ f (m,n−1)+ f (m−1,n−1),

so f satisfies a symmetric recurrence with symmetric
boundary conditions f (0,m) = f (n,0) = 1. Hence f is
symmetric.

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allow f (m,0) = f (0,n) = 1.
Define the generating function

G(x,y) =
∞

∑
m=0

∞

∑
n=0

f (m,n)xmyn.

As equalities of formal power series (or convergent se-
ries on, say, the region |x|, |y|< 1

3 ), we have

G(x,y) = ∑
m≥0

∑
n≥0

xmyn
∑

k1, ...,kn∈Z
|k1|+···+|kn|≤m

1

= ∑
n≥0

yn
∑

k1, ...,kn∈Z
∑

m≥|k1|+···+|kn|
xm

= ∑
n≥0

yn
∑

k1, ...,kn∈Z

x|k1|+···+|kn|

1− x

=
1

1− x ∑
n≥0

yn
(

∑
k∈Z

x|k|
)n

=
1

1− x ∑
n≥0

yn
(

1+ x
1− x

)n

=
1

1− x
· 1

1− y(1+ x)/(1− x)

=
1

1− x− y− xy
.

Since G(x,y) = G(y,x), it follows that f (m,n) =
f (n,m) for all m,n≥ 0.



6

B–5 First solution: Put Q = x2
1 + · · ·+ x2

n. Since Q is ho-
mogeneous, P is divisible by Q if and only if each of
the homogeneous components of P is divisible by Q. It
is thus sufficient to solve the problem in case P itself is
homogeneous, say of degree d.

Suppose that we have a factorization P = QmR for some
m > 0, where R is homogeneous of degree d and not
divisible by Q; note that the homogeneity implies that

n

∑
i=1

xi
∂R
∂xi

= dR.

Write ∇2 as shorthand for ∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n
; then

0 = ∇
2P

= 2mnQm−1R+Qm
∇

2R+2
n

∑
i=1

2mxiQm−1 ∂R
∂xi

= Qm
∇

2R+(2mn+4md)Qm−1R.

Since m > 0, this forces R to be divisible by Q, contra-
diction.

Second solution: (by Noam Elkies) Retain notation as
in the first solution. Let Pd be the set of homogeneous
polynomials of degree d, and let Hd be the subset of
Pd of polynomials killed by ∇2, which has dimension
≥ dim(Pd)−dim(Pd−2); the given problem amounts to
showing that this inequality is actually an equality.

Consider the operator Q∇2 (i.e., apply ∇2 then multiply
by Q) on Pd ; its zero eigenspace is precisely Hd . By the
calculation from the first solution, if R ∈ Pd , then

∇
2(QR)−Q∇

2R = (2n+4d)R.

Consequently, Q jHd−2 j is contained in the eigenspace
of Q∇2 on Pd of eigenvalue

(2n+4(d−2 j))+ · · ·+(2n+4(d−2)).

In particular, the Q jHd−2 j lie in distinct eigenspaces,
so are linearly independent within Pd . But by dimen-
sion counting, their total dimension is at least that of Pd .
Hence they exhaust Pd , and the zero eigenspace cannot
have dimension greater than dim(Pd)− dim(Pd−2), as
desired.

Third solution: (by Richard Stanley) Write x =

(x1, . . . ,xn) and ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
). Suppose that

P(x) = Q(x)(x2
1 + · · ·+ x2

n). Then

P(∇)P(x) = Q(∇)(∇2)P(x) = 0.

On the other hand, if P(x) = ∑α cα xα (where α =
(α1, . . . ,αn) and xα = xα1

1 · · ·xαn
n ), then the constant

term of P(∇)P(x) is seen to be ∑α c2
α . Hence cα = 0

for all α .

Remarks: The first two solutions apply directly over
any field of characteristic zero. (The result fails

in characteristic p > 0 because we may take P =

(x2
1 + · · ·+ x2

n)
p = x2p

1 + · · ·+ x2p
n .) The third solution

can be extended to complex coefficients by replacing
P(∇) by its complex conjugate, and again the result
may be deduced for any field of characteristic zero.
Stanley also suggests Section 5 of the arXiv e-print
math.CO/0502363 for some algebraic background for
this problem.

B–6 First solution: Let I be the identity matrix, and let Jx be
the matrix with x’s on the diagonal and 1’s elsewhere.
Note that Jx−(x−1)I, being the all 1’s matrix, has rank
1 and trace n, so has n− 1 eigenvalues equal to 0 and
one equal to n. Hence Jx has n−1 eigenvalues equal to
x−1 and one equal to x+n−1, implying

detJx = (x+n−1)(x−1)n−1.

On the other hand, we may expand the determinant as a
sum indexed by permutations, in which case we get

detJx = ∑
π∈Sn

sgn(π)xν(π).

Integrating both sides from 0 to 1 (and substituting y =
1− x) yields

∑
π∈Sn

sgn(π)
ν(π)+1

=
∫ 1

0
(x+n−1)(x−1)n−1 dx

=
∫ 1

0
(−1)n+1(n− y)yn−1 dy

= (−1)n+1 n
n+1

,

as desired.

Second solution: We start by recalling a form of the
principle of inclusion-exclusion: if f is a function on
the power set of {1, . . . ,n}, then

f (S) = ∑
T⊇S

(−1)|T |−|S| ∑
U⊇T

f (U).

In this case we take f (S) to be the sum of σ(π) over all
permutations π whose fixed points are exactly S. Then
∑U⊇T f (U) = 1 if |T | ≥ n−1 and 0 otherwise (since a
permutation group on 2 or more symbols has as many
even and odd permutations), so

f (S) = (−1)n−|S|(1−n+ |S|).

The desired sum can thus be written, by grouping over
fixed point sets, as

n

∑
i=0

(
n
i

)
(−1)n−i 1−n+ i

i+1

=
n

∑
i=0

(−1)n−i
(

n
i

)
−

n

∑
i=0

(−1)n−i n
i+1

(
n
i

)
= 0−

n

∑
i=0

(−1)n−i n
n+1

(
n+1
i+1

)
= (−1)n+1 n

n+1
.
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Third solution: (by Richard Stanley) The cycle indica-
tor of the symmetric group Sn is defined by

Zn(x1, . . . ,xn) = ∑
π∈Sn

xc1(π)
1 · · ·xcn(π)

n ,

where ci(π) is the number of cycles of π of length i. Put

Fn = ∑
π∈Sn

σ(π)xν(π) = Zn(x,−1,1,−1,1, . . .)

and

f (n) = ∑
π∈Sn

σ(π)

ν(π)+1
=
∫ 1

0
Fn(x)dx.

A standard argument in enumerative combinatorics (the
Exponential Formula) gives

∞

∑
n=0

Zn(x1, . . . ,xn)
tn

n!
= exp

∞

∑
k=1

xk
tk

k
,

yielding

∞

∑
n=0

f (n)
tn

n!
=
∫ 1

0
exp
(

xt− t2

2
+

t3

3
−·· ·

)
dx

=
∫ 1

0
e(x−1)t+log(1+t) dx

=
∫ 1

0
(1+ t)e(x−1)t dx

=
1
t
(1− e−t)(1+ t).

Expanding the right side as a Taylor series and compar-
ing coefficients yields the desired result.

Fourth solution (sketch): (by David Savitt) We prove
the identity of rational functions

∑
π∈Sn

σ(π)

ν(π)+ x
=

(−1)n+1n!(x+n−1)
x(x+1) · · ·(x+n)

by induction on n, which for x = 1 implies the desired
result. (This can also be deduced as in the other solu-
tions, but in this argument it is necessary to formulate
the strong induction hypothesis.)

Let R(n,x) be the right hand side of the above equation.
It is easy to verify that

R(x,n) = R(x+1,n−1)+(n−1)!
(−1)n+1

x

+
n−1

∑
l=2

(−1)l−1 (n−1)!
(n− l)!

R(x,n− l),

since the sum telescopes. To prove the desired equality,
it suffices to show that the left hand side satisfies the
same recurrence. This follows because we can classify
each π ∈ Sn as either fixing n, being an n-cycle, or hav-
ing n in an l-cycle for one of l = 2, . . . ,n− 1; writing
the sum over these classes gives the desired recurrence.
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A–1 Find the volume of the region of points (x,y,z) such that

(x2 + y2 + z2 +8)2 ≤ 36(x2 + y2).

A–2 Alice and Bob play a game in which they take turns
removing stones from a heap that initially has n stones.
The number of stones removed at each turn must be one
less than a prime number. The winner is the player who
takes the last stone. Alice plays first. Prove that there
are infinitely many n such that Bob has a winning strat-
egy. (For example, if n = 17, then Alice might take 6
leaving 11; then Bob might take 1 leaving 10; then Al-
ice can take the remaining stones to win.)

A–3 Let 1,2,3, . . . ,2005,2006,2007,2009,2012,2016, . . .
be a sequence defined by xk = k for k = 1,2, . . . ,2006
and xk+1 = xk + xk−2005 for k ≥ 2006. Show that the
sequence has 2005 consecutive terms each divisible by
2006.

A–4 Let S = {1,2, . . . ,n} for some integer n > 1. Say a per-
mutation π of S has a local maximum at k ∈ S if

(i) π(k)> π(k+1) for k = 1;

(ii) π(k−1)< π(k) and π(k)> π(k+1) for 1 < k <
n;

(iii) π(k−1)< π(k) for k = n.

(For example, if n = 5 and π takes values at 1,2,3,4,5
of 2,1,4,5,3, then π has a local maximum of 2 at k =
1, and a local maximum of 5 at k = 4.) What is the
average number of local maxima of a permutation of S,
averaging over all permutations of S?

A–5 Let n be a positive odd integer and let θ be a real num-
ber such that θ/π is irrational. Set ak = tan(θ +kπ/n),
k = 1,2, . . . ,n. Prove that

a1 +a2 + · · ·+an

a1a2 · · ·an

is an integer, and determine its value.

A–6 Four points are chosen uniformly and independently at
random in the interior of a given circle. Find the proba-
bility that they are the vertices of a convex quadrilateral.

B–1 Show that the curve x3+3xy+y3 = 1 contains only one
set of three distinct points, A, B, and C, which are ver-
tices of an equilateral triangle, and find its area.

B–2 Prove that, for every set X = {x1,x2, . . . ,xn} of n real
numbers, there exists a non-empty subset S of X and an
integer m such that∣∣∣∣∣m+∑

s∈S
s

∣∣∣∣∣≤ 1
n+1

.

B–3 Let S be a finite set of points in the plane. A linear parti-
tion of S is an unordered pair {A,B} of subsets of S such
that A∪B = S, A∩B = /0, and A and B lie on opposite
sides of some straight line disjoint from S (A or B may
be empty). Let LS be the number of linear partitions of
S. For each positive integer n, find the maximum of LS
over all sets S of n points.

B–4 Let Z denote the set of points in Rn whose coordinates
are 0 or 1. (Thus Z has 2n elements, which are the ver-
tices of a unit hypercube in Rn.) Given a vector sub-
space V of Rn, let Z(V ) denote the number of members
of Z that lie in V . Let k be given, 0 ≤ k ≤ n. Find the
maximum, over all vector subspaces V ⊆ Rn of dimen-
sion k, of the number of points in V ∩Z. [Editorial note:
the proposers probably intended to write Z(V ) instead
of “the number of points in V ∩ Z”, but this changes
nothing.]

B–5 For each continuous function f : [0,1]→ R, let I( f ) =∫ 1
0 x2 f (x)dx and J(x) =

∫ 1
0 x( f (x))2 dx. Find the maxi-

mum value of I( f )− J( f ) over all such functions f .

B–6 Let k be an integer greater than 1. Suppose a0 > 0, and
define

an+1 = an +
1

k
√

an

for n > 0. Evaluate

lim
n→∞

ak+1
n

nk .
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Kiran Kedlaya and Lenny Ng

A–1 We change to cylindrical coordinates, i.e., we put r =√
x2 + y2. Then the given inequality is equivalent to

r2 + z2 +8≤ 6r,

or

(r−3)2 + z2 ≤ 1.

This defines a solid of revolution (a solid torus); the
area being rotated is the disc (x− 3)2 + z2 ≤ 1 in the
xz-plane. By Pappus’s theorem, the volume of this
equals the area of this disc, which is π , times the dis-
tance through which the center of mass is being rotated,
which is (2π)3. That is, the total volume is 6π2.

A–2 Suppose on the contrary that the set B of values of
n for which Bob has a winning strategy is finite; for
convenience, we include n = 0 in B, and write B =
{b1, . . . ,bm}. Then for every nonnegative integer n not
in B, Alice must have some move on a heap of n stones
leading to a position in which the second player wins.
That is, every nonnegative integer not in B can be writ-
ten as b+ p−1 for some b∈B and some prime p. How-
ever, there are numerous ways to show that this cannot
happen.

First solution: Let t be any integer bigger than all of
the b ∈ B. Then it is easy to write down t consecutive
composite integers, e.g., (t+1)!+2, . . . ,(t+1)!+t+1.
Take n = (t + 1)!+ t; then for each b ∈ B, n− b+ 1 is
one of the composite integers we just wrote down.

Second solution: Let p1, . . . , p2m be any prime num-
bers; then by the Chinese remainder theorem, there ex-
ists a positive integer x such that

x−b1 ≡−1 (mod p1 pm+1)

. . .

x−bn ≡−1 (mod pm p2m).

For each b ∈ B, the unique integer p such that x = b+
p− 1 is divisible by at least two primes, and so cannot
itself be prime.

Third solution: (by Catalin Zara) Put b1 = 0, and take
n = (b2− 1) · · ·(bm− 1); then n is composite because
3,8 ∈ B, and for any nonzero b ∈ B, n− bi + 1 is di-
visible by but not equal to bi−1. (One could also take
n = b2 · · ·bm−1, so that n−bi +1 is divisible by bi.)

A–3 We first observe that given any sequence of integers
x1,x2, . . . satisfying a recursion

xk = f (xk−1, . . . ,xk−n) (k > n),

where n is fixed and f is a fixed polynomial of n vari-
ables with integer coefficients, for any positive integer
N, the sequence modulo N is eventually periodic. This
is simply because there are only finitely many possible
sequences of n consecutive values modulo N, and once
such a sequence is repeated, every subsequent value is
repeated as well.

We next observe that if one can rewrite the same recur-
sion as

xk−n = g(xk−n+1, . . . ,xk) (k > n),

where g is also a polynomial with integer coefficients,
then the sequence extends uniquely to a doubly infi-
nite sequence . . . ,x−1,x0,x1, . . . which is fully periodic
modulo any N. That is the case in the situation at hand,
because we can rewrite the given recursion as

xk−2005 = xk+1− xk.

It thus suffices to find 2005 consecutive terms divisible
by N in the doubly infinite sequence, for any fixed N
(so in particular for N = 2006). Running the recursion
backwards, we easily find

x1 = x0 = · · ·= x−2004 = 1
x−2005 = · · ·= x−4009 = 0,

yielding the desired result.

A–4 First solution: By the linearity of expectation, the av-
erage number of local maxima is equal to the sum of
the probability of having a local maximum at k over
k = 1, . . . ,n. For k = 1, this probability is 1/2: given
the pair {π(1),π(2)}, it is equally likely that π(1) or
π(2) is bigger. Similarly, for k = n, the probability is
1/2. For 1 < k < n, the probability is 1/3: given the pair
{π(k− 1),π(k),π(k+ 1)}, it is equally likely that any
of the three is the largest. Thus the average number of
local maxima is

2 · 1
2
+(n−2) · 1

3
=

n+1
3

.

Second solution: Another way to apply the linear-
ity of expectation is to compute the probability that
i ∈ {1, . . . ,n} occurs as a local maximum. The most
efficient way to do this is to imagine the permutation as
consisting of the symbols 1, . . . ,n,∗ written in a circle
in some order. The number i occurs as a local maxi-
mum if the two symbols it is adjacent to both belong to
the set {∗,1, . . . , i−1}. There are i(i−1) pairs of such
symbols and n(n−1) pairs in total, so the probability of
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i occurring as a local maximum is i(i− 1)/(n(n− 1)),
and the average number of local maxima is

n

∑
i=1

i(i−1)
n(n−1)

=
2

n(n−1)

n

∑
i=1

(
i
2

)
=

2
n(n−1)

(
n+1

3

)
=

n+1
3

.

One can obtain a similar (if slightly more intricate) so-
lution inductively, by removing the known local maxi-
mum n and splitting into two shorter sequences.

Remark: The usual term for a local maximum in this
sense is a peak. The complete distribution for the num-
ber of peaks is known; Richard Stanley suggests the ref-
erence: F. N. David and D. E. Barton, Combinatorial
Chance, Hafner, New York, 1962, p. 162 and subse-
quent.

A–5 Since the desired expression involves symmetric func-
tions of a1, . . . ,an, we start by finding a polynomial with
a1, . . . ,an as roots. Note that

1± i tanθ = e±iθ secθ

so that

1+ i tanθ = e2iθ (1− i tanθ).

Consequently, if we put ω = e2inθ , then the polynomial

Qn(x) = (1+ ix)n−ω(1− ix)n

has among its roots a1, . . . ,an. Since these are distinct
and Qn has degree n, these must be exactly the roots.

If we write

Qn(x) = cnxn + · · ·+ c1x+ c0,

then a1 + · · ·+ an = −cn−1/cn and a1 · · ·an = −c0/cn,
so the ratio we are seeking is cn−1/c0. By inspection,

cn−1 = nin−1−ωn(−i)n−1 = nin−1(1−ω)

c0 = 1−ω

so

a1 + · · ·+an

a1 · · ·an
=

{
n n≡ 1 (mod 4)
−n n≡ 3 (mod 4).

Remark: The same argument shows that the ratio be-
tween any two odd elementary symmetric functions of
a1, . . . ,an is independent of θ .

A–6 First solution: (by Daniel Kane) The probability is
1− 35

12π2 . We start with some notation and simplifica-
tions. For simplicity, we assume without loss of gen-
erality that the circle has radius 1. Let E denote the

expected value of a random variable over all choices of
P,Q,R. Write [XY Z] for the area of triangle XY Z.

If P,Q,R,S are the four points, we may ignore the case
where three of them are collinear, as this occurs with
probability zero. Then the only way they can fail to
form the vertices of a convex quadrilateral is if one of
them lies inside the triangle formed by the other three.
There are four such configurations, depending on which
point lies inside the triangle, and they are mutually ex-
clusive. Hence the desired probability is 1 minus four
times the probability that S lies inside triangle PQR.
That latter probability is simply E([PQR]) divided by
the area of the disc.

Let O denote the center of the circle, and let P′,Q′,R′

be the projections of P,Q,R onto the circle from O. We
can write

[PQR] =±[OPQ]± [OQR]± [ORP]

for a suitable choice of signs, determined as follows.
If the points P′,Q′,R′ lie on no semicircle, then all of
the signs are positive. If P′,Q′,R′ lie on a semicircle
in that order and Q lies inside the triangle OPR, then
the sign on [OPR] is positive and the others are nega-
tive. If P′,Q′,R′ lie on a semicircle in that order and Q
lies outside the triangle OPR, then the sign on [OPR] is
negative and the others are positive.

We first calculate

E([OPQ]+ [OQR]+ [ORP]) = 3E([OPQ]).

Write r1 = OP,r2 = OQ,θ = ∠POQ, so that

[OPQ] =
1
2

r1r2(sinθ).

The distribution of r1 is given by 2r1 on [0,1] (e.g., by
the change of variable formula to polar coordinates),
and similarly for r2. The distribution of θ is uniform on
[0,π]. These three distributions are independent; hence

E([OPQ])

=
1
2

(∫ 1

0
2r2 dr

)2( 1
π

∫
π

0
sin(θ)dθ

)
=

4
9π

,

and

E([OPQ]+ [OQR]+ [ORP]) =
4

3π
.

We now treat the case where P′,Q′,R′ lie on a semicir-
cle in that order. Put θ1 =∠POQ and θ2 =∠QOR; then
the distribution of θ1,θ2 is uniform on the region

0≤ θ1, 0≤ θ2, θ1 +θ2 ≤ π.

In particular, the distribution on θ = θ1 + θ2 is 2θ

π2 on
[0,π]. Put rP = OP,rQ = OQ,rR = OR. Again, the dis-
tribution on rP is given by 2rP on [0,1], and similarly
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for rQ,rR; these are independent from each other and
from the joint distribution of θ1,θ2. Write E ′(X) for
the expectation of a random variable X restricted to this
part of the domain.

Let χ be the random variable with value 1 if Q is inside
triangle OPR and 0 otherwise. We now compute

E ′([OPR])

=
1
2

(∫ 1

0
2r2 dr

)2(∫ π

0

2θ

π2 sin(θ)dθ

)
=

4
9π

E ′(χ[OPR])

= E ′(2[OPR]2/θ)

=
1
2

(∫ 1

0
2r3 dr

)2(∫ π

0

2θ

π2 θ
−1 sin2(θ)dθ

)
=

1
8π

.

Also recall that given any triangle XY Z, if T is cho-
sen uniformly at random inside XY Z, the expectation
of [T XY ] is the area of triangle bounded by XY and the
centroid of XY Z, namely 1

3 [XY Z].

Let χ be the random variable with value 1 if Q is inside
triangle OPR and 0 otherwise. Then

E ′([OPQ]+ [OQR]+ [ORP]− [PQR])

= 2E ′(χ([OPQ]+ [OQR])+2E ′((1−χ)[OPR])

= 2E ′(
2
3

χ[OPR])+2E ′([OPR])−2E ′(χ[OPR])

= 2E ′([OPR])− 2
3

E ′(χ[OPR]) =
29

36π
.

Finally, note that the case when P′,Q′,R′ lie on a semi-
circle in some order occurs with probability 3/4. (The
case where they lie on a semicircle proceeding clock-
wise from P′ to its antipode has probability 1/4; this
case and its two analogues are exclusive and exhaus-
tive.) Hence

E([PQR])
= E([OPQ]+ [OQR]+ [ORP])

− 3
4

E ′([OPQ]+ [OQR]+ [ORP]− [PQR])

=
4

3π
− 29

48π
=

35
48π

,

so the original probability is

1− 4E([PQR])
π

= 1− 35
12π2 .

Second solution: (by David Savitt) As in the first so-
lution, it suffices to check that for P,Q,R chosen uni-
formly at random in the disc, E([PQR]) = 35

48π
. Draw

the lines PQ,QR,RP, which with probability 1 divide
the interior of the circle into seven regions. Put a =
[PQR], let b1,b2,b3 denote the areas of the three other
regions sharing a side with the triangle, and let c1,c2,c3
denote the areas of the other three regions. Put A =
E(a), B = E(b1), C = E(c1), so that A+3B+3C = π .

Note that c1 + c2 + c3 + a is the area of the region in
which we can choose a fourth point S so that the quadri-
lateral PQRS fails to be convex. By comparing expecta-
tions, we have 3C+A = 4A, so A =C and 4A+3B = π .

We will compute B + 2A = B + 2C, which is the ex-
pected area of the part of the circle cut off by a chord
through two random points D,E, on the side of the
chord not containing a third random point F . Let h be
the distance from the center O of the circle to the line
DE. We now determine the distribution of h.

Put r = OD; the distribution of r is 2r on [0,1]. Without
loss of generality, suppose O is the origin and D lies
on the positive x-axis. For fixed r, the distribution of
h runs over [0,r], and can be computed as the area of
the infinitesimal region in which E can be chosen so the
chord through DE has distance to O between h and h+
dh, divided by π . This region splits into two symmetric
pieces, one of which lies between chords making angles
of arcsin(h/r) and arcsin((h+ dh)/r) with the x-axis.
The angle between these is dθ = dh/(r2− h2). Draw
the chord through D at distance h to O, and let L1,L2 be
the lengths of the parts on opposite sides of D; then the
area we are looking for is 1

2 (L
2
1 +L2

2)dθ . Since

{L1,L2}=
√

1−h2±
√

r2−h2,

the area we are seeking (after doubling) is

2
1+ r2−2h2
√

r2−h2
.

Dividing by π , then integrating over r, we compute the
distribution of h to be

1
π

∫ 1

h
2

1+ r2−2h2
√

r2−h2
2r dr

=
16
3π

(1−h2)3/2.

We now return to computing B+ 2A. Let A(h) denote
the smaller of the two areas of the disc cut off by a
chord at distance h. The chance that the third point
is in the smaller (resp. larger) portion is A(h)/π (resp.
1−A(h)/π), and then the area we are trying to com-
pute is π−A(h) (resp. A(h)). Using the distribution on
h, and the fact that

A(h) = 2
∫ 1

h

√
1−h2 dh

=
π

2
− arcsin(h)−h

√
1−h2,
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we find

B+2A

=
2
π

∫ 1

0
A(h)(π−A(h))

16
3π

(1−h2)3/2 dh

=
35+24π2

72π
.

Since 4A+3B = π , we solve to obtain A = 35
48π

as in the
first solution.

Third solution: (by Noam Elkies) Again, we reduce
to computing the average area of a triangle formed by
three random points A,B,C inside a unit circle. Let O be
the center of the circle, and put c = max{OA,OB,OC};
then the probability that c ≤ r is (r2)3, so the distribu-
tion of c is 6c5 dc on [0,1].

Given c, the expectation of [ABC] is equal to c2 times X ,
the expected area of a triangle formed by two random
points P,Q in a circle and a fixed point R on the bound-
ary. We introduce polar coordinates centered at R, in
which the circle is given by r = 2sinθ for θ ∈ [0,π].
The distribution of a random point in that circle is
1
π

r dr dθ over θ ∈ [0,π] and r ∈ [0,2sinθ ]. If (r,θ)
and (r′,θ ′) are the two random points, then the area is
1
2 rr′ sin |θ −θ ′|.
Performing the integrals over r and r′ first, we find

X =
32

9π2

∫
π

0

∫
π

0
sin3

θ sin3
θ
′ sin |θ −θ

′|dθ
′ dθ

=
64

9π2

∫
π

0

∫
θ

0
sin3

θ sin3
θ
′ sin(θ −θ

′)dθ
′ dθ .

This integral is unpleasant but straightforward; it
yields X = 35/(36π), and E([PQR]) =

∫ 1
0 6c7X dc =

35/(48π), giving the desired result.

Remark: This is one of the oldest problems in geo-
metric probability; it is an instance of Sylvester’s four-
point problem, which nowadays is usually solved us-
ing a device known as Crofton’s formula. We de-
fer to http://mathworld.wolfram.com/ for further
discussion.

B–1 The “curve” x3 +3xy+y3−1 = 0 is actually reducible,
because the left side factors as

(x+ y−1)(x2− xy+ y2 + x+ y+1).

Moreover, the second factor is

1
2
((x+1)2 +(y+1)2 +(x− y)2),

so it only vanishes at (−1,−1). Thus the curve in ques-
tion consists of the single point (−1,−1) together with
the line x+ y = 1. To form a triangle with three points
on this curve, one of its vertices must be (−1,−1).
The other two vertices lie on the line x+ y = 1, so the
length of the altitude from (−1,−1) is the distance from

(−1,−1) to (1/2,1/2), or 3
√

2/2. The area of an equi-
lateral triangle of height h is h2

√
3/3, so the desired

area is 3
√

3/2.

Remark: The factorization used above is a special case
of the fact that

x3 + y3 + z3−3xyz

= (x+ y+ z)(x+ωy+ω
2z)(x+ω

2y+ωz),

where ω denotes a primitive cube root of unity. That
fact in turn follows from the evaluation of the determi-
nant of the circulant matrixx y z

z x y
y z x


by reading off the eigenvalues of the eigenvectors
(1,ω i,ω2i) for i = 0,1,2.

B–2 Let {x} = x−bxc denote the fractional part of x. For
i = 0, . . . ,n, put si = x1 + · · ·+ xi (so that s0 = 0). Sort
the numbers {s0}, . . . ,{sn} into ascending order, and
call the result t0, . . . , tn. Since 0 = t0 ≤ ·· · ≤ tn < 1,
the differences

t1− t0, . . . , tn− tn−1,1− tn

are nonnegative and add up to 1. Hence (as in the pi-
geonhole principle) one of these differences is no more
than 1/(n + 1); if it is anything other than 1− tn, it
equals ±({si} − {s j}) for some 0 ≤ i < j ≤ n. Put
S = {xi+1, . . . ,x j} and m = bsic−bs jc; then∣∣∣∣∣m+∑

s∈S
s

∣∣∣∣∣= |m+ s j− si|

= |{s j}−{si}|

≤ 1
n+1

,

as desired. In case 1− tn ≤ 1/(n + 1), we take S =
{x1, . . . ,xn} and m = −dsne, and again obtain the de-
sired conclusion.

B–3 The maximum is
(n

2

)
+ 1, achieved for instance by a

convex n-gon: besides the trivial partition (in which all
of the points are in one part), each linear partition oc-
curs by drawing a line crossing a unique pair of edges.

First solution: We will prove that LS =
(n

2

)
+ 1 in any

configuration in which no two of the lines joining points
of S are parallel. This suffices to imply the maximum
in all configurations: given a maximal configuration,
we may vary the points slightly to get another maximal
configuration in which our hypothesis is satisfied. For
convenience, we assume n≥ 3, as the cases n = 1,2 are
easy.

Let P be the line at infinity in the real projective plane;
i.e., P is the set of possible directions of lines in the
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plane, viewed as a circle. Remove the directions cor-
responding to lines through two points of S; this leaves
behind

(n
2

)
intervals.

Given a direction in one of the intervals, consider the
set of linear partitions achieved by lines parallel to that
direction. Note that the resulting collection of partitions
depends only on the interval. Then note that the collec-
tions associated to adjacent intervals differ in only one
element.

The trivial partition that puts all of S on one side is in ev-
ery such collection. We now observe that for any other
linear partition {A,B}, the set of intervals to which
{A,B} is:

(a) a consecutive block of intervals, but

(b) not all of them.

For (a), note that if `1, `2 are nonparallel lines achieving
the same partition, then we can rotate around their point
of intersection to achieve all of the intermediate direc-
tions on one side or the other. For (b), the case n = 3
is evident; to reduce the general case to this case, take
points P,Q,R such that P lies on the opposite side of the
partition from Q and R.

It follows now that that each linear partition, except for
the trivial one, occurs in exactly one place as the parti-
tion associated to some interval but not to its immediate
counterclockwise neighbor. In other words, the num-
ber of linear partitions is one more than the number of
intervals, or

(n
2

)
+1 as desired.

Second solution: We prove the upper bound by induc-
tion on n. Choose a point P in the convex hull of S. Put
S′ = S \ {P}; by the induction hypothesis, there are at
most

(n−1
2

)
+ 1 linear partitions of S′. Note that each

linear partition of S restricts to a linear partition of S′.
Moreover, if two linear partitions of S restrict to the
same linear partition of S′, then that partition of S′ is
achieved by a line through P.

By rotating a line through P, we see that there are at
most n− 1 partitions of S′ achieved by lines through
P: namely, the partition only changes when the rotating
line passes through one of the points of S. This yields
the desired result.

Third solution: (by Noam Elkies) We enlarge the plane
to a projective plane by adding a line at infinity, then
apply the polar duality map centered at one of the points
O ∈ S. This turns the rest of S into a set S′ of n−1 lines
in the dual projective plane. Let O′ be the point in the
dual plane corresponding to the original line at infinity;
it does not lie on any of the lines in S′.

Let ` be a line in the original plane, corresponding to a
point P in the dual plane. If we form the linear partition
induced by `, then the points of S \ {O} lying in the
same part as O correspond to the lines of S′ which cross
the segment O′P. If we consider the dual affine plane
as being divided into regions by the lines of S′, then the

lines of S′ crossing the segment O′P are determined by
which region P lies in.

Thus our original maximum is equal to the maximum
number of regions into which n−1 lines divide an affine
plane. By induction on n, this number is easily seen to
be 1+

(n
2

)
.

Fourth solution: (by Florian Herzig) Say that an S-line
is a line that intersects S in at least two points. We claim
that the nontrivial linear partitions of S are in natural bi-
jection with pairs (`,{X ,Y}) consisting of an S-line `
and a nontrivial linear partition {X ,Y} of `∩ S. Since
an S-line ` admits precisely |`∩S|−1≤

(|`∩S|
2

)
nontriv-

ial linear partitions, the claim implies that LS ≤
(n

2

)
+1

with equality iff no three points of S are collinear.

Let P be the line at infinity in the real projective plane.
Given any nontrivial linear partition {A,B} of S, the set
of lines inducing this partition is a proper, open, con-
nected subset I of P. (It is proper because it has to omit
directions of S-lines that pass through both parts of the
partition and open because we can vary the separating
line. It is connected because if we have two such lines
that aren’t parallel, we can rotate through their point of
intersection to get all intermediate directions.) Among
all S-lines that intersect both A and B choose a line `
whose direction is minimal (in the clockwise direction)
with respect to the interval I; also, pick an arbitrary line
`′ that induces {A,B}. By rotating `′ clockwise to `
about their point of intersection, we see that the direc-
tion of ` is the least upper bound of I. (We can’t hit any
point of S during the rotation because of the minimality
property of `.) The line ` is in fact unique because if the
(parallel) lines pq and rs are two choices for `, with p,
q ∈ A; r, s ∈ B, then one of the diagonals ps, qr would
contradict the minimality property of `. To define the
above bijection we send {A,B} to (`,{A∩ `,B∩ `}).
Conversely, suppose that we are given an S-line ` and
a nontrivial linear partition {X ,Y} of `∩ S. Pick any
point p ∈ ` that induces the partition {X ,Y}. If we ro-
tate the line ` about p in the counterclockwise direction
by a sufficiently small amount, we get a nontrivial lin-
ear partitition of S that is independent of all choices. (It
is obtained from the partition of S− ` induced by ` by
adjoining X to one part and Y to the other.) This defines
a map in the other direction.

By construction these two maps are inverse to each
other, and this proves the claim.

Remark: Given a finite set S of points in Rn, a non-
Radon partition of S is a pair (A,B) of complementary
subsets that can be separated by a hyperplane. Radon’s
theorem states that if #S ≥ n+ 2, then not every (A,B)
is a non-Radon partition. The result of this problem has
been greatly extended, especially within the context of
matroid theory and oriented matroid theory. Richard
Stanley suggests the following references: T. H. Bry-
lawski, A combinatorial perspective on the Radon con-
vexity theorem, Geom. Ded. 5 (1976), 459-466; and T.



6

Zaslavsky, Extremal arrangements of hyperplanes, Ann.
N. Y. Acad. Sci. 440 (1985), 69-87.

B–4 The maximum is 2k, achieved for instance by the sub-
space

{(x1, . . . ,xn) ∈ Rn : x1 = · · ·= xn−k = 0}.

First solution: More generally, we show that any affine
k-dimensional plane in Rn can contain at most 2k points
in Z. The proof is by induction on k+ n; the case k =
n = 0 is clearly true.

Suppose that V is a k-plane in Rn. Denote the hyper-
planes {xn = 0} and {xn = 1} by V0 and V1, respec-
tively. If V ∩V0 and V ∩V1 are each at most (k− 1)-
dimensional, then V ∩V0 ∩Z and V ∩V1 ∩Z each have
cardinality at most 2k−1 by the induction assumption,
and hence V ∩ Z has at most 2k elements. Otherwise,
if V ∩V0 or V ∩V1 is k-dimensional, then V ⊂ V0 or
V ⊂ V1; now apply the induction hypothesis on V ,
viewed as a subset of Rn−1 by dropping the last coordi-
nate.

Second solution: Let S be a subset of Z contained in
a k-dimensional subspace of V . This is equivalent to
asking that any t1, . . . , tk+1 ∈ S satisfy a nontrivial linear
dependence c1t1+ · · ·+ck+1tk+1 = 0 with c1, . . . ,ck+1 ∈
R. Since t1, . . . , tk+1 ∈ Qn, given such a dependence
we can always find another one with c1, . . . ,ck+1 ∈ Q;
then by clearing denominators, we can find one with
c1, . . . ,ck+1 ∈ Z and not all having a common factor.

Let F2 denote the field of two elements, and let S ⊆ Fn
2

be the reductions modulo 2 of the points of S. Then any
t1, . . . , tk+1 ∈ S satisfy a nontrivial linear dependence,
because we can take the dependence from the end of
the previous paragraph and reduce modulo 2. Hence S
is contained in a k-dimensional subspace of F2n , and the
latter has cardinality exactly 2k. Thus S has at most 2k

elements, as does S.

Variant (suggested by David Savitt): if S contained k+1
linearly independent elements, the (k + 1)× n matrix
formed by these would have a nonvanishing maximal
minor. The lift of that minor back to R would also not
vanish, so S would contain k + 1 linearly independent
elements.

Third solution: (by Catalin Zara) Let V be a k-
dimensional subspace. Form the matrix whose rows are
the elements of V ∩Z; by construction, it has row rank
at most k. It thus also has column rank at most k; in
particular, we can choose k coordinates such that each
point of V ∩ Z is determined by those k of its coordi-
nates. Since each coordinate of a point in Z can only
take two values, V ∩Z can have at most 2k elements.

Remark: The proposers probably did not
realize that this problem appeared online
about three months before the exam, at
http://www.artofproblemsolving.com/
Forum/viewtopic.php?t=105991. (It may very
well have also appeared even earlier.)

B–5 The answer is 1/16. We have∫ 1

0
x2 f (x)dx−

∫ 1

0
x f (x)2 dx

=
∫ 1

0
(x3/4− x( f (x)− x/2)2)dx

≤
∫ 1

0
x3/4dx = 1/16,

with equality when f (x) = x/2.

B–6 First solution: We start with some easy upper and
lower bounds on an. We write O( f (n)) and Ω( f (n))
for functions g(n) such that f (n)/g(n) and g(n)/ f (n),
respectively, are bounded above. Since an is a non-
decreasing sequence, an+1 − an is bounded above, so
an = O(n). That means a−1/k

n = Ω(n−1/k), so

an = Ω

(
n

∑
i=1

i−1/k

)
= Ω(n(k−1)/k).

In fact, all we will need is that an→ ∞ as n→ ∞.

By Taylor’s theorem with remainder, for 1 < m < 2 and
x > 0,

|(1+ x)m−1−mx| ≤ m(m−1)
2

x2.

Taking m = (k+1)/k and x = an+1/an = 1+a−(k+1)/k
n ,

we obtain∣∣∣∣a(k+1)/k
n+1 −a(k+1)/k

n − k+1
k

∣∣∣∣≤ k+1
2k2 a−(k+1)/k

n .

In particular,

lim
n→∞

a(k+1)/k
n+1 −a(k+1)/k

n =
k+1

k
.

In general, if xn is a sequence with limn→∞ xn = c, then
also

lim
n→∞

1
n

n

∑
i=1

xi = c

by Cesaro’s lemma. Explicitly, for any ε > 0, we can
find N such that |xn− c| ≤ ε/2 for n≥ N, and then∣∣∣∣∣c− 1

n

n

∑
i=1

xi

∣∣∣∣∣≤ n−N
n

ε

2
+

N
n

∣∣∣∣∣ N

∑
i=1

(c− xi)

∣∣∣∣∣ ;
for n large, the right side is smaller than ε .

In our case, we deduce that

lim
n→∞

a(k+1)/k
n

n
=

k+1
k

and so

lim
n→∞

ak+1
n

nk =

(
k+1

k

)k

,
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as desired.

Remark: The use of Cesaro’s lemma above is the spe-
cial case bn = n of the Cesaro-Stolz theorem: if an,bn
are sequences such that bn is positive, strictly increas-
ing, and unbounded, and

lim
n→∞

an+1−an

bn+1−bn
= L,

then

lim
n→∞

an

bn
= L.

Second solution: In this solution, rather than applying
Taylor’s theorem with remainder to (1 + x)m for 1 <
m < 2 and x > 0, we only apply convexity to deduce
that (1+ x)m ≥ 1+mx. This gives

a(k+1)/k
n+1 −a(k+1)/k

n ≥ k+1
k

,

and so

a(k+1)/k
n ≥ k+1

k
n+ c

for some c ∈ R. In particular,

liminf
n→∞

a(k+1)/k
n

n
≥ k+1

k

and so

liminf
n→∞

an

nk/(k+1) ≥
(

k+1
k

)k/(k+1)

.

But turning this around, the fact that

an+1−an

= a−1/k
n

≤
(

k+1
k

)−1/(k+1)

n−1/(k+1)(1+o(1)),

where o(1) denotes a function tending to 0 as n→ ∞,
yields

an

≤
(

k+1
k

)−1/(k+1) n

∑
i=1

i−1/(k+1)(1+o(1))

=
k+1

k

(
k+1

k

)−1/(k+1)

nk/(k+1)(1+o(1))

=

(
k+1

k

)k/(k+1)

nk/(k+1)(1+o(1)),

so

limsup
n→∞

an

nk/(k+1) ≤
(

k+1
k

)k/(k+1)

and this completes the proof.

Third solution: We argue that an → ∞ as in the first
solution. Write bn = an−Lnk/(k+1), for a value of L to
be determined later. We have

bn+1

= bn +a−1/k
n −L((n+1)k/(k+1)−nk/(k+1))

= e1 + e2,

where

e1 = bn +a−1/k
n −L−1/kn−1/(k+1)

e2 = L((n+1)k/(k+1)−nk/(k+1))

−L−1/kn−1/(k+1).

We first estimate e1. For −1 < m < 0, by the convexity
of (1+ x)m and (1+ x)1−m, we have

1+mx≤ (1+ x)m

≤ 1+mx(1+ x)m−1.

Hence

−1
k

L−(k+1)/kn−1bn ≤ e1−bn

≤−1
k

bna−(k+1)/k
n .

Note that both bounds have sign opposite to bn; more-
over, by the bound an = Ω(n(k−1)/k), both bounds have
absolutely value strictly less than that of bn for n suffi-
ciently large. Consequently, for n large,

|e1| ≤ |bn|.

We now work on e2. By Taylor’s theorem with remain-
der applied to (1+ x)m for x > 0 and 0 < m < 1,

1+mx≥ (1+ x)m

≥ 1+mx+
m(m−1)

2
x2.

The “main term” of L((n + 1)k/(k+1) − nk/(k+1))

is L k
k+1 n−1/(k+1). To make this coincide with

L−1/kn−1/(k+1), we take

L =

(
k+1

k

)k/(k+1)

.

We then find that

|e2|= O(n−2),

and because bn+1 = e1 + e2, we have |bn+1| ≤ |bn|+
|e2|. Hence

|bn|= O

(
n

∑
i=1

i−2

)
= O(1),



8

and so

lim
n→∞

ak+1
n

nk = Lk+1 =

(
k+1

k

)k

.

Remark: The case k = 2 appeared on the 2004 Roma-
nian Olympiad (district level).

Remark: One can make a similar argument for any se-
quence given by an+1 = an + f (an), when f is a de-
creasing function.

Remark: Richard Stanley suggests a heuristic for de-

termining the asymptotic behavior of sequences of this
type: replace the given recursion

an+1−an = a−1/k
n

by the differential equation

y′ = y−1/k

and determine the asymptotics of the latter.



The 68th William Lowell Putnam Mathematical Competition
Saturday, December 1, 2007

A–1 Find all values of α for which the curves y = αx2 +
αx+ 1

24 and x=αy2+αy+ 1
24 are tangent to each other.

A–2 Find the least possible area of a convex set in the plane
that intersects both branches of the hyperbola xy = 1
and both branches of the hyperbola xy = −1. (A set S
in the plane is called convex if for any two points in S
the line segment connecting them is contained in S.)

A–3 Let k be a positive integer. Suppose that the integers
1,2,3, . . . ,3k + 1 are written down in random order.
What is the probability that at no time during this pro-
cess, the sum of the integers that have been written up
to that time is a positive integer divisible by 3? Your
answer should be in closed form, but may include fac-
torials.

A–4 A repunit is a positive integer whose digits in base 10
are all ones. Find all polynomials f with real coeffi-
cients such that if n is a repunit, then so is f (n).

A–5 Suppose that a finite group has exactly n elements of
order p, where p is a prime. Prove that either n = 0 or
p divides n+1.

A–6 A triangulation T of a polygon P is a finite collection
of triangles whose union is P, and such that the inter-
section of any two triangles is either empty, or a shared
vertex, or a shared side. Moreover, each side is a side
of exactly one triangle in T . Say that T is admissible
if every internal vertex is shared by 6 or more triangles.
For example, [figure omitted.] Prove that there is an in-
teger Mn, depending only on n, such that any admissible
triangulation of a polygon P with n sides has at most Mn
triangles.

B–1 Let f be a polynomial with positive integer coefficients.
Prove that if n is a positive integer, then f (n) divides

f ( f (n) + 1) if and only if n = 1. [Editor’s note: one
must assume f is nonconstant.]

B–2 Suppose that f : [0,1]→ R has a continuous derivative
and that

∫ 1
0 f (x)dx = 0. Prove that for every α ∈ (0,1),∣∣∣∣∫ α

0
f (x)dx

∣∣∣∣≤ 1
8

max
0≤x≤1

| f ′(x)|.

B–3 Let x0 = 1 and for n ≥ 0, let xn+1 = 3xn + bxn
√

5c. In
particular, x1 = 5, x2 = 26, x3 = 136, x4 = 712. Find a
closed-form expression for x2007. (bacmeans the largest
integer ≤ a.)

B–4 Let n be a positive integer. Find the number of pairs
P,Q of polynomials with real coefficients such that

(P(X))2 +(Q(X))2 = X2n +1

and degP > degQ.
B–5 Let k be a positive integer. Prove that there exist polyno-

mials P0(n),P1(n), . . . ,Pk−1(n) (which may depend on
k) such that for any integer n,⌊n
k

⌋k
= P0(n)+P1(n)

⌊n
k

⌋
+ · · ·+Pk−1(n)

⌊n
k

⌋k−1
.

(bac means the largest integer ≤ a.)

B–6 For each positive integer n, let f (n) be the number of
ways to make n! cents using an unordered collection of
coins, each worth k! cents for some k, 1≤ k ≤ n. Prove
that for some constant C, independent of n,

nn2/2−Cne−n2/4 ≤ f (n)≤ nn2/2+Cne−n2/4.



Solutions to the 68th William Lowell Putnam Mathematical Competition
Saturday, December 1, 2007

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A–1 The only such α are 2/3,3/2,(13±
√

601)/12.

First solution: Let C1 and C2 be the curves y = αx2 +
αx+ 1

24 and x = αy2 +αy+ 1
24 , respectively, and let L

be the line y = x. We consider three cases.

If C1 is tangent to L, then the point of tangency (x,x)
satisfies

2αx+α = 1, x = αx2 +αx+
1

24
;

by symmetry, C2 is tangent to L there, so C1 and C2 are
tangent. Writing α = 1/(2x+ 1) in the first equation
and substituting into the second, we must have

x =
x2 + x
2x+1

+
1

24
,

which simplifies to 0 = 24x2− 2x− 1 = (6x+ 1)(4x−
1), or x ∈ {1/4,−1/6}. This yields α = 1/(2x+ 1) ∈
{2/3,3/2}.
If C1 does not intersect L, then C1 and C2 are separated
by L and so cannot be tangent.

If C1 intersects L in two distinct points P1,P2, then it
is not tangent to L at either point. Suppose at one of
these points, say P1, the tangent to C1 is perpendicular
to L; then by symmetry, the same will be true of C2, so
C1 and C2 will be tangent at P1. In this case, the point
P1 = (x,x) satisfies

2αx+α =−1, x = αx2 +αx+
1

24
;

writing α = −1/(2x+ 1) in the first equation and sub-
stituting into the second, we have

x =− x2 + x
2x+1

+
1

24
,

or x = (−23±
√

601)/72. This yields α = −1/(2x+
1) = (13±

√
601)/12.

If instead the tangents to C1 at P1,P2 are not perpen-
dicular to L, then we claim there cannot be any point
where C1 and C2 are tangent. Indeed, if we count in-
tersections of C1 and C2 (by using C1 to substitute for y
in C2, then solving for y), we get at most four solutions
counting multiplicity. Two of these are P1 and P2, and
any point of tangency counts for two more. However,
off of L, any point of tangency would have a mirror im-
age which is also a point of tangency, and there cannot
be six solutions. Hence we have now found all possible
α .

Second solution: For any nonzero value of α , the two
conics will intersect in four points in the complex pro-
jective plane P2(C). To determine the y-coordinates of
these intersection points, subtract the two equations to
obtain

(y− x) = α(x− y)(x+ y)+α(x− y).

Therefore, at a point of intersection we have either x =
y, or x = −1/α − (y+ 1). Substituting these two pos-
sible linear conditions into the second equation shows
that the y-coordinate of a point of intersection is a root
of either Q1(y) = αy2 + (α − 1)y + 1/24 or Q2(y) =
αy2 +(α +1)y+25/24+1/α .

If two curves are tangent, then the y-coordinates of at
least two of the intersection points will coincide; the
converse is also true because one of the curves is the
graph of a function in x. The coincidence occurs pre-
cisely when either the discriminant of at least one of
Q1 or Q2 is zero, or there is a common root of Q1
and Q2. Computing the discriminants of Q1 and Q2
yields (up to constant factors) f1(α) = 6α2− 13α + 6
and f2(α) = 6α2 − 13α − 18, respectively. If on the
other hand Q1 and Q2 have a common root, it must be
also a root of Q2(y)−Q1(y) = 2y+ 1+ 1/α , yielding
y =−(1+α)/(2α) and 0 = Q1(y) =− f2(α)/(24α).

Thus the values of α for which the two curves are tan-
gent must be contained in the set of zeros of f1 and f2,
namely 2/3, 3/2, and (13±

√
601)/12.

Remark: The fact that the two conics in P2(C) meet in
four points, counted with multiplicities, is a special case
of Bézout’s theorem: two curves in P2(C) of degrees
m,n and not sharing any common component meet in
exactly mn points when counted with multiplicity.

Many solvers were surprised that the proposers chose
the parameter 1/24 to give two rational roots and two
nonrational roots. In fact, they had no choice in the
matter: attempting to make all four roots rational by
replacing 1/24 by β amounts to asking for β 2 +β and
β 2 + β + 1 to be perfect squares. This cannot happen
outside of trivial cases (β = 0,−1) ultimately because
the elliptic curve 24A1 (in Cremona’s notation) over Q
has rank 0. (Thanks to Noam Elkies for providing this
computation.)

However, there are choices that make the radical milder,
e.g., β = 1/3 gives β 2 + β = 4/9 and β 2 + β + 1 =
13/9, while β = 3/5 gives β 2 +β = 24/25 and β 2 +
β +1 = 49/25.

A–2 The minimum is 4, achieved by the square with vertices
(±1,±1).
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First solution: To prove that 4 is a lower bound, let S be
a convex set of the desired form. Choose A,B,C,D ∈ S
lying on the branches of the two hyperbolas, with A in
the upper right quadrant, B in the upper left, C in the
lower left, D in the lower right. Then the area of the
quadrilateral ABCD is a lower bound for the area of S.

Write A = (a,1/a), B = (−b,1/b), C = (−c,−1/c),
D = (d,−1/d) with a,b,c,d > 0. Then the area of the
quadrilateral ABCD is

1
2
(a/b+b/c+ c/d +d/a+b/a+ c/b+d/c+a/d),

which by the arithmetic-geometric mean inequality is at
least 4.

Second solution: Choose A,B,C,D as in the first solu-
tion. Note that both the hyperbolas and the area of the
convex hull of ABCD are invariant under the transfor-
mation (x,y) 7→ (xm,y/m) for any m > 0. For m small,
the counterclockwise angle from the line AC to the line
BD approaches 0; for m large, this angle approaches
π . By continuity, for some m this angle becomes π/2,
that is, AC and BD become perpendicular. The area of
ABCD is then AC ·BD.

It thus suffices to note that AC≥ 2
√

2 (and similarly for
BD). This holds because if we draw the tangent lines to
the hyperbola xy = 1 at the points (1,1) and (−1,−1),
then A and C lie outside the region between these lines.
If we project the segment AC orthogonally onto the line
x = y = 1, the resulting projection has length at least
2
√

2, so AC must as well.

Third solution: (by Richard Stanley) Choose A,B,C,D
as in the first solution. Now fixing A and C, move B and
D to the points at which the tangents to the curve are
parallel to the line AC. This does not increase the area
of the quadrilateral ABCD (even if this quadrilateral is
not convex).

Note that B and D are now diametrically opposite; write
B = (−x,1/x) and D = (x,−1/x). If we thus repeat the
procedure, fixing B and D and moving A and C to the
points where the tangents are parallel to BD, then A and
C must move to (x,1/x) and (−x,−1/x), respectively,
forming a rectangle of area 4.

Remark: Many geometric solutions are possible. An
example suggested by David Savitt (due to Chris
Brewer): note that AD and BC cross the positive and
negative x-axes, respectively, so the convex hull of
ABCD contains O. Then check that the area of trian-
gle OAB is at least 1, et cetera.

A–3 Assume that we have an ordering of 1,2, . . . ,3k+1 such
that no initial subsequence sums to 0 mod 3. If we omit
the multiples of 3 from this ordering, then the remain-
ing sequence mod 3 must look like 1,1,−1,1,−1, . . .
or −1,−1,1,−1,1, . . .. Since there is one more integer
in the ordering congruent to 1 mod 3 than to −1, the
sequence mod 3 must look like 1,1,−1,1,−1, . . ..

It follows that the ordering satisfies the given condition
if and only if the following two conditions hold: the
first element in the ordering is not divisible by 3, and
the sequence mod 3 (ignoring zeroes) is of the form
1,1,−1,1,−1, . . .. The two conditions are independent,
and the probability of the first is (2k+1)/(3k+1) while
the probability of the second is 1/

(2k+1
k

)
, since there

are
(2k+1

k

)
ways to order (k+1) 1’s and k −1’s. Hence

the desired probability is the product of these two, or
k!(k+1)!

(3k+1)(2k)! .

A–4 Note that n is a repunit if and only if 9n+ 1 = 10m for
some power of 10 greater than 1. Consequently, if we
put

g(n) = 9 f
(

n−1
9

)
+1,

then f takes repunits to repunits if and only if g takes
powers of 10 greater than 1 to powers of 10 greater than
1. We will show that the only such functions g are those
of the form g(n) = 10cnd for d ≥ 0, c ≥ 1− d (all of
which clearly work), which will mean that the desired
polynomials f are those of the form

f (n) =
1
9
(10c(9n+1)d−1)

for the same c,d.

It is convenient to allow “powers of 10” to be of the
form 10k for any integer k. With this convention, it suf-
fices to check that the polynomials g taking powers of
10 greater than 1 to powers of 10 are of the form 10cnd

for any integers c,d with d ≥ 0.

First solution: Suppose that the leading term of g(x)
is axd , and note that a > 0. As x → ∞, we have
g(x)/xd → a; however, for x a power of 10 greater than
1, g(x)/xd is a power of 10. The set of powers of 10 has
no positive limit point, so g(x)/xd must be equal to a
for x = 10k with k sufficiently large, and we must have
a = 10c for some c. The polynomial g(x)− 10cxd has
infinitely many roots, so must be identically zero.

Second solution: We proceed by induction on d =
deg(g). If d = 0, we have g(n) = 10c for some c. Oth-
erwise, g has rational coefficients by Lagrange’s inter-
polation formula (this applies to any polynomial of de-
gree d taking at least d + 1 different rational numbers
to rational numbers), so g(0) = t is rational. More-
over, g takes each value only finitely many times, so the
sequence g(100),g(101), . . . includes arbitrarily large
powers of 10. Suppose that t 6= 0; then we can choose
a positive integer h such that the numerator of t is not
divisible by 10h. But for c large enough, g(10c)− t has
numerator divisible by 10b for some b > h, contradic-
tion.

Consequently, t = 0, and we may apply the induction
hypothesis to g(n)/n to deduce the claim.
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Remark: The second solution amounts to the fact that
g, being a polynomial with rational coefficients, is con-
tinuous for the 2-adic and 5-adic topologies on Q. By
contrast, the first solution uses the “∞-adic” topology,
i.e., the usual real topology.

A–5 In all solutions, let G be a finite group of order m.

First solution: By Lagrange’s theorem, if m is not di-
visible by p, then n = 0. Otherwise, let S be the set of
p-tuples (a0, . . . ,ap−1) ∈ Gp such that a0 · · ·ap−1 = e;
then S has cardinality mp−1, which is divisible by p.
Note that this set is invariant under cyclic permutation,
that is, if (a0, . . . ,ap−1) ∈ S, then (a1, . . . ,ap−1,a0) ∈ S
also. The fixed points under this operation are the tuples
(a, . . . ,a) with ap = e; all other tuples can be grouped
into orbits under cyclic permutation, each of which has
size p. Consequently, the number of a ∈ G with ap = e
is divisible by p; since that number is n+1 (only e has
order 1), this proves the claim.

Second solution: (by Anand Deopurkar) Assume that
n > 0, and let H be any subgroup of G of order p. Let S
be the set of all elements of G \H of order dividing p,
and let H act on G by conjugation. Each orbit has size
p except for those which consist of individual elements
g which commute with H. For each such g, g and H
generate an elementary abelian subgroup of G of order
p2. However, we can group these g into sets of size
p2− p based on which subgroup they generate together
with H. Hence the cardinality of S is divisible by p;
adding the p−1 nontrivial elements of H gives n≡−1
(mod p) as desired.

Third solution: Let S be the set of elements in G hav-
ing order dividing p, and let H be an elementary abelian
p-group of maximal order in G. If |H|= 1, then we are
done. So assume |H| = pk for some k ≥ 1, and let H
act on S by conjugation. Let T ⊂ S denote the set of
fixed points of this action. Then the size of every H-
orbit on S divides pk, and so |S| ≡ |T | (mod p). On the
other hand, H ⊂ T , and if T contained an element not
in H, then that would contradict the maximality of H.
It follows that H = T , and so |S| ≡ |T |= |H|= pk ≡ 0
(mod p), i.e., |S|= n+1 is a multiple of p.

Remark: This result is a theorem of Cauchy; the first
solution above is due to McKay. A more general (and
more difficult) result was proved by Frobenius: for any
positive integer m, if G is a finite group of order divis-
ible by m, then the number of elements of G of order
dividing m is a multiple of m.

A–6 For an admissible triangulation T , number the vertices
of P consecutively v1, . . . ,vn, and let ai be the number
of edges in T emanating from vi; note that ai ≥ 2 for
all i.

We first claim that a1 + · · ·+ an ≤ 4n− 6. Let V,E,F
denote the number of vertices, edges, and faces in T .
By Euler’s Formula, (F +1)−E+V = 2 (one must add
1 to the face count for the region exterior to P). Each

face has three edges, and each edge but the n outside
edges belongs to two faces; hence F = 2E−n. On the
other hand, each edge has two endpoints, and each of
the V − n internal vertices is an endpoint of at least 6
edges; hence a1+ · · ·+an+6(V −n)≤ 2E. Combining
this inequality with the previous two equations gives

a1 + · · ·+an ≤ 2E +6n−6(1−F +E)
= 4n−6,

as claimed.

Now set A3 = 1 and An = An−1 + 2n− 3 for n ≥ 4; we
will prove by induction on n that T has at most An trian-
gles. For n= 3, since a1+a2+a3 = 6, a1 = a2 = a3 = 2
and hence T consists of just one triangle.

Next assume that an admissible triangulation of an
(n− 1)-gon has at most An−1 triangles, and let T be
an admissible triangulation of an n-gon. If any ai = 2,
then we can remove the triangle of T containing vertex
vi to obtain an admissible triangulation of an (n− 1)-
gon; then the number of triangles in T is at most
An−1+1 < An by induction. Otherwise, all ai ≥ 3. Now
the average of a1, . . . ,an is less than 4, and thus there
are more ai = 3 than ai ≥ 5. It follows that there is a se-
quence of k consecutive vertices in P whose degrees are
3,4,4, . . . ,4,3 in order, for some k with 2 ≤ k ≤ n− 1
(possibly k = 2, in which case there are no degree 4
vertices separating the degree 3 vertices). If we remove
from T the 2k−1 triangles which contain at least one
of these vertices, then we are left with an admissible tri-
angulation of an (n−1)-gon. It follows that there are at
most An−1 + 2k− 1 ≤ An−1 + 2n− 3 = An triangles in
T . This completes the induction step and the proof.

Remark: We can refine the bound An somewhat. Sup-
posing that ai ≥ 3 for all i, the fact that a1 + · · ·+an ≤
4n− 6 implies that there are at least six more indices
i with ai = 3 than with ai ≥ 5. Thus there exist six
sequences with degrees 3,4, . . . ,4,3, of total length at
most n+ 6. We may thus choose a sequence of length
k ≤ b n

6c+ 1, so we may improve the upper bound to
An = An−1 +2b n

6c+1, or asymptotically 1
6 n2.

However (as noted by Noam Elkies), a hexagonal
swatch of a triangular lattice, with the boundary as close
to regular as possible, achieves asymptotically 1

6 n2 tri-
angles.

B–1 The problem fails if f is allowed to be constant, e.g.,
take f (n) = 1. We thus assume that f is nonconstant.
Write f (n) = ∑

d
i=0 aini with ai > 0. Then

f ( f (n)+1) =
d

∑
i=0

ai( f (n)+1)i

≡ f (1) (mod f (n)).

If n = 1, then this implies that f ( f (n)+ 1) is divisible
by f (n). Otherwise, 0 < f (1) < f (n) since f is non-
constant and has positive coefficients, so f ( f (n) + 1)
cannot be divisible by f (n).
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B–2 Put B = max0≤x≤1 | f ′(x)| and g(x) =
∫ x

0 f (y)dy. Since
g(0) = g(1) = 0, the maximum value of |g(x)| must oc-
cur at a critical point y∈ (0,1) satisfying g′(y) = f (y) =
0. We may thus take α = y hereafter.

Since
∫

α

0 f (x)dx =−
∫ 1−α

0 f (1−x)dx, we may assume
that α ≤ 1/2. By then substituting − f (x) for f (x) if
needed, we may assume that

∫
α

0 f (x)dx ≥ 0. From the
inequality f ′(x)≥−B, we deduce f (x)≤ B(α− x) for
0≤ x≤ α , so∫

α

0
f (x)dx≤

∫
α

0
B(α− x)dx

=− 1
2

B(α− x)2
∣∣∣∣α
0

=
α2

2
B≤ 1

8
B

as desired.

B–3 First solution: Observing that x2/2 = 13, x3/4 = 34,
x4/8 = 89, we guess that xn = 2n−1F2n+3, where Fk is
the k-th Fibonacci number. Thus we claim that xn =
2n−1
√

5
(α2n+3−α−(2n+3)), where α = 1+

√
5

2 , to make the

answer x2007 =
22006
√

5
(α3997−α−3997).

We prove the claim by induction; the base case x0 = 1 is
true, and so it suffices to show that the recursion xn+1 =
3xn+bxn

√
5c is satisfied for our formula for xn. Indeed,

since α2 = 3+
√

5
2 , we have

xn+1− (3+
√

5)xn =
2n−1
√

5
(2(α2n+5−α

−(2n+5))

− (3+
√

5)(α2n+3−α
−(2n+3)))

= 2n
α
−(2n+3).

Now 2nα−(2n+3) = ( 1−
√

5
2 )3(3−

√
5)n is between −1

and 0; the recursion follows since xn,xn+1 are integers.

Second solution: (by Catalin Zara) Since xn is rational,
we have 0 < xn

√
5− bxn

√
5c < 1. We now have the

inequalities

xn+1−3xn < xn
√

5 < xn+1−3xn +1

(3+
√

5)xn−1 < xn+1 < (3+
√

5)xn

4xn− (3−
√

5)< (3−
√

5)xn+1 < 4xn

3xn+1−4xn < xn+1
√

5 < 3xn+1−4xn +(3−
√

5).

Since 0 < 3−
√

5 < 1, this yields bxn+1
√

5c= 3xn+1−
4xn, so we can rewrite the recursion as xn+1 = 6xn−
4xn−1 for n ≥ 2. It is routine to solve this recursion to
obtain the same solution as above.

Remark: With an initial 1 prepended, this
becomes sequence A018903 in Sloane’s On-
Line Encyclopedia of Integer Sequences:
(http://www.research.att.com/~njas/

sequences/). Therein, the sequence is described as
the case S(1,5) of the sequence S(a0,a1) in which an+2
is the least integer for which an+2/an+1 > an+1/an.
Sloane cites D. W. Boyd, Linear recurrence relations
for some generalized Pisot sequences, Advances in
Number Theory (Kingston, ON, 1991), Oxford Univ.
Press, New York, 1993, p. 333–340.

B–4 The number of pairs is 2n+1. The degree condition
forces P to have degree n and leading coefficient ±1;
we may count pairs in which P has leading coefficient
1 as long as we multiply by 2 afterward.

Factor both sides:

(P(X)+Q(X)i)(P(X)−Q(X)i)

=
n−1

∏
j=0

(X− exp(2πi(2 j+1)/(4n)))

·
n−1

∏
j=0

(X + exp(2πi(2 j+1)/(4n))).

Then each choice of P,Q corresponds to equating
P(X) + Q(X)i with the product of some n factors on
the right, in which we choose exactly of the two fac-
tors for each j = 0, . . . ,n− 1. (We must take exactly n
factors because as a polynomial in X with complex co-
efficients, P(X)+Q(X)i has degree exactly n. We must
choose one for each j to ensure that P(X)+Q(X)i and
P(X)−Q(X)i are complex conjugates, so that P,Q have
real coefficients.) Thus there are 2n such pairs; multi-
plying by 2 to allow P to have leading coefficient −1
yields the desired result.

Remark: If we allow P and Q to have complex coeffi-
cients but still require deg(P)> deg(Q), then the num-
ber of pairs increases to 2

(2n
n

)
, as we may choose any n

of the 2n factors of X2n+1 to use to form P(X)+Q(X)i.

B–5 For n an integer, we have
⌊ n

k

⌋
= n− j

k for j the unique
integer in {0, . . . ,k−1} congruent to n modulo k; hence

k−1

∏
j=0

(⌊n
k

⌋
− n− j

k

)
= 0.

By expanding this out, we obtain the desired polynomi-
als P0(n), . . . ,Pk−1(n).

Remark: Variants of this solution are possible that con-
struct the Pi less explicitly, using Lagrange interpolation
or Vandermonde determinants.

B–6 (Suggested by Oleg Golberg) Assume n≥ 2, or else the
problem is trivially false. Throughout this proof, any Ci
will be a positive constant whose exact value is imma-
terial. As in the proof of Stirling’s approximation, we
estimate for any fixed c ∈ R,

n

∑
i=1

(i+ c) log i =
1
2

n2 logn− 1
4

n2 +O(n logn)
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by comparing the sum to an integral. This gives

nn2/2−C1ne−n2/4 ≤ 11+c22+c · · ·nn+c

≤ nn2/2+C2ne−n2/4.

We now interpret f (n) as counting the number of n-
tuples (a1, . . . ,an) of nonnegative integers such that

a11!+ · · ·+ann! = n!.

For an upper bound on f (n), we use the inequalities
0 ≤ ai ≤ n!/i! to deduce that there are at most n!/i!+
1≤ 2(n!/i!) choices for ai. Hence

f (n)≤ 2n n!
1!
· · · n!

n!
= 2n2132 · · ·nn−1

≤ nn2/2+C3ne−n2/4.

For a lower bound on f (n), we note that if 0 ≤ ai <
(n− 1)!/i! for i = 2, . . . ,n− 1 and an = 0, then 0 ≤
a22!+ · · ·+ann!≤ n!, so there is a unique choice of a1
to complete this to a solution of a11!+ · · ·+ann! = n!.
Hence

f (n)≥ (n−1)!
2!

· · · (n−1)!
(n−1)!

= 3142 · · ·(n−1)n−3

≥ nn2/2+C4ne−n2/4.



The 69th William Lowell Putnam Mathematical Competition
Saturday, December 6, 2008

A1 Let f :R2→R be a function such that f (x,y)+ f (y,z)+
f (z,x) = 0 for all real numbers x, y, and z. Prove that
there exists a function g : R→ R such that f (x,y) =
g(x)−g(y) for all real numbers x and y.

A2 Alan and Barbara play a game in which they take turns
filling entries of an initially empty 2008× 2008 array.
Alan plays first. At each turn, a player chooses a real
number and places it in a vacant entry. The game ends
when all the entries are filled. Alan wins if the determi-
nant of the resulting matrix is nonzero; Barbara wins if
it is zero. Which player has a winning strategy?

A3 Start with a finite sequence a1,a2, . . . ,an of positive in-
tegers. If possible, choose two indices j < k such that a j
does not divide ak, and replace a j and ak by gcd(a j,ak)
and lcm(a j,ak), respectively. Prove that if this process
is repeated, it must eventually stop and the final se-
quence does not depend on the choices made. (Note:
gcd means greatest common divisor and lcm means
least common multiple.)

A4 Define f : R→ R by

f (x) =

{
x if x≤ e
x f (lnx) if x > e.

Does ∑
∞
n=1

1
f (n) converge?

A5 Let n ≥ 3 be an integer. Let f (x) and g(x) be poly-
nomials with real coefficients such that the points
( f (1),g(1)),( f (2),g(2)), . . . ,( f (n),g(n)) in R2 are the
vertices of a regular n-gon in counterclockwise order.
Prove that at least one of f (x) and g(x) has degree
greater than or equal to n−1.

A6 Prove that there exists a constant c > 0 such that in ev-
ery nontrivial finite group G there exists a sequence of
length at most c log |G| with the property that each el-
ement of G equals the product of some subsequence.

(The elements of G in the sequence are not required to
be distinct. A subsequence of a sequence is obtained
by selecting some of the terms, not necessarily consec-
utive, without reordering them; for example, 4,4,2 is a
subsequence of 2,4,6,4,2, but 2,2,4 is not.)

B1 What is the maximum number of rational points that can
lie on a circle in R2 whose center is not a rational point?
(A rational point is a point both of whose coordinates
are rational numbers.)

B2 Let F0(x) = lnx. For n ≥ 0 and x > 0, let Fn+1(x) =∫ x
0 Fn(t)dt. Evaluate

lim
n→∞

n!Fn(1)
lnn

.

B3 What is the largest possible radius of a circle contained
in a 4-dimensional hypercube of side length 1?

B4 Let p be a prime number. Let h(x) be a polynomial with
integer coefficients such that h(0),h(1), . . . ,h(p2 − 1)
are distinct modulo p2. Show that h(0),h(1), . . . ,h(p3−
1) are distinct modulo p3.

B5 Find all continuously differentiable functions f :R→R
such that for every rational number q, the number f (q)
is rational and has the same denominator as q. (The
denominator of a rational number q is the unique posi-
tive integer b such that q = a/b for some integer a with
gcd(a,b) = 1.) (Note: gcd means greatest common di-
visor.)

B6 Let n and k be positive integers. Say that a permutation
σ of {1,2, . . . ,n} is k-limited if |σ(i)− i| ≤ k for all
i. Prove that the number of k-limited permutations of
{1,2, . . . ,n} is odd if and only if n≡ 0 or 1 (mod 2k+1).



Solutions to the 69th William Lowell Putnam Mathematical Competition
Saturday, December 6, 2008

Kiran Kedlaya and Lenny Ng

A–1 The function g(x) = f (x,0) works. Substituting
(x,y,z) = (0,0,0) into the given functional equa-
tion yields f (0,0) = 0, whence substituting (x,y,z) =
(x,0,0) yields f (x,0) + f (0,x) = 0. Finally, substi-
tuting (x,y,z) = (x,y,0) yields f (x,y) = − f (y,0) −
f (0,x) = g(x)−g(y).

Remark: A similar argument shows that the possible
functions g are precisely those of the form f (x,0)+ c
for some c.

A–2 Barbara wins using one of the following strategies.

First solution: Pair each entry of the first row with the
entry directly below it in the second row. If Alan ever
writes a number in one of the first two rows, Barbara
writes the same number in the other entry in the pair. If
Alan writes a number anywhere other than the first two
rows, Barbara does likewise. At the end, the resulting
matrix will have two identical rows, so its determinant
will be zero.

Second solution: (by Manjul Bhargava) Whenever
Alan writes a number x in an entry in some row, Bar-
bara writes −x in some other entry in the same row. At
the end, the resulting matrix will have all rows summing
to zero, so it cannot have full rank.

A–3 We first prove that the process stops. Note first that
the product a1 · · ·an remains constant, because a jak =
gcd(a j,ak) lcm(a j,ak). Moreover, the last number in
the sequence can never decrease, because it is always
replaced by its least common multiple with another
number. Since it is bounded above (by the product of
all of the numbers), the last number must eventually
reach its maximum value, after which it remains con-
stant throughout. After this happens, the next-to-last
number will never decrease, so it eventually becomes
constant, and so on. After finitely many steps, all of the
numbers will achieve their final values, so no more steps
will be possible. This only happens when a j divides ak
for all pairs j < k.

We next check that there is only one possible final se-
quence. For p a prime and m a nonnegative integer, we
claim that the number of integers in the list divisible
by pm never changes. To see this, suppose we replace
a j,ak by gcd(a j,ak), lcm(a j,ak). If neither of a j,ak is
divisible by pm, then neither of gcd(a j,ak), lcm(a j,ak)
is either. If exactly one a j,ak is divisible by pm, then
lcm(a j,ak) is divisible by pm but gcd(a j,ak) is not.

gcd(a j,ak), lcm(a j,ak) are as well.

If we started out with exactly h numbers not divisible
by pm, then in the final sequence a′1, . . . ,a

′
n, the num-

bers a′h+1, . . . ,a
′
n are divisible by pm while the numbers

a′1, . . . ,a
′
h are not. Repeating this argument for each pair

(p,m) such that pm divides the initial product a1, . . . ,an,
we can determine the exact prime factorization of each
of a′1, . . . ,a

′
n. This proves that the final sequence is

unique.

Remark: (by David Savitt and Noam Elkies) Here are
two other ways to prove the termination. One is to ob-
serve that ∏ j a j

j is strictly increasing at each step, and
bounded above by (a1 · · ·an)

n. The other is to notice
that a1 is nonincreasing but always positive, so even-
tually becomes constant; then a2 is nonincreasing but
always positive, and so on.

Reinterpretation: For each p, consider the sequence
consisting of the exponents of p in the prime factoriza-
tions of a1, . . . ,an. At each step, we pick two positions
i and j such that the exponents of some prime p are in
the wrong order at positions i and j. We then sort these
two position into the correct order for every prime p
simultaneously.

It is clear that this can only terminate with all se-
quences being sorted into the correct order. We must
still check that the process terminates; however, since
all but finitely many of the exponent sequences consist
of all zeroes, and each step makes a nontrivial switch
in at least one of the other exponent sequences, it is
enough to check the case of a single exponent sequence.
This can be done as in the first solution.

Remark: Abhinav Kumar suggests the following proof
that the process always terminates in at most

(n
2

)
steps.

(This is a variant of the worst-case analysis of the bub-
ble sort algorithm.)

Consider the number of pairs (k, l) with 1 ≤ k < l ≤ n
such that ak does not divide al (call these bad pairs).
At each step, we find one bad pair (i, j) and eliminate
it, and we do not touch any pairs that do not involve
either i or j. If i < k < j, then neither of the pairs (i,k)
and (k, j) can become bad, because ai is replaced by a
divisor of itself, while a j is replaced by a multiple of
itself. If k < i, then (k, i) can only become a bad pair if
ak divided ai but not a j, in which case (k, j) stops being
bad. Similarly, if k > j, then (i,k) and ( j,k) either stay
the same or switch status. Hence the number of bad
pairs goes down by at least 1 each time; since it is at
most

(n
2

)
to begin with, this is an upper bound for the

number of steps.

Remark: This problem is closely related to the clas-
sification theorem for finite abelian groups. Namely,
if a1, . . . ,an and a′1, . . . ,a

′
n are the sequences obtained

at two different steps in the process, then the abelian
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groups Z/a1Z×·· ·×Z/anZ and Z/a′1Z×·· ·×Z/a′nZ
are isomorphic. The final sequence gives a canonical
presentation of this group; the terms of this sequence
are called the elementary divisors or invariant factors
of the group.

Remark: (by Tom Belulovich) A lattice is a partially
ordered set L in which for any two x,y ∈ L, there is a
unique minimal element z with z ≥ x and z ≥ y, called
the join and denoted x∧ y, and there is a unique max-
imal element z with z ≤ x and z ≤ y, called the meet
and denoted x∨ y. In terms of a lattice L, one can pose
the following generalization of the given problem. Start
with a1, . . . ,an ∈ L. If i < j but ai 6≤ a j, it is permit-
ted to replace ai,a j by ai∨a j,ai∧a j, respectively. The
same argument as above shows that this always termi-
nates in at most

(n
2

)
steps. The question is, under what

conditions on the lattice L is the final sequence uniquely
determined by the initial sequence?

It turns out that this holds if and only if L is distributive,
i.e., for any x,y,z ∈ L,

x∧ (y∨ z) = (x∧ y)∨ (x∧ z).

(This is equivalent to the same axiom with the oper-
ations interchanged.) For example, if L is a Boolean
algebra, i.e., the set of subsets of a given set S under in-
clusion, then ∧ is union, ∨ is intersection, and the dis-
tributive law holds. Conversely, any finite distributive
lattice is contained in a Boolean algebra by a theorem
of Birkhoff. The correspondence takes each x ∈ L to
the set of y ∈ L such that x ≥ y and y cannot be written
as a join of two elements of L \ {y}. (See for instance
Birkhoff, Lattice Theory, Amer. Math. Soc., 1967.)

On one hand, if L is distributive, it can be shown that
the j-th term of the final sequence is equal to the meet
of ai1 ∧·· ·∧ai j over all sequences 1≤ i1 < · · ·< i j ≤ n.
For instance, this can be checked by forming the small-
est subset L′ of L containing a1, . . . ,an and closed under
meet and join, then embedding L′ into a Boolean alge-
bra using Birkhoff’s theorem, then checking the claim
for all Boolean algebras. It can also be checked di-
rectly (as suggested by Nghi Nguyen) by showing that
for j = 1, . . . ,n, the meet of all joins of j-element sub-
sets of a1, . . . ,an is invariant at each step.

On the other hand, a lattice fails to be distributive if
and only if it contains five elements a,b,c,0,1 such that
either the only relations among them are implied by

1≥ a,b,c≥ 0

(this lattice is sometimes called the diamond), or the
only relations among them are implied by

1≥ a≥ b≥ 0, 1≥ c≥ 0

(this lattice is sometimes called the pentagon). (For a
proof, see the Birkhoff reference given above.) For each
of these examples, the initial sequence a,b,c fails to de-
termine the final sequence; for the diamond, we can end

up with 0,∗,1 for any of ∗= a,b,c, whereas for the pen-
tagon we can end up with 0,∗,1 for any of ∗= a,b.

Consequently, the final sequence is determined by the
initial sequence if and only if L is distributive.

A–4 The sum diverges. From the definition, f (x) = x on
[1,e], x lnx on (e,ee], x lnx ln lnx on (ee,eee

], and so
forth. It follows that on [1,∞), f is positive, continu-
ous, and increasing. Thus ∑

∞
n=1

1
f (n) , if it converges, is

bounded below by
∫

∞

1
dx
f (x) ; it suffices to prove that the

integral diverges.

Write ln1 x = lnx and lnk x = ln(lnk−1 x)
for k ≥ 2; similarly write exp1 x = ex and
expk x = eexpk−1 x. If we write y = lnk x, then
x = expk y and dx = (expk y)(expk−1 y) · · ·(exp1 y)dy =

x(ln1 x) · · ·(lnk−1 x)dy. Now on [expk−1 1,expk 1], we
have f (x) = x(ln1 x) · · ·(lnk−1 x), and thus substituting
y = lnk x yields

∫ expk 1

expk−1 1

dx
f (x)

=
∫ 1

0
dy = 1.

It follows that
∫

∞

1
dx
f (x) = ∑

∞
k=1

∫ expk 1
expk−1 1

dx
f (x) diverges, as

desired.

A–5 Form the polynomial P(z) = f (z)+ ig(z) with complex
coefficients. It suffices to prove that P has degree at
least n−1, as then one of f ,g must have degree at least
n−1.

By replacing P(z) with aP(z) + b for suitable a,b ∈
C, we can force the regular n-gon to have vertices
ζn,ζ

2
n , . . . ,ζ

n
n for ζn = exp(2πi/n). It thus suffices to

check that there cannot exist a polynomial P(z) of de-
gree at most n−2 such that P(i) = ζ i

n for i = 1, . . . ,n.

We will prove more generally that for any complex
number t /∈ {0,1}, and any integer m ≥ 1, any polyno-
mial Q(z) for which Q(i) = t i for i= 1, . . . ,m has degree
at least m−1. There are several ways to do this.

First solution: If Q(z) has degree d and leading coeffi-
cient c, then R(z) = Q(z+1)− tQ(z) has degree d and
leading coefficient (1− t)c. However, by hypothesis,
R(z) has the distinct roots 1,2, . . . ,m− 1, so we must
have d ≥ m−1.

Second solution: We proceed by induction on m. For
the base case m = 1, we have Q(1) = t1 6= 0, so Q must
be nonzero, and so its degree is at least 0. Given the
assertion for m− 1, if Q(i) = t i for i = 1, . . . ,m, then
the polynomial R(z) = (t− 1)−1(Q(z+ 1)−Q(z)) has
degree one less than that of Q, and satisfies R(i) = t i

for i = 1, . . . ,m− 1. Since R must have degree at least
m−2 by the induction hypothesis, Q must have degree
at least m−1.

Third solution: We use the method of finite differ-
ences (as in the second solution) but without induction.
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Namely, the (m− 1)-st finite difference of P evaluated
at 1 equals

m−1

∑
j=0

(−1) j
(

m−1
j

)
Q(m− j) = t(1− t)m−1 6= 0,

which is impossible if Q has degree less than m−1.

Remark: One can also establish the claim by comput-
ing a Vandermonde-type determinant, or by using the
Lagrange interpolation formula to compute the leading
coefficient of Q.

A–6 For notational convenience, we will interpret the prob-
lem as allowing the empty subsequence, whose product
is the identity element of the group. To solve the prob-
lem in the interpretation where the empty subsequence
is not allowed, simply append the identity element to
the sequence given by one of the following solutions.

First solution: Put n= |G|. We will say that a sequence
S produces an element g ∈ G if g occurs as the product
of some subsequence of S. Let H be the set of elements
produced by the sequence S.

Start with S equal to the empty sequence. If at any point
the set H−1H = {h1h2 : h−1

1 ,h2 ∈H} fails to be all of G,
extend S by appending an element g of G not in H−1H.
Then Hg∩H must be empty, otherwise there would be
an equation of the form h1g = h2 with h1,h2 ∈ G, or
g = h−1

1 h2, a contradiction. Thus we can extend S by
one element and double the size of H.

After k ≤ log2 n steps, we must obtain a sequence S =
a1, . . . ,ak for which H−1H = G. Then the sequence
a−1

k , . . . ,a−1
1 ,a1, . . . ,ak produces all of G and has length

at most (2/ ln2) lnn.

Second solution:
Put m = |H|. We will show that we can append one
element g to S so that the resulting sequence of k + 1
elements will produce at least 2m−m2/n elements of
G. To see this, we compute

∑
g∈G
|H ∪Hg|= ∑

g∈G
(|H|+ |Hg|− |H ∩Hg|)

= 2mn− ∑
g∈G
|H ∩Hg|

= 2mn−|{(g,h) ∈ G2 : h ∈ H ∩Hg}|
= 2mn− ∑

h∈H
|{g ∈ G : h ∈ Hg}|

= 2mn− ∑
h∈H
|H−1h|

= 2mn−m2.

By the pigeonhole principle, we have |H ∪Hg| ≥ 2m−
m2/n for some choice of g, as claimed.

In other words, by extending the sequence by one ele-
ment, we can replace the ratio s= 1−m/n (i.e., the frac-
tion of elements of G not generated by S) by a quantity

no greater than

1− (2m−m2/n)/n = s2.

We start out with k = 0 and s = 1− 1/n; after k steps,
we have s ≤ (1− 1/n)2k

. It is enough to prove that for
some c > 0, we can always find an integer k ≤ c lnn
such that (

1− 1
n

)2k

<
1
n
,

as then we have n−m < 1 and hence H = G.

To obtain this last inequality, put

k = b2log2 nc< (2/ ln2) lnn,

so that 2k+1 ≥ n2. From the facts that lnn≤ ln2+(n−
2)/2 ≤ n/2 and ln(1− 1/n) < −1/n for all n ≥ 2, we
have

2k ln
(

1− 1
n

)
<− n2

2n
=−n

2
<− lnn,

yielding the desired inequality.

Remark: An alternate approach in the second solution
is to distinguish betwen the cases of H small (i.e., m <
n1/2, in which case m can be replaced by a value no
less than 2m−1) and H large. This strategy is used in a
number of recent results of Bourgain, Tao, Helfgott, and
others on small doubling or small tripling of subsets of
finite groups.

In the second solution, if we avoid the rather weak in-
equality lnn≤ n/2, we instead get sequences of length
log2(n lnn) = log2(n)+ log2(lnn). This is close to op-
timal: one cannot use fewer than log2 n terms because
the number of subsequences must be at least n.

B–1 There are at most two such points. For example,
the points (0,0) and (1,0) lie on a circle with center
(1/2,x) for any real number x, not necessarily rational.

On the other hand, suppose P = (a,b),Q = (c,d),R =
(e, f ) are three rational points that lie on a circle. The
midpoint M of the side PQ is ((a + c)/2,(b + d)/2),
which is again rational. Moreover, the slope of the line
PQ is (d−b)/(c−a), so the slope of the line through M
perpendicular to PQ is (a−c)/(b−d), which is rational
or infinite.

Similarly, if N is the midpoint of QR, then N is a rational
point and the line through N perpendicular to QR has
rational slope. The center of the circle lies on both of
these lines, so its coordinates (g,h) satisfy two linear
equations with rational coefficients, say Ag+ Bh = C
and Dg+Eh = F . Moreover, these equations have a
unique solution. That solution must then be

g = (CE−BD)/(AE−BD)

h = (AF−BC)/(AE−BD)
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(by elementary algebra, or Cramer’s rule), so the center
of the circle is rational. This proves the desired result.

Remark: The above solution is deliberately more ver-
bose than is really necessary. A shorter way to say this
is that any two distinct rational points determine a ra-
tional line (a line of the form ax+by+c = 0 with a,b,c
rational), while any two nonparallel rational lines inter-
sect at a rational point. A similar statement holds with
the rational numbers replaced by any field.

Remark: A more explicit argument is to show that
the equation of the circle through the rational points
(x1,y1),(x2,y2),(x3,y3) is

0 = det


x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

x2 + y2 x y 1


which has the form a(x2 + y2) + dx + ey + f = 0
for a,d,e, f rational. The center of this circle is
(−d/(2a),−e/(2a)), which is again a rational point.

B–2 We claim that Fn(x) = (lnx− an)xn/n!, where an =
∑

n
k=1 1/k. Indeed, temporarily write Gn(x) = (lnx−

an)xn/n! for x > 0 and n ≥ 1; then limx→0 Gn(x) = 0
and G′n(x) = (lnx−an +1/n)xn−1/(n−1)! = Gn−1(x),
and the claim follows by the Fundamental Theorem of
Calculus and induction on n.

Given the claim, we have Fn(1) = −an/n! and so we
need to evaluate − limn→∞

an
lnn . But since the function

1/x is strictly decreasing for x positive, ∑
n
k=2 1/k = an−

1 is bounded below by
∫ n

2 dx/x = lnn− ln2 and above
by
∫ n

1 dx/x = lnn. It follows that limn→∞
an
lnn = 1, and

the desired limit is −1.

B–3 The largest possible radius is
√

2
2 . It will be convenient

to solve the problem for a hypercube of side length 2
instead, in which case we are trying to show that the
largest radius is

√
2.

Choose coordinates so that the interior of the hypercube
is the set H = [−1,1]4 in R4. Let C be a circle centered
at the point P. Then C is contained both in H and its
reflection across P; these intersect in a rectangular par-
alellepiped each of whose pairs of opposite faces are at
most 2 unit apart. Consequently, if we translate C so
that its center moves to the point O = (0,0,0,0) at the
center of H, then it remains entirely inside H.

This means that the answer we seek equals the largest
possible radius of a circle C contained in H and
centered at O. Let v1 = (v11, . . . ,v14) and v2 =
(v21, . . . ,v24) be two points on C lying on radii perpen-
dicular to each other. Then the points of the circle can
be expressed as v1 cosθ +v2 sinθ for 0≤ θ < 2π . Then
C lies in H if and only if for each i, we have

|v1i cosθ + v2i sinθ | ≤ 1 (0≤ θ < 2π).

In geometric terms, the vector (v1i,v2i) in R2 has
dot product at most 1 with every unit vector. Since

this holds for the unit vector in the same direction as
(v1i,v2i), we must have

v2
1i + v2

2i ≤ 1 (i = 1, . . . ,4).

Conversely, if this holds, then the Cauchy-Schwarz in-
equality and the above analysis imply that C lies in H.

If r is the radius of C, then

2r2 =
4

∑
i=1

v2
1i +

4

∑
i=1

v2
2i

=
4

∑
i=1

(v2
1i + v2

2i)

≤ 4,

so r ≤
√

2. Since this is achieved by the circle through
(1,1,0,0) and (0,0,1,1), it is the desired maximum.

Remark: One may similarly ask for the radius of the
largest k-dimensional ball inside an n-dimensional unit
hypercube; the given problem is the case (n,k) = (4,2).
Daniel Kane gives the following argument to show that
the maximum radius in this case is 1

2

√ n
k . (Thanks for

Noam Elkies for passing this along.)

We again scale up by a factor of 2, so that we are trying
to show that the maximum radius r of a k-dimensional
ball contained in the hypercube [−1,1]n is

√ n
k . Again,

there is no loss of generality in centering the ball at the
origin. Let T : Rk → Rn be a similitude carrying the
unit ball to this embedded k-ball. Then there exists a
vector vi ∈Rk such that for e1, . . . ,en the standard basis
of Rn, x · vi = T (x) · ei for all x ∈ Rk. The condition of
the problem is equivalent to requiring |vi| ≤ 1 for all i,
while the radius r of the embedded ball is determined
by the fact that for all x ∈ Rk,

r2(x · x) = T (x) ·T (x) =
n

∑
i=1

x · vi.

Let M be the matrix with columns v1, . . . ,vk; then
MMT = r2Ik, for Ik the k× k identity matrix. We then
have

kr2 = Trace(r2Ik) = Trace(MMT )

= Trace(MT M) =
n

∑
i=1
|vi|2

≤ n,

yielding the upper bound r ≤
√ n

k .

To show that this bound is optimal, it is enough to show
that one can find an orthogonal projection of Rn onto Rk

so that the projections of the ei all have the same norm
(one can then rescale to get the desired configuration
of v1, . . . ,vn). We construct such a configuration by a
“smoothing” argument. Startw with any projection. Let
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w1, . . . ,wn be the projections of e1, . . . ,en. If the desired
condition is not achieved, we can choose i, j such that

|wi|2 <
1
n
(|w1|2 + · · ·+ |wn|2)< |w j|2.

By precomposing with a suitable rotation that fixes
eh for h 6= i, j, we can vary |wi|, |w j| without varying
|wi|2 + |w j|2 or |wh| for h 6= i, j. We can thus choose
such a rotation to force one of |wi|2, |w j|2 to become
equal to 1

n (|w1|2 + · · ·+ |wn|2). Repeating at most n−1
times gives the desired configuration.

B–4 We use the identity given by Taylor’s theorem:

h(x+ y) =
deg(h)

∑
i=0

h(i)(x)
i!

yi.

In this expression, h(i)(x)/i! is a polynomial in x with
integer coefficients, so its value at an integer x is an
integer.

For x = 0, . . . , p−1, we deduce that

h(x+ p)≡ h(x)+ ph′(x) (mod p2).

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumed h(x) and h(x + p)
are distinct modulo p2, we conclude that h′(x) 6≡ 0
(mod p). Since h′ is a polynomial with integer coef-
ficients, we have h′(x) ≡ h′(x+mp) (mod p) for any
integer m, and so h′(x) 6≡ 0 (mod p) for all integers x.

Now for x = 0, . . . , p2−1 and y = 0, . . . , p−1, we write

h(x+ yp2)≡ h(x)+ p2yh′(x) (mod p3).

Thus h(x),h(x+ p2), . . . ,h(x+(p−1)p2) run over all of
the residue classes modulo p3 congruent to h(x) mod-
ulo p2. Since the h(x) themselves cover all the residue
classes modulo p2, this proves that h(0), . . . ,h(p3− 1)
are distinct modulo p3.

Remark: More generally, the same proof shows that
for any integers d,e > 1, h permutes the residue classes
modulo pd if and only if it permutes the residue classes
modulo pe. The argument used in the proof is related
to a general result in number theory known as Hensel’s
lemma.

B–5 The functions f (x) = x+ n and f (x) = −x+ n for any
integer n clearly satisfy the condition of the problem;
we claim that these are the only possible f .

Let q = a/b be any rational number with gcd(a,b) = 1
and b > 0. For n any positive integer, we have

f ( an+1
bn )− f ( a

b )
1
bn

= bn f
(

an+1
bn

)
−nb f

(a
b

)
is an integer by the property of f . Since f is differ-
entiable at a/b, the left hand side has a limit. It fol-
lows that for sufficiently large n, both sides must be

equal to some integer c = f ′( a
b ): f ( an+1

bn ) = f ( a
b )+

c
bn .

Now c cannot be 0, since otherwise f ( an+1
bn ) = f ( a

b ) for
sufficiently large n has denominator b rather than bn.
Similarly, |c| cannot be greater than 1: otherwise if we
take n = k|c| for k a sufficiently large positive integer,
then f ( a

b ) +
c

bn has denominator bk, contradicting the
fact that f ( an+1

bn ) has denominator bn. It follows that
c = f ′( a

b ) =±1.

Thus the derivative of f at any rational number is ±1.
Since f is continuously differentiable, we conclude that
f ′(x) = 1 for all real x or f ′(x) =−1 for all real x. Since
f (0) must be an integer (a rational number with denom-
inator 1), f (x)= x+n or f (x)=−x+n for some integer
n.

Remark: After showing that f ′(q) is an integer for each
q, one can instead argue that f ′ is a continuous function
from the rationals to the integers, so must be constant.
One can then write f (x) = ax+b and check that b ∈ Z
by evaluation at a = 0, and that a =±1 by evaluation at
x = 1/a.

B–6 In all solutions, let Fn,k be the number of k-limited per-
mutations of {1, . . . ,n}.
First solution: (by Jacob Tsimerman) Note that any
permutation is k-limited if and only if its inverse is k-
limited. Consequently, the number of k-limited per-
mutations of {1, . . . ,n} is the same as the number of
k-limited involutions (permutations equal to their in-
verses) of {1, . . . ,n}.
We use the following fact several times: the number of
involutions of {1, . . . ,n} is odd if n = 0,1 and even oth-
erwise. This follows from the fact that non-involutions
come in pairs, so the number of involutions has the same
parity as the number of permutations, namely n!.

For n≤ k+1, all involutions are k-limited. By the pre-
vious paragraph, Fn,k is odd for n = 0,1 and even for
n = 2, . . . ,k+1.

For n > k + 1, group the k-limited involutions into
classes based on their actions on k + 2, . . . ,n. Note
that for C a class and σ ∈ C, the set of elements of
A = {1, . . . ,k+ 1} which map into A under σ depends
only on C, not on σ . Call this set S(C); then the size of
C is exactly the number of involutions of S(C). Conse-
quently, |C| is even unless S(C) has at most one element.
However, the element 1 cannot map out of A because we
are looking at k-limited involutions. Hence if S(C) has
one element and σ ∈C, we must have σ(1) = 1. Since
σ is k-limited and σ(2) cannot belong to A, we must
have σ(2) = k+ 2. By induction, for i = 3, . . . ,k+ 1,
we must have σ(i) = k+ i.

If n < 2k+ 1, this shows that no class C of odd cardi-
nality can exist, so Fn,k must be even. If n ≥ 2k + 1,
the classes of odd cardinality are in bijection with k-
limited involutions of {2k + 2, . . . ,n}, so Fn,k has the
same parity as Fn−2k−1,k. By induction on n, we deduce
the desired result.
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Second solution: (by Yufei Zhao) Let Mn,k be the n×n
matrix with

(Mn,k)i j =

{
1 |i− j| ≤ k
0 otherwise.

Write det(Mn,k) as the sum over permutations σ of
{1, . . . ,n} of (Mn,k)1σ(1) · · ·(Mn,k)nσ(n) times the signa-
ture of σ . Then σ contributes ±1 to det(Mn,k) if σ is
k-limited and 0 otherwise. We conclude that

det(Mn,k)≡ Fn,k (mod 2).

For the rest of the solution, we interpret Mn,k as a matrix
over the field of two elements. We compute its determi-
nant using linear algebra modulo 2.

We first show that for n≥ 2k+1,

Fn,k ≡ Fn−2k−1,k (mod 2),

provided that we interpret F0,k = 1. We do this by com-
puting det(Mn,k) using row and column operations. We
will verbally describe these operations for general k,
while illustrating with the example k = 3.

To begin with, Mn,k has the following form.

1 1 1 1 0 0 0 /0
1 1 1 1 1 0 0 /0
1 1 1 1 1 1 0 /0
1 1 1 1 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗


In this presentation, the first 2k+ 1 rows and columns
are shown explicitly; the remaining rows and columns
are shown in a compressed format. The symbol /0 in-
dicates that the unseen entries are all zeroes, while the
symbol ? indicates that they are not. The symbol ∗ in
the lower right corner represents the matrix Fn−2k−1,k.
We will preserve the unseen structure of the matrix by
only adding the first k+1 rows or columns to any of the
others.

We first add row 1 to each of rows 2, . . . ,k+1.

1 1 1 1 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 1 1 0 /0
0 0 0 0 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗



We next add column 1 to each of columns 2, . . . ,k+1.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 1 1 0 /0
0 0 0 0 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗


For i = 2, for each of j = i+1, . . . ,2k+1 for which the
( j,k+ i)-entry is nonzero, add row i to row j.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 1 1 /0
0 1 1 1 0 1 1 ?
0 0 1 1 0 1 1 ?
0 0 0 1 0 1 1 ?
/0 /0 /0 /0 /0 ? ? ∗


Repeat the previous step for i = 3, . . . ,k+ 1 in succes-
sion. 

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 0 1 /0
0 1 1 1 0 0 0 ?
0 0 1 1 0 0 0 ?
0 0 0 1 0 0 0 ?
/0 /0 /0 /0 /0 /0 /0 ∗


Repeat the two previous steps with the roles of the rows
and columns reversed. That is, for i = 2, . . . ,k+ 1, for
each of j = i+1, . . . ,2k+1 for which the ( j,k+ i)-entry
is nonzero, add row i to row j.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 0 1 /0
0 1 0 0 0 0 0 /0
0 0 1 0 0 0 0 /0
0 0 0 1 0 0 0 /0
/0 /0 /0 /0 /0 /0 /0 ∗


We now have a block diagonal matrix in which the top
left block is a (2k+ 1)× (2k+ 1) matrix with nonzero
determinant (it results from reordering the rows of the
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identity matrix), the bottom right block is Mn−2k−1,k,
and the other two blocks are zero. We conclude that

det(Mn,k)≡ det(Mn−2k−1,k) (mod 2),

proving the desired congruence.

To prove the desired result, we must now check that
F0,k,F1,k are odd and F2,k, . . . ,F2k,k are even. For n =
0, . . . ,k+ 1, the matrix Mn,k consists of all ones, so its
determinant is 1 if n = 0,1 and 0 otherwise. (Alter-
natively, we have Fn,k = n! for n = 0, . . . ,k + 1, since
every permutation of {1, . . . ,n} is k-limited.) For n =
k+2, . . . ,2k, observe that rows k and k+1 of Mn,k both
consist of all ones, so det(Mn,k) = 0 as desired.

Third solution: (by Tom Belulovich) Define Mn,k as
in the second solution. We prove det(Mn,k) is odd for
n ≡ 0,1 (mod 2k+ 1) and even otherwise, by directly
determining whether or not Mn,k is invertible as a matrix
over the field of two elements.

Let ri denote row i of Mn,k. We first check that if n ≡
2, . . . ,2k (mod 2k+ 1), then Mn,k is not invertible. In
this case, we can find integers 0 ≤ a < b ≤ k such that
n+a+b≡ 0 (mod 2k+1). Put j = (n+a+b)/(2k+
1). We can then write the all-ones vector both as

j−1

∑
i=0

rk+1−a+(2k+1)i

and as

j−1

∑
i=0

rk+1−b+(2k+1)i.

Hence Mn,k is not invertible.

We next check that if n ≡ 0,1 (mod 2k+1), then Mn,k
is invertible. Suppose that a1, . . . ,an are scalars such
that a1r1 + · · ·+ anrn is the zero vector. The m-th co-
ordinate of this vector equals am−k + · · ·+am+k, where
we regard ai as zero if i /∈ {1, . . . ,n}. By comparing
consecutive coordinates, we obtain

am−k = am+k+1 (1≤ m < n).

In particular, the ai repeat with period 2k+ 1. Taking
m = 1, . . . ,k further yields that

ak+2 = · · ·= a2k+1 = 0

while taking m = n− k, . . . ,n−1 yields

an−2k = · · ·= an−1−k = 0.

For n≡ 0 (mod 2k+1), the latter can be rewritten as

a1 = · · ·= ak = 0

whereas for n≡ 1 (mod 2k+1), it can be rewritten as

a2 = · · ·= ak+1 = 0.
In either case, since we also have

a1 + · · ·+a2k+1 = 0

from the (k+1)-st coordinate, we deduce that all of the
ai must be zero, and so Mn,k must be invertible.

Remark: The matrices Mn,k are examples of banded
matrices, which occur frequently in numerical appli-
cations of linear algebra. They are also examples of
Toeplitz matrices.
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A1 Let f be a real-valued function on the plane such that for
every square ABCD in the plane, f (A)+ f (B)+ f (C)+
f (D) = 0. Does it follow that f (P) = 0 for all points P
in the plane?

A2 Functions f ,g,h are differentiable on some open inter-
val around 0 and satisfy the equations and initial condi-
tions

f ′ = 2 f 2gh+
1

gh
, f (0) = 1,

g′ = f g2h+
4
f h

, g(0) = 1,

h′ = 3 f gh2 +
1
f g

, h(0) = 1.

Find an explicit formula for f (x), valid in some open
interval around 0.

A3 Let dn be the determinant of the n× n matrix whose
entries, from left to right and then from top to bottom,
are cos1,cos2, . . . ,cosn2. (For example,

d3 =

∣∣∣∣∣∣
cos1 cos2 cos3
cos4 cos5 cos6
cos7 cos8 cos9

∣∣∣∣∣∣ .
The argument of cos is always in radians, not degrees.)
Evaluate limn→∞ dn.

A4 Let S be a set of rational numbers such that

(a) 0 ∈ S;

(b) If x ∈ S then x+1 ∈ S and x−1 ∈ S; and

(c) If x ∈ S and x 6∈ {0,1}, then 1
x(x−1) ∈ S.

Must S contain all rational numbers?

A5 Is there a finite abelian group G such that the product of
the orders of all its elements is 22009?

A6 Let f : [0,1]2 → R be a continuous function on the
closed unit square such that ∂ f

∂x and ∂ f
∂y exist and are

continuous on the interior (0,1)2. Let a =
∫ 1

0 f (0,y)dy,
b =

∫ 1
0 f (1,y)dy, c =

∫ 1
0 f (x,0)dx, d =

∫ 1
0 f (x,1)dx.

Prove or disprove: There must be a point (x0,y0) in
(0,1)2 such that

∂ f
∂x

(x0,y0) = b−a and
∂ f
∂y

(x0,y0) = d− c.

B1 Show that every positive rational number can be written
as a quotient of products of factorials of (not necessarily
distinct) primes. For example,

10
9

=
2! ·5!

3! ·3! ·3!
.

B2 A game involves jumping to the right on the real number
line. If a and b are real numbers and b > a, the cost of
jumping from a to b is b3−ab2. For what real numbers
c can one travel from 0 to 1 in a finite number of jumps
with total cost exactly c?

B3 Call a subset S of {1,2, . . . ,n} mediocre if it has the fol-
lowing property: Whenever a and b are elements of S
whose average is an integer, that average is also an ele-
ment of S. Let A(n) be the number of mediocre subsets
of {1,2, . . . ,n}. [For instance, every subset of {1,2,3}
except {1,3} is mediocre, so A(3) = 7.] Find all posi-
tive integers n such that A(n+2)−2A(n+1)+A(n) =
1.

B4 Say that a polynomial with real coefficients in two vari-
ables, x,y, is balanced if the average value of the poly-
nomial on each circle centered at the origin is 0. The
balanced polynomials of degree at most 2009 form a
vector space V over R. Find the dimension of V .

B5 Let f : (1,∞)→R be a differentiable function such that

f ′(x) =
x2− f (x)2

x2( f (x)2 +1)
for all x > 1.

Prove that limx→∞ f (x) = ∞.

B6 Prove that for every positive integer n, there is a se-
quence of integers a0,a1, . . . ,a2009 with a0 = 0 and
a2009 = n such that each term after a0 is either an ear-
lier term plus 2k for some nonnegative integer k, or of
the form bmodc for some earlier positive terms b and c.
[Here bmodc denotes the remainder when b is divided
by c, so 0≤ (bmodc)< c.]
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A–1 Yes, it does follow. Let P be any point in the plane. Let
ABCD be any square with center P. Let E,F,G,H be
the midpoints of the segments AB,BC,CD,DA, respec-
tively. The function f must satisfy the equations

0 = f (A)+ f (B)+ f (C)+ f (D)

0 = f (E)+ f (F)+ f (G)+ f (H)

0 = f (A)+ f (E)+ f (P)+ f (H)

0 = f (B)+ f (F)+ f (P)+ f (E)
0 = f (C)+ f (G)+ f (P)+ f (F)

0 = f (D)+ f (H)+ f (P)+ f (G).

If we add the last four equations, then subtract the first
equation and twice the second equation, we obtain 0 =
4 f (P), whence f (P) = 0.

Remark. Problem 1 of the 1996 Romanian IMO team
selection exam asks the same question with squares re-
placed by regular polygons of any (fixed) number of
vertices.

A–2 Multiplying the first differential equation by gh, the sec-
ond by f h, and the third by f g, and summing gives

( f gh)′ = 6( f gh)2 +6.

Write k(x)= f (x)g(x)h(x); then k′= 6k2+6 and k(0)=
1. One solution for this differential equation with this
initial condition is k(x) = tan(6x+ π/4); by standard
uniqueness, this must necessarily hold for x in some
open interval around 0. Now the first given equation
becomes

f ′/ f = 2k(x)+1/k(x)
= 2tan(6x+π/4)+ cot(6x+π/4);

integrating both sides gives

ln( f (x)) =
−2lncos(6x+π/4)+ lnsin(6x+π/4)

6
+ c,

whence f (x) = ec
(

sin(6x+π/4)
cos2(6x+π/4)

)1/6
. Substituting

f (0) = 1 gives ec = 2−1/12 and thus f (x) =

2−1/12
(

sin(6x+π/4)
cos2(6x+π/4)

)1/6
.

Remark. The answer can be put in alternate forms
using trigonometric identities. One particularly simple
one is

f (x) = (sec12x)1/12(sec12x+ tan12x)1/4.

A–3 The limit is 0; we will show this by checking that
dn = 0 for all n ≥ 3. Starting from the given matrix,
add the third column to the first column; this does not
change the determinant. However, thanks to the identity
cosx+cosy= 2cos x+y

2 cos x−y
2 , the resulting matrix has

the form
2cos2cos1 cos2 · · ·

2cos(n+2)cos1 cos(n+2) · · ·
2cos(2n+2)cos1 2cos(2n+2) · · ·

...
...

. . .


with the first column being a multiple of the second.
Hence dn = 0.

Remark. Another way to draw the same conclu-
sion is to observe that the given matrix is the sum of
the two rank 1 matrices A jk = cos( j − 1)ncosk and
B jk = −sin( j− 1)nsink, and so has rank at most 2.
One can also use the matrices A jk = ei(( j−1)n+k), B jk =

e−i( j−1)n+k.

A–4 The answer is no; indeed, S =Q\{n+2/5 |n ∈ Z} sat-
isfies the given conditions. Clearly S satisfies (a) and
(b); we need only check that it satisfies (c). It suffices
to show that if x = p/q is a fraction with (p,q) = 1 and
p > 0, then we cannot have 1/(x(x−1)) = n+2/5 for
an integer n. Suppose otherwise; then

(5n+2)p(p−q) = 5q2.

Since p and q are relatively prime, and p divides
5q2, we must have p |5, so p = 1 or p = 5. On the
other hand, p− q and q are also relatively prime, so
p− q divides 5 as well, and p− q must be ±1 or
±5. This leads to eight possibilities for (p,q): (1,0),
(5,0), (5,10), (1,−4), (1,2), (1,6), (5,4), (5,6). The
first three are impossible, while the final five lead to
5n + 2 = 16,−20,−36,16,−36 respectively, none of
which holds for integral n.

Remark. More generally, no rational number of the
form m/n, where m,n are relatively prime and neither
of ±m is a quadratic residue mod n, need be in S. If
x = p/q is in lowest terms and 1/(x(x−1)) = m/n+ k
for some integer k, then p(p− q) is relatively prime to
q2; q2/(p(p− q)) = (m+ kn)/n then implies that m+
kn = ±q2 and so ±m must be a quadratic residue mod
n.

A–5 No, there is no such group. By the structure theorem
for finitely generated abelian groups, G can be written
as a product of cyclic groups. If any of these factors has
odd order, then G has an element of odd order, so the
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product of the orders of all of its elements cannot be a
power of 2.

We may thus consider only abelian 2-groups hereafter.
For such a group G, the product of the orders of all of
its elements has the form 2k(G) for some nonnegative
integer G, and we must show that it is impossible to
achieve k(G) = 2009. Again by the structure theorem,
we may write

G∼=
∞

∏
i=1

(Z/2iZ)ei

for some nonnegative integers e1,e2, . . . , all but finitely
many of which are 0.

For any nonnegative integer m, the elements of G of
order at most 2m form a subgroup isomorphic to

∞

∏
i=1

(Z/2min{i,m}Z)ei ,

which has 2sm elements for sm = ∑
∞
i=1 min{i,m}ei.

Hence

k(G) =
∞

∑
i=1

i(2si −2si−1).

Since s1 ≤ s2 ≤ ·· · , k(G)+1 is always divisible by 2s1 .
In particular, k(G) = 2009 forces s1 ≤ 1.

However, the only cases where s1 ≤ 1 are where all of
the ei are 0, in which case k(G) = 0, or where ei = 1 for
some i and e j = 0 for j 6= i, in which case k(G) = (i−
1)2i +1. The right side is a strictly increasing function
of i which equals 1793 for i = 8 and 4097 for i = 9, so
it can never equal 2009. This proves the claim.

Remark. One can also arrive at the key congruence
by dividing G into equivalence classes, by declaring
two elements to be equivalent if they generate the same
cyclic subgroup of G. For h > 0, an element of order
2h belongs to an equivalence class of size 2h−1, so the
products of the orders of the elements of this equiva-
lence class is 2 j for j = h2h−1. This quantity is divisible
by 4 as long as h > 1; thus to have k(G) ≡ 1 (mod 4),
the number of elements of G of order 2 must be con-
gruent to 1 modulo 4. However, there are exactly 2e−1
such elements, for e the number of cyclic factors of G.
Hence e= 1, and one concludes as in the given solution.

A–6 We disprove the assertion using the example

f (x,y) = 3(1+ y)(2x−1)2− y.

We have b−a= d−c= 0 because the identity f (x,y) =
f (1− x,y) forces a = b, and because

c =
∫ 1

0
3(2x−1)2 dx = 1,

d =
∫ 1

0
(6(2x−1)2−1)dx = 1.

Moreover, the partial derivatives

∂ f
∂x

(x0,y0) = 3(1+ y0)(8x0−4)

∂ f
∂y

(x0,y0) = 3(2x0−1)2−1.

have no common zero in (0,1)2. Namely, for the first
partial to vanish, we must have x0 = 1/2 since 1+ y0 is
nowhere zero, but for x0 = 1/2 the second partial cannot
vanish.

Remark. This problem amounts to refuting a potential
generalization of the Mean Value Theorem to bivariate
functions. Many counterexamples are possible. Kent
Merryfield suggests ysin(2πx), for which all four of the
boundary integrals vanish; here the partial derivatives
are 2πycos(2πx) and sin(2πx). Catalin Zara suggests
x1/3y2/3. Qingchun Ren suggests xy(1− y).

B–1 Every positive rational number can be uniquely written
in lowest terms as a/b for a,b positive integers. We
prove the statement in the problem by induction on the
largest prime dividing either a or b (where this is con-
sidered to be 1 if a = b = 1). For the base case, we
can write 1/1 = 2!/2!. For a general a/b, let p be the
largest prime dividing either a or b; then a/b = pka′/b′

for some k 6= 0 and positive integers a′,b′ whose largest
prime factors are strictly less than p. We now have
a/b = (p!)k a′

(p−1)!kb′ , and all prime factors of a′ and

(p−1)!kb′ are strictly less than p. By the induction as-
sumption, a′

(p−1)!kb′ can be written as a quotient of prod-

ucts of prime factorials, and so a/b = (p!)k a′
(p−1)!kb′ can

as well. This completes the induction.

Remark. Noam Elkies points out that the representa-
tions are unique up to rearranging and canceling com-
mon factors.

B–2 The desired real numbers c are precisely those for which
1/3 < c ≤ 1. For any positive integer m and any se-
quence 0 = x0 < x1 < · · ·< xm = 1, the cost of jumping
along this sequence is ∑

m
i=1(xi− xi−1)x2

i . Since

1 =
m

∑
i=1

(xi− xi−1)≥
m

∑
i=1

(xi− xi−1)x2
i

>
m

∑
i=1

∫ xi−1

xi

t2 dt

=
∫ 1

0
t2 dt =

1
3
,

we can only achieve costs c for which 1/3 < c≤ 1.

It remains to check that any such c can be achieved.
Suppose 0 = x0 < · · ·< xm = 1 is a sequence with m≥
1. For i = 1, . . . ,m, let ci be the cost of the sequence
0,xi,xi+1, . . . ,xm. For i > 1 and 0 < y≤ xi−1, the cost of
the sequence 0,y,xi, . . . ,xm is

ci + y3 +(xi− y)x2
i − x3

i = ci− y(x2
i − y2),
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which is less than ci but approaches ci as y→ 0. By
continuity, for i = 2, . . . ,m, every value in the interval
[ci−1,ci) can be achieved, as can cm = 1 by the sequence
0,1.

To show that all costs c with 1/3 < c ≤ 1 can be
achieved, it now suffices to check that for every ε > 0,
there exists a sequence with cost at most 1/3+ ε . For
instance, if we take xi = i/m for i = 0, . . . ,m, the cost
becomes

1
m3 (1

2 + · · ·+m2) =
(m+1)(2m+1)

6m2 ,

which converges to 1/3 as m→+∞.

Reinterpretation. The cost of jumping along a partic-
ular sequence is an upper Riemann sum of the function
t2. The fact that this function admits a Riemann inte-
gral implies that for any ε > 0, there exists δ0 such that
the cost of the sequence x0, . . . ,xm is at most 1/3+ ε as
long as maxi{xi− xi−1} < ε . (The computation of the
integral using the sequence xi = i/m was already known
to Archimedes.)

B–3 The answer is n = 2k−1 for some integer k ≥ 1. There
is a bijection between mediocre subsets of {1, . . . ,n}
and mediocre subsets of {2, . . . ,n+1} given by adding
1 to each element of the subset; thus A(n+ 1)−A(n)
is the number of mediocre subsets of {1, . . . ,n + 1}
that contain 1. It follows that A(n + 2) − 2A(n +
1) + An = (A(n + 2)− A(n + 1))− (A(n + 1)− A(n))
is the difference between the number of mediocre sub-
sets of {1, . . . ,n+ 2} containing 1 and the number of
mediocre subsets of {1, . . . ,n+ 1} containing 1. This
difference is precisely the number of mediocre subsets
of {1, . . . ,n + 2} containing both 1 and n + 2, which
we term “mediocre subsets containing the endpoints.”
Since {1, . . . ,n+2} itself is a mediocre subset of itself
containing the endpoints, it suffices to prove that this
is the only mediocre subset of {1, . . . ,n+2} containing
the endpoints if and only if n = 2k−1 for some k.

If n is not of the form 2k−1, then we can write n+1 =
2ab for odd b> 1. In this case, the set {1+mb |0≤m≤
2a} is a mediocre subset of {1, . . . ,n+2} containing the
endpoints: the average of 1+m1b and 1+m2b, namely
1+ m1+m2

2 b, is an integer if and only if m1 +m2 is even,
in which case this average lies in the set.

It remains to show that if n = 2k − 1, then the only
mediocre subset of {1, . . . ,n+ 2} containing the end-
points is itself. This is readily seen by induction on
k. For k = 1, the statement is obvious. For general
k, any mediocre subset S of {1, . . . ,n + 2 = 2k + 1}
containing 1 and 2k + 1 must also contain their aver-
age, 2k−1 + 1. By the induction assumption, the only
mediocre subset of {1, . . . ,2k−1 + 1} containing the
endpoints is itself, and so S must contain all integers
between 1 and 2k−1 + 1. Similarly, a mediocre subset
of {2k−1 +1, . . . ,2k +1} containing the endpoints gives
a mediocre subset of {1, . . . ,2k−1 + 1} containing the

endpoints by subtracting 2k−1 from each element. By
the induction assumption again, it follows that S must
contain all integers between 2k−1 +1 and 2k +1. Thus
S = {1, . . . ,2k +1} and the induction is complete.

Remark. One can also proceed by checking that a
nonempty subset of {1, . . . ,n} is mediocre if and only if
it is an arithmetic progression with odd common differ-
ence. Given this fact, the number of mediocre subsets
of {1, . . . ,n+2} containing the endpoints is seen to be
the number of odd factors of n+1, from which the de-
sired result is evident. (The sequence A(n) appears as
sequence A124197 in the Encyclopedia of Integer Se-
quences.)

B–4 Any polynomial P(x,y) of degree at most 2009 can be
written uniquely as a sum ∑

2009
i=0 Pi(x,y) in which Pi(x,y)

is a homogeneous polynomial of degree i. For r > 0,
let Cr be the path (r cosθ ,r sinθ) for 0 ≤ θ ≤ 2π . Put
λ (Pi) =

∮
C1

Pi; then for r > 0,

∮
Cr

P =
2009

∑
i=0

ri
λ (Pi).

For fixed P, the right side is a polynomial in r, which
vanishes for all r > 0 if and only if its coefficients
vanish. In other words, P is balanced if and only if
λ (Pi) = 0 for i = 0, . . . ,2009.

For i odd, we have Pi(−x,−y) = −Pi(x,y). Hence
λ (Pi) = 0, e.g., because the contributions to the integral
from θ and θ +π cancel.

For i even, λ (Pi) is a linear function of the coefficients
of Pi. This function is not identically zero, e.g., because
for Pi = (x2 + y2)i/2, the integrand is always positive
and so λ (Pi) > 0. The kernel of λ on the space of ho-
mogeneous polynomials of degree i is thus a subspace
of codimension 1.

It follows that the dimension of V is

(1+ · · ·+2010)−1005 = (2011−1)×1005 = 2020050.

B–5 First solution. If f (x)≥ x for all x > 1, then the desired
conclusion clearly holds. We may thus assume hereafter
that there exists x0 > 1 for which f (x0)< x0.

Rewrite the original differential equation as

f ′(x) = 1− x2 +1
x2

f (x)2

1+ f (x)2 .

Put c0 = min{0, f (x0)−1/x0}. For all x≥ x0, we have
f ′(x)>−1/x2 and so

f (x)≥ f (x0)−
∫ x

x0

dt/t2 > c0.

In the other direction, we claim that f (x) < x for all
x ≥ x0. To see this, suppose the contrary; then by con-
tinuity, there is a least x ≥ x0 for which f (x) ≥ x, and
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this least value satisfies f (x) = x. However, this forces
f ′(x) = 0 < 1 and so f (x− ε) > x− ε for ε > 0 small,
contradicting the choice of x.

Put x1 = max{x0,−c0}. For x≥ x1, we have | f (x)|< x
and so f ′(x)> 0. In particular, the limit limx→+∞ f (x)=
L exists.

Suppose that L < +∞; then limx→+∞ f ′(x) = 1/(1 +
L2)> 0. Hence for any sufficiently small ε > 0, we can
choose x2 ≥ x1 so that f ′(x) ≥ ε for x ≥ x2. But then
f (x) ≥ f (x2) + ε(x− x2), which contradicts L < +∞.
Hence L =+∞, as desired.

Variant. (by Leonid Shteyman) One obtains a similar
argument by writing

f ′(x) =
1

1+ f (x)2 −
f (x)2

x2(1+ f (x)2)
,

so that

− 1
x2 ≤ f ′(x)− 1

1+ f (x)2 ≤ 0.

Hence f ′(x)− 1/(1+ f (x)2) tends to 0 as x→ +∞, so
f (x) is bounded below, and tends to +∞ if and only if
the improper integral

∫
dx/(1+ f (x)2) diverges. How-

ever, if the integral were to converge, then as x→ +∞

we would have 1/(1+ f (x)2)→ 0; however, since f is
bounded below, this again forces f (x)→+∞.

Second solution. (by Catalin Zara) The function g(x)=
f (x)+ x satisfies the differential equation

g′(x) = 1+
1− (g(x)/x−1)2

1+ x2(g(x)/x−1)2 .

This implies that g′(x) > 0 for all x > 1, so the limit
L1 = limx→+∞ g(x) exists. In addition, we cannot have
L1 < +∞, or else we would have limx→+∞ g′(x) = 0
whereas the differential equation forces this limit to be
1. Hence g(x)→+∞ as x→+∞.

Similarly, the function h(x) = − f (x) + x satisfies the
differential equation

h′(x) = 1− 1− (h(x)/x−1)2

1+ x2(h(x)/x−1)2 .

This implies that h′(x) ≥ 0 for all x, so the limit L2 =
limx→+∞ h(x) exists. In addition, we cannot have L2 <
+∞, or else we would have limx→+∞ h′(x) = 0 whereas
the differential equation forces this limit to be 1. Hence
h(x)→+∞ as x→+∞.

For some x1 > 1, we must have g(x),h(x) > 0 for all
x ≥ x1. For x ≥ x1, we have | f (x)| < x and hence
f ′(x) > 0, so the limit L = limx→+∞ f (x) exists. Once
again, we cannot have L < +∞, or else we would
have limx→+∞ f ′(x) = 0 whereas the original differen-
tial equation (e.g., in the form given in the first so-
lution) forces this limit to be 1/(1+ L2) > 0. Hence
f (x)→+∞ as x→ ∞, as desired.

Third solution. (by Noam Elkies) Consider the func-
tion g(x) = f (x)+ 1

3 f (x)3, for which

g′(x) = f ′(x)(1+ f (x)2) = 1− f (x)2

x2

for x> 1. Since evidently g′(x)< 1, g(x)−x is bounded
above for x large. As in the first solution, f (x) is
bounded below for x large, so 1

3 f (x)3− x is bounded
above by some c > 0. For x ≥ c, we obtain f (x) ≤
(6x)1/3.

Since f (x)/x → 0 as x → +∞, g′(x) → 1 and so
g(x)/x → 1. Since g(x) tends to +∞, so does f (x).
(With a tiny bit of extra work, one shows that in fact
f (x)/(3x)1/3→ 1 as x→+∞.)

B–6 First solution. (based on work of Yufei Zhao) Since
any sequence of the desired form remains of the desired
form upon multiplying each term by 2, we may reduce
to the case where n is odd. In this case, take x = 2h for
some positive integer h for which x≥ n, and set

a0 = 0
a1 = 1
a2 = 2x+1 = a1 +2x

a3 = (x+1)2 = a2 + x2

a4 = xn +1 = a1 + xn

a5 = n(x+1) = a4 mod a3

a6 = x
a7 = n = a5 mod a6.

We may pad the sequence to the desired length by tak-
ing a8 = · · ·= a2009 = n.

Second solution. (by James Merryfield) Suppose first
that n is not divisible by 3. Recall that since 2 is a primi-
tive root modulo 32, it is also a primitive root modulo 3h

for any positive integer h. In particular, if we choose h
so that 32h > n, then there exists a positive integer c for
which 2c mod 32h = n. We now take b to be a positive
integer for which 2b > 32h, and then put

a0 = 0
a1 = 1
a2 = 3 = a1 +2

a3 = 3+2b

a4 = 22hb

a5 = 32h = a4 mod a3

a6 = 2c

a7 = n = a6 mod a5.

If n is divisible by 3, we can force a7 = n− 1 as in the
above construction, then put a8 = a7 + 1 = n. In both
cases, we then pad the sequence as in the first solution.

Remark. Hendrik Lenstra, Ronald van Luijk, and
Gabriele Della Torre suggest the following variant of
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the first solution requiring only 6 steps. For n odd and x
as in the first solution, set

a0 = 0
a1 = 1
a2 = x+1 = a1 + x
a3 = xn + x+1 = a2 + xn

a4 = x(n−1)(φ(a3)−1)

a5 =
xn +1
x+1

= a4 mod a3

a6 = n = a5 mod a2.

It seems unlikely that a shorter solution can be con-
structed without relying on any deep number-theoretic
conjectures.
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A1 Given a positive integer n, what is the largest k such that
the numbers 1,2, . . . ,n can be put into k boxes so that
the sum of the numbers in each box is the same? [When
n = 8, the example {1,2,3,6},{4,8},{5,7} shows that
the largest k is at least 3.]

A2 Find all differentiable functions f : R→ R such that

f ′(x) =
f (x+n)− f (x)

n

for all real numbers x and all positive integers n.

A3 Suppose that the function h : R2 → R has continuous
partial derivatives and satisfies the equation

h(x,y) = a
∂h
∂x

(x,y)+b
∂h
∂y

(x,y)

for some constants a,b. Prove that if there is a constant
M such that |h(x,y)| ≤ M for all (x,y) ∈ R2, then h is
identically zero.

A4 Prove that for each positive integer n, the number
101010n

+1010n
+10n−1 is not prime.

A5 Let G be a group, with operation ∗. Suppose that

(i) G is a subset of R3 (but ∗ need not be related to
addition of vectors);

(ii) For each a,b∈G, either a×b = a∗b or a×b = 0
(or both), where × is the usual cross product in
R3.

Prove that a×b = 0 for all a,b ∈ G.

A6 Let f : [0,∞) → R be a strictly decreasing continu-
ous function such that limx→∞ f (x) = 0. Prove that∫

∞

0
f (x)− f (x+1)

f (x) dx diverges.

B1 Is there an infinite sequence of real numbers
a1,a2,a3, . . . such that

am
1 +am

2 +am
3 + · · ·= m

for every positive integer m?

B2 Given that A, B, and C are noncollinear points in the
plane with integer coordinates such that the distances
AB, AC, and BC are integers, what is the smallest possi-
ble value of AB?

B3 There are 2010 boxes labeled B1,B2, . . . ,B2010, and
2010n balls have been distributed among them, for
some positive integer n. You may redistribute the balls
by a sequence of moves, each of which consists of
choosing an i and moving exactly i balls from box Bi
into any one other box. For which values of n is it possi-
ble to reach the distribution with exactly n balls in each
box, regardless of the initial distribution of balls?

B4 Find all pairs of polynomials p(x) and q(x) with real
coefficients for which

p(x)q(x+1)− p(x+1)q(x) = 1.

B5 Is there a strictly increasing function f : R→ R such
that f ′(x) = f ( f (x)) for all x?

B6 Let A be an n×n matrix of real numbers for some n ≥
1. For each positive integer k, let A[k] be the matrix
obtained by raising each entry to the kth power. Show
that if Ak = A[k] for k = 1,2, . . . ,n+1, then Ak = A[k] for
all k ≥ 1.
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A–1 The largest such k is b n+1
2 c= d

n
2e. For n even, this value

is achieved by the partition

{1,n},{2,n−1}, . . . ;

for n odd, it is achieved by the partition

{n},{1,n−1},{2,n−2}, . . . .

One way to see that this is optimal is to note that the
common sum can never be less than n, since n itself
belongs to one of the boxes. This implies that k ≤ (1+
· · ·+n)/n = (n+1)/2. Another argument is that if k >
(n+ 1)/2, then there would have to be two boxes with
one number each (by the pigeonhole principle), but such
boxes could not have the same sum.

Remark. A much subtler question would be to find
the smallest k (as a function of n) for which no such
arrangement exists.

A–2 The only such functions are those of the form f (x) =
cx+ d for some real numbers c,d (for which the prop-
erty is obviously satisfied). To see this, suppose that f
has the desired property. Then for any x ∈ R,

2 f ′(x) = f (x+2)− f (x)
= ( f (x+2)− f (x+1))+( f (x+1)− f (x))

= f ′(x+1)+ f ′(x).

Consequently, f ′(x+1) = f ′(x).

Define the function g : R→ R by g(x) = f (x + 1)−
f (x), and put c = g(0), d = f (0). For all x ∈ R,
g′(x) = f ′(x+ 1)− f ′(x) = 0, so g(x) = c identically,
and f ′(x)= f (x+1)− f (x)= g(x)= c, so f (x)= cx+d
identically as desired.

A–3 If a = b = 0, then the desired result holds trivially, so
we assume that at least one of a,b is nonzero. Pick
any point (a0,b0) ∈ R2, and let L be the line given by
the parametric equation L(t) = (a0,b0)+(a,b)t for t ∈
R. By the chain rule and the given equation, we have
d
dt (h ◦L) = h ◦L. If we write f = h ◦L : R→ R, then
f ′(t) = f (t) for all t. It follows that f (t) =Cet for some
constant C. Since | f (t)| ≤ M for all t, we must have
C = 0. It follows that h(a0,b0) = 0; since (a0,b0) was
an arbitrary point, h is identically 0 over all of R2.

A–4 Put

N = 101010n

+1010n
+10n−1.

Write n = 2mk with m a nonnegative integer and k a
positive odd integer. For any nonnegative integer j,

102m j ≡ (−1) j (mod 102m
+1).

Since 10n ≥ n≥ 2m ≥ m+1, 10n is divisible by 2n and
hence by 2m+1, and similarly 1010n

is divisible by 210n

and hence by 2m+1. It follows that

N ≡ 1+1+(−1)+(−1)≡ 0 (mod 102m
+1).

Since N ≥ 1010n
> 10n+1≥ 102m

+1, it follows that N
is composite.

A–5 We start with three lemmas.

Lemma 1. If x,y ∈ G are nonzero orthogonal vectors, then
x∗x is parallel to y.

Proof. Put z= x×y 6= 0, so that x,y, and z= x∗y are nonzero
and mutually orthogonal. Then w = x× z 6= 0, so w = x∗ z is
nonzero and orthogonal to x and z. However, if (x∗x)×y 6= 0,
then w= x∗(x∗y) = (x∗x)∗y= (x∗x)×y is also orthogonal
to y, a contradiction.

Lemma 2. If x∈G is nonzero, and there exists y∈G nonzero
and orthogonal to x, then x∗x = 0.

Proof. Lemma 1 implies that x ∗ x is parallel to both y and
x×y, so it must be zero.

Lemma 3. If x,y ∈ G commute, then x×y = 0.

Proof. If x× y 6= 0, then y× x is nonzero and distinct from
x×y. Consequently, x∗y= x×y and y∗x= y×x 6= x∗y.

We proceed now to the proof. Assume by way of con-
tradiction that there exist a,b ∈ G with a×b 6= 0. Put
c = a× b = a ∗ b, so that a,b,c are nonzero and lin-
early independent. Let e be the identity element of G.
Since e commutes with a,b,c, by Lemma 3 we have
e×a= e×b= e×c= 0. Since a,b,c span R3, e×x= 0
for all x ∈ R3, so e = 0.

Since b,c, and b× c = b ∗ c are nonzero and mutually
orthogonal, Lemma 2 implies

b∗b = c∗ c = (b∗ c)∗ (b∗ c) = 0 = e.

Hence b∗c = c∗b, contradicting Lemma 3 because b×
c 6= 0. The desired result follows.

A–6 First solution. Note that the hypotheses on f imply
that f (x) > 0 for all x ∈ [0,+∞), so the integrand is a
continuous function of f and the integral makes sense.
Rewrite the integral as∫

∞

0

(
1− f (x+1)

f (x)

)
dx,
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and suppose by way of contradiction that it converges
to a finite limit L. For n≥ 0, define the Lebesgue mea-
surable set

In = {x ∈ [0,1] : 1− f (x+n+1)
f (x+n)

≤ 1/2}.

Then L ≥ ∑
∞
n=0

1
2 (1− µ(In)), so the latter sum con-

verges. In particular, there exists a nonnegative integer
N for which ∑

∞
n=N(1−µ(In))< 1; the intersection

I =
∞⋃

n=N

In = [0,1]−
∞⋂

n=N

([0,1]− In)

then has positive Lebesgue measure.

By Taylor’s theorem with remainder, for t ∈ [0,1/2],

− log(1− t)≤ t +
t2

2
sup

t∈[0,1/2]

{
1

(1− t)2

}
= t +2t2 ≤ 2t.

For each nonnegative integer n≥ N, we then have

L≥
∫ n

N

(
1− f (x+1)

f (x)

)
dx

=
n−1

∑
i=N

∫ 1

0

(
1− f (x+ i+1)

f (x+ i)

)
dx

≥
n−1

∑
i=N

∫
I

(
1− f (x+ i+1)

f (x+ i)

)
dx

≥ 1
2

n−1

∑
i=N

∫
I
log

f (x+ i)
f (x+ i+1)

dx

=
1
2

∫
I

(
n−1

∑
i=N

log
f (x+ i)

f (x+ i+1)

)
dx

=
1
2

∫
I
log

f (x+N)

f (x+n)
dx.

For each x ∈ I, log f (x + N)/ f (x + n) is a strictly
increasing unbounded function of n. By the mono-
tone convergence theorem, the integral

∫
I log( f (x +

N)/ f (x + n))dx grows without bound as n → +∞, a
contradiction. Thus the original integral diverges, as
desired.

Remark. This solution is motivated by the commonly-
used fact that an infinite product (1 + x1)(1 + x2) · · ·
converges absolutely if and only if the sum x1+x2+ · · ·
converges absolutely. The additional measure-theoretic
argument at the beginning is needed because one cannot
bound− log(1−t) by a fixed multiple of t uniformly for
all t ∈ [0,1).

Greg Martin suggests a variant solution that avoids use
of Lebesgue measure. Note first that if f (y) > 2 f (y+
1), then either f (y) >

√
2 f (y+ 1/2) or f (y+ 1/2) >√

2 f (y+1), and in either case we deduce that∫ y+1/2

y−1/2

f (x)− f (x+1)
f (x)

dx >
1
2

(
1− 1√

2

)
>

1
7
.

If there exist arbitrarily large values of y for which
f (y)> 2 f (y+1), we deduce that the original integral is
greater than any multiple of 1/7, and so diverges. Oth-
erwise, for x large we may argue that

f (x)− f (x+1)
f (x)

>
3
5

log
f (x)

f (x+1)

as in the above solution, and again get divergence using
a telescoping sum.

Second solution. (Communicated by Paul Allen.) Let
b > a be nonnegative integers. Then

∫ b

a

f (x)− f (x+1)
f (x)

dx =
b−1

∑
k=a

∫ 1

0

f (x+ k)− f (x+ k+1)
f (x+ k)

dx

=
∫ 1

0

b−1

∑
k=a

f (x+ k)− f (x+ k+1)
f (x+ k)

dx

≥
∫ 1

0

b−1

∑
k=a

f (x+ k)− f (x+ k+1)
f (x+a)

dx

=
∫ 1

0

f (x+a)− f (x+b)
f (x+a)

dx.

Now since f (x) → 0, given a, we can choose an in-
teger l(a) > a for which f (l(a)) < f (a + 1)/2; then
f (x+a)− f (x+l(a))

f (x+a) ≥ 1− f (l(a))
f (a+1) > 1/2 for all x ∈ [0,1].

Thus if we define a sequence of integers an by a0 = 0,
an+1 = l(an), then∫
∞

0

f (x)− f (x+1)
f (x)

dx =
∞

∑
n=0

∫ an+1

an

f (x)− f (x+1)
f (x)

dx

>
∞

∑
n=0

∫ 1

0
(1/2)dx,

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated
by Catalin Zara.) If the original integral converges, then
on one hand the integrand ( f (x)− f (x+1))/ f (x) = 1−
f (x+1)/ f (x) cannot tend to 1 as x→ ∞. On the other
hand, for any a≥ 0,

0 <
f (a+1)

f (a)

<
1

f (a)

∫ a+1

a
f (x)dx

=
1

f (a)

∫
∞

a
( f (x)− f (x+1))dx

≤
∫

∞

a

f (x)− f (x+1)
f (x)

dx,

and the last expression tends to 0 as a→ ∞. Hence by
the squeeze theorem, f (a+ 1)/ f (a)→ 0 as a→ ∞, a
contradiction.
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B–1 First solution. No such sequence exists. If it did, then
the Cauchy-Schwartz inequality would imply

8 = (a2
1 +a2

2 + · · ·)(a4
1 +a4

2 + · · ·)
≥ (a3

1 +a3
2 + · · ·)2 = 9,

contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose that such a sequence exists. If a2

k ∈ [0,1] for
all k, then a4

k ≤ a2
k for all k, and so

4 = a4
1 +a4

2 + · · · ≤ a2
1 +a2

2 + · · ·= 2,

contradiction. There thus exists a positive integer k for
which a2

k ≥ 1. However, in this case, for m large, a2m
k >

2m and so a2m
1 +a2m

2 + · · · 6= 2m.

Third solution. We generalize the second solution to
show that for any positive integer k, it is impossible for
a sequence a1,a2, . . . of complex numbers to satisfy the
given conditions in case the series ak

1 + ak
2 + · · · con-

verges absolutely. This includes the original problem
by taking k = 2, in which case the series a2

1 + a2
2 + · · ·

consists of nonnegative real numbers and so converges
absolutely if it converges at all.

Since the sum ∑
∞
i=1 |ai|k converges by hypothesis, we

can find a positive integer n such that ∑
∞
i=n+1 |ai|k < 1.

For each positive integer d, we then have∣∣∣∣∣kd−
n

∑
i=1

akd
i

∣∣∣∣∣≤ ∞

∑
i=n+1

|ai|kd < 1.

We thus cannot have |a1|, . . . , |an| ≤ 1, or else the sum
∑

n
i=1 akd

i would be bounded in absolute value by n inde-
pendently of d. But if we put r = max{|a1|, . . . , |an|}>
1, we obtain another contradiction because for any ε >
0,

limsup
d→∞

(r− ε)−kd

∣∣∣∣∣ n

∑
i=1

akd
i

∣∣∣∣∣> 0.

For instance, this follows from applying the root test to
the rational function

n

∑
i=1

1
1−ak

i z
=

∞

∑
d=0

(
n

∑
i=1

akd
i

)
zd ,

which has a pole within the circle |z| ≤ r−1/k. (An ele-
mentary proof is also possible.)

Fourth solution. (Communicated by Noam Elkies.)
Since ∑k a2

k = 2, for each positive integer k we have
a2

k ≤ 2 and so a4
k ≤ 2a2

k , with equality only for a2
k ∈

{0,2}. Thus to have ∑k a4
k = 4, there must be a single

index k for which a2
k = 2, and the other ak must all equal

0. But then ∑k a2m
k = 2m 6= 2m for any positive integer

m > 2.

Remark. Manjul Bhargava points out it is easy to con-
struct sequences of complex numbers with the desired
property if we drop the condition of absolute conver-
gence. Here is an inductive construction (of which sev-
eral variants are possible). For n = 1,2, . . . and z ∈ C,
define the finite sequence

sn,z =

(
1
z

e2πi j/n : j = 0, . . . ,n−1
)
.

This sequence has the property that for any positive in-
teger j, the sum of the j-th powers of the terms of sn,z
equals 1/z j if j is divisible by n and 0 otherwise. More-
over, any partial sum of j-th powers is bounded in ab-
solute value by n/|z| j.
The desired sequence will be constructed as follows.
Suppose that we have a finite sequence which has the
correct sum of j-th powers for j = 1, . . . ,m. (For in-
stance, for m = 1, we may start with the singleton
sequence 1.) We may then extend it to a new se-
quence which has the correct sum of j-th powers for
j = 1, . . . ,m+ 1, by appending k copies of sm+1,z for
suitable choices of a positive integer k and a complex
number z with |z| < m−2. This last restriction ensures
that the resulting infinite sequence a1,a2, . . . is such that
for each positive integer m, the series am

1 + am
2 + · · · is

convergent (though not absolutely convergent). Its par-
tial sums include a subsequence equal to the constant
value m, so the sum of the series must equal m as de-
sired.

B–2 The smallest distance is 3, achieved by A = (0,0), B =
(3,0), C = (0,4). To check this, it suffices to check
that AB cannot equal 1 or 2. (It cannot equal 0 because
if two of the points were to coincide, the three points
would be collinear.)

The triangle inequality implies that |AC− BC| ≤ AB,
with equality if and only if A,B,C are collinear. If AB =
1, we may assume without loss of generality that A =
(0,0), B = (1,0). To avoid collinearity, we must have
AC = BC, but this forces C = (1/2,y) for some y ∈ R,
a contradiction. (One can also treat this case by scaling
by a factor of 2 to reduce to the case AB = 2, treated in
the next paragraph.)

If AB = 2, then we may assume without loss of gener-
ality that A = (0,0),B = (2,0). The triangle inequal-
ity implies |AC− BC| ∈ {0,1}. Also, for C = (x,y),
AC2 = x2 + y2 and BC2 = (2− x)2 + y2 have the same
parity; it follows that AC = BC. Hence c = (1,y) for
some y ∈ R, so y2 and y2 + 1 = BC2 are consecutive
perfect squares. This can only happen for y = 0, but
then A,B,C are collinear, a contradiction again.

Remark. Manjul Bhargava points out that more gener-
ally, a Heronian triangle (a triangle with integer sides
and rational area) cannot have a side of length 1 or 2
(and again it is enough to treat the case of length 2).
The original problem follows from this because a tri-
angle whose vertices have integer coordinates has area
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equal to half an integer (by Pick’s formula or the ex-
plicit formula for the area as a determinant).

B–3 It is possible if and only if n≥ 1005. Since

1+ · · ·+2009 =
2009×2010

2
= 2010×1004.5,

for n ≤ 1004, we can start with an initial distribution
in which each box Bi starts with at most i− 1 balls (so
in particular B1 is empty). From such a distribution, no
moves are possible, so we cannot reach the desired final
distribution.

Suppose now that n ≥ 1005. By the pigeonhole prin-
ciple, at any time, there exists at least one index i for
which the box Bi contains at least i balls. We will de-
scribe any such index as being eligible. The following
sequence of operations then has the desired effect.

(a) Find the largest eligible index i. If i = 1, proceed
to (b). Otherwise, move i balls from Bi to B1, then
repeat (a).

(b) At this point, only the index i = 1 can be eligi-
ble (so it must be). Find the largest index j for
which B j is nonempty. If j = 1, proceed to (c).
Otherwise, move 1 ball from B1 to B j; in case this
makes j eligible, move j balls from B j to B1. Then
repeat (b).

(c) At this point, all of the balls are in B1. For i =
2, . . . ,2010, move one ball from B1 to Bi n times.

After these operations, we have the desired distribution.

B–4 First solution. The pairs (p,q) satisfying the given
equation are those of the form p(x) = ax + b,q(x) =
cx+ d for a,b,c,d ∈ R such that bc− ad = 1. We will
see later that these indeed give solutions.

Suppose p and q satisfy the given equation; note that
neither p nor q can be identically zero. By subtracting
the equations

p(x)q(x+1)− p(x+1)q(x) = 1
p(x−1)q(x)− p(x)q(x−1) = 1,

we obtain the equation

p(x)(q(x+1)+q(x−1)) = q(x)(p(x+1)+ p(x−1)).

The original equation implies that p(x) and q(x) have
no common nonconstant factor, so p(x) divides p(x+
1)+ p(x−1). Since each of p(x+1) and p(x−1) has
the same degree and leading coefficient as p, we must
have

p(x+1)+ p(x−1) = 2p(x).

If we define the polynomials r(x) = p(x + 1)− p(x),
s(x) = q(x + 1)− q(x), we have r(x + 1) = r(x), and
similarly s(x+1) = s(x). Put

a = r(0),b = p(0),c = s(0),d = q(0).

Then r(x) = a,s(x) = c for all x ∈ Z, and hence identi-
cally; consequently, p(x) = ax+b,q(x) = cx+d for all
x ∈ Z, and hence identically. For p and q of this form,

p(x)q(x+1)− p(x+1)q(x) = bc−ad,

so we get a solution if and only if bc− ad = 1, as
claimed.

Second solution. (Communicated by Catalin Zara.)
Again, note that p and q must be nonzero. Write

p(x) = p0 + p1x+ · · ·+ pmxm

q(x) = q0 +q1x+ · · ·+qnxn

with pm,qn 6= 0, so that m = deg(p),n = deg(q). It
is enough to derive a contradiction assuming that
max{m,n}> 1, the remaining cases being treated as in
the first solution.

Put R(x)= p(x)q(x+1)− p(x+1)q(x). Since m+n≥ 2
by assumption, the coefficient of xm+n−1 in R(x) must
vanish. By easy algebra, this coefficient equals (m−
n)pmqn, so we must have m = n > 1.

For k = 1, . . . ,2m−2, the coefficient of xk in R(x) is

∑
i+ j>k, j>i

((
j

k− i

)
−
(

i
k− j

))
(piq j− p jqi)

and must vanish. For k = 2m−2, the only summand is
for (i, j) = (m−1,m), so pm−1qm = pmqm−1.

Suppose now that h≥ 1 and that piq j = p jqi is known to
vanish whenever j > i≥ h. (By the previous paragraph,
we initially have this for h = m−1.) Take k = m+h−2
and note that the conditions i+ j > h, j ≤ m force i ≥
h−1. Using the hypothesis, we see that the only possi-
ble nonzero contribution to the coefficient of xk in R(x)
is from (i, j) = (h− 1,m). Hence ph−1qm = pmqh−1;
since pm,qm 6= 0, this implies ph−1q j = p jqh−1 when-
ever j > h−1.

By descending induction, we deduce that piq j = p jqi
whenever j > i ≥ 0. Consequently, p(x) and q(x) are
scalar multiples of each other, forcing R(x) = 0, a con-
tradiction.

Third solution. (Communicated by David Feldman.)
As in the second solution, we note that there are no so-
lutions where m = deg(p),n = deg(q) are distinct and
m+n≥ 2. Suppose p,q form a solution with m= n≥ 2.
The desired identity asserts that the matrix(

p(x) p(x+1)
q(x) q(x+1)

)
has determinant 1. This condition is preserved by re-
placing q(x) with q(x)− t p(x) for any real number t. In
particular, we can choose t so that deg(q(x)− t p(x))<
m; we then obtain a contradiction.
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B–5 First solution. The answer is no. Suppose otherwise.
For the condition to make sense, f must be differen-
tiable. Since f is strictly increasing, we must have
f ′(x) ≥ 0 for all x. Also, the function f ′(x) is strictly
increasing: if y > x then f ′(y) = f ( f (y)) > f ( f (x)) =
f ′(x). In particular, f ′(y)> 0 for all y ∈ R.

For any x0 ≥−1, if f (x0) = b and f ′(x0) = a > 0, then
f ′(x) > a for x > x0 and thus f (x) ≥ a(x− x0)+ b for
x ≥ x0. Then either b < x0 or a = f ′(x0) = f ( f (x0)) =
f (b) ≥ a(b− x0) + b. In the latter case, b ≤ a(x0 +
1)/(a+ 1) ≤ x0 + 1. We conclude in either case that
f (x0)≤ x0 +1 for all x0 ≥−1.

It must then be the case that f ( f (x)) = f ′(x) ≤ 1 for
all x, since otherwise f (x) > x + 1 for large x. Now
by the above reasoning, if f (0) = b0 and f ′(0) =
a0 > 0, then f (x) > a0x + b0 for x > 0. Thus for
x > max{0,−b0/a0}, we have f (x)> 0 and f ( f (x))>
a0x+b0. But then f ( f (x)) > 1 for sufficiently large x,
a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Since f is strictly
increasing and differentiable, so is f ◦ f = f ′. In
particular, f is twice differentiable; also, f ′′(x) =
f ′( f (x)) f ′(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can choose α > 0
and M ∈ R such that f ′′(x) > 4α for all x ≥ M. Then
for all x≥M,

f (x)≥ f (M)+ f ′(M)(x−M)+2α(x−M)2.

In particular, for some M′ > M, we have f (x)≥ αx2 for
all x≥M′.

Pick T > 0 so that αT 2 > M′. Then for x ≥ T , f (x) >
M′ and so f ′(x) = f ( f (x))≥ α f (x)2. Now

1
f (T )

− 1
f (2T )

=
∫ 2T

T

f ′(t)
f (t)2 dt ≥

∫ 2T

T
α dt;

however, as T →∞, the left side of this inequality tends
to 0 while the right side tends to +∞, a contradiction.

Third solution. (Communicated by Noam Elkies.)
Since f is strictly increasing, for some y0, we can de-
fine the inverse function g(y) of f for y ≥ y0. Then

x = g( f (x)), and we may differentiate to find that
1 = g′( f (x)) f ′(x) = g′( f (x)) f ( f (x)). It follows that
g′(y) = 1/ f (y) for y≥ y0; since g takes arbitrarily large
values, the integral

∫
∞

y0
dy/ f (y) must diverge. One then

gets a contradiction from any reasonable lower bound
on f (y) for y large, e.g., the bound f (x)≥ αx2 from the
second solution. (One can also start with a linear lower
bound f (x)≥ βx, then use the integral expression for g
to deduce that g(x) ≤ γ logx, which in turn forces f (x)
to grow exponentially.)

B–6 For any polynomial p(x), let [p(x)]A denote the n× n
matrix obtained by replacing each entry Ai j of A by
p(Ai j); thus A[k] = [xk]A. Let P(x) = xn + an−1xn−1 +
· · ·+ a0 denote the characteristic polynomial of A. By
the Cayley-Hamilton theorem,

0 = A ·P(A)
= An+1 +an−1An + · · ·+a0A

= A[n+1]+an−1A[n]+ · · ·+a0A[1]

= [xp(x)]A.

Thus each entry of A is a root of the polynomial xp(x).

Now suppose m≥ n+1. Then

0 = [xm+1−nP(x)]A

= A[m+1]+an−1A[m]+ · · ·+a0A[m+1−n]

since each entry of A is a root of xm+1−nP(x). On the
other hand,

0 = Am+1−n ·P(A)
= Am+1 +an−1Am + · · ·+a0Am+1−n.

Therefore if Ak = A[k] for m + 1− n ≤ k ≤ m, then
Am+1 = A[m+1]. The desired result follows by induction
on m.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist ex-
amples of n× n matrices A for which Ak = A[k] for
k = 1, . . . ,n but An+1 6= A[n+1].
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A1 Define a growing spiral in the plane to be a sequence
of points with integer coordinates P0 = (0,0),P1, . . . ,Pn
such that n≥ 2 and:

– the directed line segments P0P1,P1P2, . . . ,Pn−1Pn
are in the successive coordinate directions east
(for P0P1), north, west, south, east, etc.;

– the lengths of these line segments are positive and
strictly increasing.

[Picture omitted.] How many of the points (x,y) with
integer coordinates 0≤ x≤ 2011,0≤ y≤ 2011 cannot
be the last point, Pn of any growing spiral?

A2 Let a1,a2, . . . and b1,b2, . . . be sequences of positive
real numbers such that a1 = b1 = 1 and bn = bn−1an−2
for n = 2,3, . . . . Assume that the sequence (b j) is
bounded. Prove that

S =
∞

∑
n=1

1
a1...an

converges, and evaluate S.

A3 Find a real number c and a positive number L for which

lim
r→∞

rc ∫ π/2
0 xr sinxdx∫ π/2

0 xr cosxdx
= L.

A4 For which positive integers n is there an n× n matrix
with integer entries such that every dot product of a row
with itself is even, while every dot product of two dif-
ferent rows is odd?

A5 Let F : R2 → R and g : R→ R be twice continuously
differentiable functions with the following properties:

– F(u,u) = 0 for every u ∈ R;

– for every x ∈ R, g(x)> 0 and x2g(x)≤ 1;

– for every (u,v) ∈ R2, the vector ∇F(u,v) is either
0 or parallel to the vector 〈g(u),−g(v)〉.

Prove that there exists a constant C such that for every
n≥ 2 and any x1, . . . ,xn+1 ∈ R, we have

min
i6= j
|F(xi,x j)| ≤

C
n
.

A6 Let G be an abelian group with n elements, and let

{g1 = e,g2, . . . ,gk}$ G

be a (not necessarily minimal) set of distinct generators
of G. A special die, which randomly selects one of the
elements g1,g2, ...,gk with equal probability, is rolled m
times and the selected elements are multiplied to pro-
duce an element g ∈ G. Prove that there exists a real
number b ∈ (0,1) such that

lim
m→∞

1
b2m ∑

x∈G

(
Prob(g = x)− 1

n

)2

is positive and finite.

B1 Let h and k be positive integers. Prove that for every
ε > 0, there are positive integers m and n such that

ε < |h
√

m− k
√

n|< 2ε.

B2 Let S be the set of all ordered triples (p,q,r) of prime
numbers for which at least one rational number x satis-
fies px2 +qx+ r = 0. Which primes appear in seven or
more elements of S?

B3 Let f and g be (real-valued) functions defined on an
open interval containing 0, with g nonzero and contin-
uous at 0. If f g and f/g are differentiable at 0, must f
be differentiable at 0?

B4 In a tournament, 2011 players meet 2011 times to play
a multiplayer game. Every game is played by all 2011
players together and ends with each of the players either
winning or losing. The standings are kept in two 2011×
2011 matrices, T = (Thk) and W = (Whk). Initially, T =
W = 0. After every game, for every (h,k) (including for
h = k), if players h and k tied (that is, both won or both
lost), the entry Thk is increased by 1, while if player h
won and player k lost, the entry Whk is increased by 1
and Wkh is decreased by 1.

Prove that at the end of the tournament, det(T + iW ) is
a non-negative integer divisible by 22010.

B5 Let a1,a2, . . . be real numbers. Suppose that there is a
constant A such that for all n,

∫
∞

−∞

(
n

∑
i=1

1
1+(x−ai)2

)2

dx≤ An.

Prove there is a constant B > 0 such that for all n,

n

∑
i, j=1

(1+(ai−a j)
2)≥ Bn3.

B6 Let p be an odd prime. Show that for at least (p+1)/2
values of n in {0,1,2, . . . , p−1},

p−1

∑
k=0

k!nk is not divisible by p.
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A1 We claim that the set of points with 0 ≤ x ≤ 2011 and
0≤ y≤ 2011 that cannot be the last point of a growing
spiral are as follows: (0,y) for 0≤ y≤ 2011; (x,0) and
(x,1) for 1 ≤ x ≤ 2011; (x,2) for 2 ≤ x ≤ 2011; and
(x,3) for 3≤ x≤ 2011. This gives a total of

2012+2011+2011+2010+2009 = 10053

excluded points.

The complement of this set is the set of (x,y) with 0 <
x < y, along with (x,y) with x ≥ y ≥ 4. Clearly the
former set is achievable as P2 in a growing spiral, while
a point (x,y) in the latter set is P6 in a growing spiral
with successive lengths 1, 2, 3, x+1, x+2, and x+ y−
1.

We now need to rule out the other cases. Write x1 <
y1 < x2 < y2 < .. . for the lengths of the line segments
in the spiral in order, so that P1 = (x1,0), P2 = (x1,y1),
P3 = (x1− x2,y1), and so forth. Any point beyond P0
has x-coordinate of the form x1− x2 + · · ·+(−1)n−1xn
for n ≥ 1; if n is odd, we can write this as x1 +(−x2 +
x3)+ · · ·+(−xn−1 + xn)> 0, while if n is even, we can
write this as (x1− x2)+ · · ·+(xn−1− xn) < 0. Thus no
point beyond P0 can have x-coordinate 0, and we have
ruled out (0,y) for 0≤ y≤ 2011.

Next we claim that any point beyond P3 must have
y-coordinate either negative or ≥ 4. Indeed, each
such point has y-coordinate of the form y1− y2 + · · ·+
(−1)n−1yn for n≥ 2, which we can write as (y1−y2)+
· · ·+(yn−1− yn)< 0 if n is even, and

y1 +(−y2 + y3)+ · · ·+(−yn−1 + yn)≥ y1 +2≥ 4

if n≥ 3 is odd. Thus to rule out the rest of the forbidden
points, it suffices to check that they cannot be P2 or P3
for any growing spiral. But none of them can be P3 =
(x1− x2,y1) since x1− x2 < 0, and none of them can
be P2 = (x1,y1) since they all have y-coordinate at most
equal to their x-coordinate.

A2 For m≥ 1, write

Sm =
3
2

(
1− b1 · · ·bm

(b1 +2) · · ·(bm +2)

)
.

Then S1 = 1 = 1/a1 and a quick calculation yields

Sm−Sm−1 =
b1 · · ·bm−1

(b2 +2) · · ·(bm +2)
=

1
a1 · · ·am

for m≥ 2, since a j = (b j +2)/b j−1 for j≥ 2. It follows
that Sm = ∑

m
n=1 1/(a1 · · ·an).

Now if (b j) is bounded above by B, then b j
b j+2 ≤

B
B+2

for all j, and so 3/2 > Sm ≥ 3/2(1− ( B
B+2 )

m). Since
B

B+2 < 1, it follows that the sequence (Sm) converges to
S = 3/2.

A3 We claim that (c,L) = (−1,2/π) works. Write f (r) =∫ π/2
0 xr sinxdx. Then

f (r)<
∫

π/2

0
xr dx =

(π/2)r+1

r+1

while since sinx≥ 2x/π for x≤ π/2,

f (r)>
∫

π/2

0

2xr+1

π
dx =

(π/2)r+1

r+2
.

It follows that

lim
r→∞

r
(

2
π

)r+1

f (r) = 1,

whence

lim
r→∞

f (r)
f (r+1)

= lim
r→∞

r(2/π)r+1 f (r)
(r+1)(2/π)r+2 f (r+1)

· 2(r+1)
πr

=
2
π
.

Now by integration by parts, we have∫
π/2

0
xr cosxdx =

1
r+1

∫
π/2

0
xr+1 sinxdx =

f (r+1)
r+1

.

Thus setting c =−1 in the given limit yields

lim
r→∞

(r+1) f (r)
r f (r+1)

=
2
π
,

as desired.

A4 The answer is n odd. Let I denote the n× n identity
matrix, and let A denote the n× n matrix all of whose
entries are 1. If n is odd, then the matrix A− I satisfies
the conditions of the problem: the dot product of any
row with itself is n−1, and the dot product of any two
distinct rows is n−2.

Conversely, suppose n is even, and suppose that the ma-
trix M satisfied the conditions of the problem. Consider
all matrices and vectors mod 2. Since the dot product
of a row with itself is equal mod 2 to the sum of the en-
tries of the row, we have Mv = 0 where v is the vector
(1,1, . . . ,1), and so M is singular. On the other hand,
MMT = A− I; since

(A− I)2 = A2−2A+ I = (n−2)A+ I = I,

we have (detM)2 = det(A− I) = 1 and detM = 1, con-
tradicting the fact that M is singular.
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A5 (by Abhinav Kumar) Define G : R → R by G(x) =∫ x
0 g(t)dt. By assumption, G is a strictly increasing,

thrice continuously differentiable function. It is also
bounded: for x > 1, we have

0 < G(x)−G(1) =
∫ x

1
g(t)dt ≤

∫ x

1
dt/t2 = 1,

and similarly, for x <−1, we have 0>G(x)−G(−1)≥
−1. It follows that the image of G is some open interval
(A,B) and that G−1 : (A,B)→ R is also thrice continu-
ously differentiable.

Define H : (A,B) × (A,B) → R by H(x,y) =
F(G−1(x),G−1(y)); it is twice continuously dif-
ferentiable since F and G−1 are. By our assumptions
about F ,

∂H
∂x

+
∂H
∂y

=
∂F
∂x

(G−1(x),G−1(y)) · 1
g(G−1(x))

+
∂F
∂y

(G−1(x),G−1(y)) · 1
g(G−1(y))

= 0.

Therefore H is constant along any line parallel to the
vector (1,1), or equivalently, H(x,y) depends only on
x− y. We may thus write H(x,y) = h(x− y) for some
function h on (−(B− A),B− A), and we then have
F(x,y) = h(G(x)−G(y)). Since F(u,u) = 0, we have
h(0) = 0. Also, h is twice continuously differentiable
(since it can be written as h(x) = H((A+B+x)/2,(A+
B− x)/2)), so |h′| is bounded on the closed interval
[−(B−A)/2,(B−A)/2], say by M.

Given x1, . . . ,xn+1 ∈ R for some n ≥ 2, the numbers
G(x1), . . . ,G(xn+1) all belong to (A,B), so we can
choose indices i and j so that |G(xi)−G(x j)| ≤ (B−
A)/n≤ (B−A)/2. By the mean value theorem,

|F(xi,x j)|= |h(G(xi)−G(x j))| ≤M
B−A

n
,

so the claim holds with C = M(B−A).

A6 Choose some ordering h1, . . . ,hn of the elements of G
with h1 = e. Define an n×n matrix M by settting Mi j =
1/k if h j = hig for some g ∈ {g1, . . . ,gk} and Mi j = 0
otherwise. Let v denote the column vector (1,0, . . . ,0).
The probability that the product of m random elements
of {g1, . . . ,gk} equals hi can then be interpreted as the
i-th component of the vector Mmv.

Let Ĝ denote the dual group of G, i.e., the group
of complex-valued characters of G. Let ê ∈ Ĝ de-
note the trivial character. For each χ ∈ Ĝ, the vector
vχ = (χ(hi))

n
i=1 is an eigenvector of M with eigenvalue

λχ = (χ(g1) + · · ·+ χ(gk))/k. In particular, vê is the
all-ones vector and λê = 1. Put

b = max{|λχ | : χ ∈ Ĝ−{ê}};

we show that b ∈ (0,1) as follows. First suppose b = 0;
then

1 = ∑
χ∈Ĝ

λχ =
1
k

k

∑
i=1

∑
χ∈Ĝ

χ(gi) =
n
k

because ∑
χ∈(̂G)

χ(gi) equals n for i = 1 and 0 oth-
erwise. However, this contradicts the hypothesis that
{g1, . . . ,gk} is not all of G. Hence b > 0. Next suppose
b = 1, and choose χ ∈ Ĝ−{ê} with |λχ | = 1. Since
each of χ(g1), . . . ,χ(gk) is a complex number of norm
1, the triangle inequality forces them all to be equal.
Since χ(g1) = χ(e) = 1, χ must map each of g1, . . . ,gk
to 1, but this is impossible because χ is a nontrivial
character and g1, . . . ,gk form a set of generators of G.
This contradiction yields b < 1.

Since v = 1
n ∑χ∈Ĝ vχ and Mvχ = λχ vχ , we have

Mmv− 1
n

vê =
1
n ∑

χ∈Ĝ−{ê}
λ

m
χ vχ .

Since the vectors vχ are pairwise orthogonal, the limit
we are interested in can be written as

lim
m→∞

1
b2m (Mmv− 1

n
vê) · (Mmv− 1

n
vê).

and then rewritten as

lim
m→∞

1
b2m ∑

χ∈Ĝ−{ê}
|λχ |2m = #{χ ∈ Ĝ : |λχ |= b}.

By construction, this last quantity is nonzero and finite.

Remark. It is easy to see that the result fails if we do
not assume g1 = e: take G = Z/2Z, n = 1, and g1 = 1.

Remark. Harm Derksen points out that a similar ar-
gument applies even if G is not assumed to be abelian,
provided that the operator g1 + · · ·+gk in the group al-
gebra Z[G] is normal, i.e., it commutes with the op-
erator g−1

1 + · · ·+ g−1
k . This includes the cases where

the set {g1, . . . ,gk} is closed under taking inverses and
where it is a union of conjugacy classes (which in turn
includes the case of G abelian).

Remark. The matrix M used above has nonnegative
entries with row sums equal to 1 (i.e., it corresponds to
a Markov chain), and there exists a positive integer m
such that Mm has positive entries. For any such matrix,
the Perron-Frobenius theorem implies that the sequence
of vectors Mmv converges to a limit w, and there exists
b ∈ [0,1) such that

limsup
m→∞

1
b2m

n

∑
i=1

((Mmv−w)i)
2

is nonzero and finite. (The intended interpretation in
case b = 0 is that Mmv = w for all large m.) However,
the limit need not exist in general.
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B1 Since the rational numbers are dense in the reals, we
can find positive integers a,b such that

3ε

hk
<

b
a
<

4ε

hk
.

By multiplying a and b by a suitably large positive in-
teger, we can also ensure that 3a2 > b. We then have

ε

hk
<

b
3a

<
b√

a2 +b+a
=
√

a2 +b−a

and√
a2 +b−a =

b√
a2 +b+a

≤ b
2a

< 2
ε

hk
.

We may then take m = k2(a2 +b),n = h2a2.

B2 Only the primes 2 and 5 appear seven or more times.
The fact that these primes appear is demonstrated by
the examples

(2,5,2),(2,5,3),(2,7,5),(2,11,5)

and their reversals.

It remains to show that if either ` = 3 or ` is a prime
greater than 5, then ` occurs at most six times as an
element of a triple in S. Note that (p,q,r) ∈ S if and
only if q2− 4pr = a2 for some integer a; in particular,
since 4pr≥ 16, this forces q≥ 5. In particular, q is odd,
as then is a, and so q2 ≡ a2 ≡ 1 (mod 8); consequently,
one of p,r must equal 2. If r = 2, then 8p = q2−a2 =
(q+ a)(q− a); since both factors are of the same sign
and their sum is the positive number 2q, both factors are
positive. Since they are also both even, we have q+a ∈
{2,4,2p,4p} and so q ∈ {2p+ 1, p+ 2}. Similarly, if
p = 2, then q ∈ {2r+1,r+2}. Consequently, ` occurs
at most twice as many times as there are prime numbers
in the list

2`+1, `+2,
`−1

2
, `−2.

For `= 3,`−2 = 1 is not prime. For `≥ 7, the numbers
`− 2, `, `+ 2 cannot all be prime, since one of them is
always a nontrivial multiple of 3.

Remark. The above argument shows that the cases
listed for 5 are the only ones that can occur. By con-
trast, there are infinitely many cases where 2 occurs if
either the twin prime conjecture holds or there are in-
finitely many Sophie Germain primes (both of which
are expected to be true).

B3 Yes, it follows that f is differentiable.

First solution. Note first that at 0, f/g and g are both
continuous, as then is their product f . If f (0) 6= 0, then
in some neighborhood of 0, f is either always positive
or always negative. We can thus choose ε ∈ {±1} so
that ε f is the composition of the differentiable function

( f g) · ( f/g) with the square root function. By the chain
rule, f is differentiable at 0.

If f (0) = 0, then ( f/g)(0) = 0, so we have

( f/g)′(0) = lim
x→0

f (x)
xg(x)

.

Since g is continuous at 0, we may multiply limits to
deduce that limx→0 f (x)/x exists.

Second solution. Choose a neighborhood N of 0 on
which g(x) 6= 0. Define the following functions on N \
{0}: h1(x) =

f (x)g(x)− f (0)g(0)
x ; h2(x) =

f (x)g(0)− f (0)g(x)
xg(0)g(x) ;

h3(x) = g(0)g(x); h4(x) = 1
g(x)+g(0) . Then by assump-

tion, h1,h2,h3,h4 all have limits as x→ 0. On the other
hand,

f (x)− f (0)
x

= (h1(x)+h2(x)h3(x))h4(x),

and it follows that limx→0
f (x)− f (0)

x exists, as desired.

B4 Number the games 1, . . . ,2011, and let A = (a jk) be the
2011×2011 matrix whose jk entry is 1 if player k wins
game j and i =

√
−1 if player k loses game j. Then

ah ja jk is 1 if players h and k tie in game j; i if player h
wins and player k loses in game j; and −i if h loses and
k wins. It follows that T + iW = AT A.

Now the determinant of A is unchanged if we subtract
the first row of A from each of the other rows, pro-
ducing a matrix whose rows, besides the first one, are
(1− i) times a row of integers. Thus we can write
detA = (1− i)2010(a+ bi) for some integers a,b. But
then det(T + iW ) = det(AT A) = 22010(a2+b2) is a non-
negative integer multiple of 22010, as desired.

B5 Define the function

f (y) =
∫

∞

−∞

dx
(1+ x2)(1+(x+ y)2)

.

For y≥ 0, in the range −1≤ x≤ 0, we have

(1+ x2)(1+(x+ y)2)≤ (1+1)(1+(1+ y)2) = 2y2 +4y+4

≤ 2y2 +4+2(y2 +1)≤ 6+6y2.

We thus have the lower bound

f (y)≥ 1
6(1+ y2)

;

the same bound is valid for y≤ 0 because f (y)= f (−y).

The original hypothesis can be written as

n

∑
i, j=1

f (ai−a j)≤ An

and thus implies that

n

∑
i, j=1

1
1+(ai−a j)2 ≤ 6An.
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By the Cauchy-Schwarz inequality, this implies

n

∑
i, j=1

(1+(ai−a j)
2)≥ Bn3

for B = 1/(6A).

Remark. One can also compute explicitly (using par-
tial fractions, Fourier transforms, or contour integra-
tion) that f (y) = 2π

4+y2 .

Remark. Praveen Venkataramana points out that the
lower bound can be improved to Bn4 as follows. For
each z ∈ Z, put Qz,n = {i ∈ {1, . . . ,n} : ai ∈ [z,z+ 1)}
and qz,n = #Qz,n. Then ∑z qz,n = n and

6An≥
n

∑
i, j=1

1
1+(ai−a j)2 ≥ ∑

z∈Z

1
2

q2
z,n.

If exactly k of the qz,n are nonzero, then ∑z∈Z q2
z,n ≥

n2/k by Jensen’s inequality (or various other methods),
so we must have k ≥ n/(6A). Then

n

∑
i, j=1

(1+(ai−a j)
2)≥ n2 +

k

∑
i, j=1

max{0,(|i− j|−1)2}

≥ n2 +
k4

6
− 2k3

3
+

5k2

6
− k

3
.

This is bounded below by Bn4 for some B > 0.

In the opposite direction, one can weaken the initial up-
per bound to An4/3 and still derive a lower bound of
Bn3. The argument is similar.

B6 In order to interpret the problem statement, one must
choose a convention for the value of 00; we will take it
to equal 1. (If one takes 00 to be 0, then the problem
fails for p = 3.)

First solution. By Wilson’s theorem,

k!(p−1− k)!≡ (−1)k(p−1)!≡ (−1)k+1 (mod p),

so we have a congruence of Laurent polynomials

p−1

∑
k=0

k!xk ≡
p−1

∑
k=0

(−1)k+1xk

(p−1− k)!
(mod p)

≡−xp−1
p−1

∑
k=0

(−x)−k

k!
(mod p).

Replacing x with−1/x, we reduce the original problem
to showing that the polynomial

g(x) =
p−1

∑
k=0

xk

k!

over Fp has at most (p− 1)/2 nonzero roots in Fp. To
see this, write

h(x) = xp− x+g(x)

and note that by Wilson’s theorem again,

h′(x) = 1+
p−1

∑
k=1

xk−1

(k−1)!
= xp−1−1+g(x).

If z∈Fp is such that g(z)= 0, then z 6= 0 because g(0)=
1. Therefore, zp−1 = 1, so h(z) = h′(z) = 0 and so z is
at least a double root of h. Since h is a polynomial of
degree p, there can be at most (p−1)/2 zeroes of g in
Fp, as desired.

Second solution. (By Noam Elkies) Define the polyno-
mial f over Fp by

f (x) =
p−1

∑
k=0

k!xk.

Put t = (p− 1)/2; the problem statement is that f has
at most t roots modulo p. Suppose the contrary; since
f (0) = 1, this means that f (x) is nonzero for at most
t−1 values of x∈F∗p. Denote these values by x1, . . . ,xm,
where by assumption m < t, and define the polynomial
Q over Fp by

Q(x) =
m

∏
k=1

(x− xm) =
t−1

∑
k=0

Qkxk.

Then we can write

f (x) =
P(x)
Q(x)

(1− xp−1)

where P(x) is some polynomial of degree at most m.
This means that the power series expansions of f (x) and
P(x)/Q(x) coincide modulo xp−1, so the coefficients of
xt , . . . ,x2t−1 in f (x)Q(x) vanish. In other words, the
product of the square matrix

A = ((i+ j+1)!)t−1
i, j=0

with the nonzero column vector (Qt−1, . . . ,Q0) is zero.
However, by the following lemma, det(A) is nonzero
modulo p, a contradiction.

Lemma 1. For any nonnegative integer m and any integer n,

det((i+ j+n)!)m
i, j=0 =

m

∏
k=0

k!(k+n)!.

Proof. Define the (m+1)×(m+1) matrix Am,n by (Am,n)i, j =(i+ j+n
i

)
; the desired result is then that det(Am,n) = 1. Note that

(Am,n−1)i j =

{
(Am,n)i j i = 0
(Am,n)i j− (Am,n)(i−1) j i > 0;

that is, Am,n−1 can be obtained from Am,n by elementary row
operations. Therefore, det(Am,n) = det(Am,n−1), so det(Am,n)
depends only on m. The claim now follows by observing that
A0,0 is the 1× 1 matrix with entry 1 and that Am,−1 has the

block representation
(

1 ∗
0 Am−1,0

)
.
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Remark. Elkies has given a more detailed
discussion of the origins of this solution in
the theory of orthogonal polynomials; see

http://mathoverflow.net/questions/82648.
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A1 Let d1,d2, . . . ,d12 be real numbers in the open interval
(1,12). Show that there exist distinct indices i, j,k such
that di,d j,dk are the side lengths of an acute triangle.

A2 Let ∗ be a commutative and associative binary operation
on a set S. Assume that for every x and y in S, there
exists z in S such that x ∗ z = y. (This z may depend on
x and y.) Show that if a,b,c are in S and a ∗ c = b ∗ c,
then a = b.

A3 Let f : [−1,1]→ R be a continuous function such that

(i) f (x) = 2−x2

2 f
(

x2

2−x2

)
for every x in [−1,1],

(ii) f (0) = 1, and

(iii) limx→1−
f (x)√
1−x

exists and is finite.

Prove that f is unique, and express f (x) in closed form.

A4 Let q and r be integers with q > 0, and let A and B be
intervals on the real line. Let T be the set of all b+mq
where b and m are integers with b in B, and let S be
the set of all integers a in A such that ra is in T . Show
that if the product of the lengths of A and B is less than
q, then S is the intersection of A with some arithmetic
progression.

A5 Let Fp denote the field of integers modulo a prime p,
and let n be a positive integer. Let v be a fixed vec-
tor in Fn

p, let M be an n× n matrix with entries of Fp,
and define G : Fn

p → Fn
p by G(x) = v+Mx. Let G(k)

denote the k-fold composition of G with itself, that is,
G(1)(x) = G(x) and G(k+1)(x) = G(G(k)(x)). Determine
all pairs p,n for which there exist v and M such that the
pn vectors G(k)(0), k = 1,2, . . . , pn are distinct.

A6 Let f (x,y) be a continuous, real-valued function on R2.
Suppose that, for every rectangular region R of area 1,
the double integral of f (x,y) over R equals 0. Must
f (x,y) be identically 0?

B1 Let S be a class of functions from [0,∞) to [0,∞) that
satisfies:

(i) The functions f1(x) = ex−1 and f2(x) = ln(x+1)
are in S;

(ii) If f (x) and g(x) are in S, the functions f (x)+g(x)
and f (g(x)) are in S;

(iii) If f (x) and g(x) are in S and f (x) ≥ g(x) for all
x≥ 0, then the function f (x)−g(x) is in S.

Prove that if f (x) and g(x) are in S, then the function
f (x)g(x) is also in S.

B2 Let P be a given (non-degenerate) polyhedron. Prove
that there is a constant c(P) > 0 with the following
property: If a collection of n balls whose volumes sum
to V contains the entire surface of P, then n > c(P)/V 2.

B3 A round-robin tournament of 2n teams lasted for 2n−1
days, as follows. On each day, every team played one
game against another team, with one team winning and
one team losing in each of the n games. Over the course
of the tournament, each team played every other team
exactly once. Can one necessarily choose one winning
team from each day without choosing any team more
than once?

B4 Suppose that a0 = 1 and that an+1 = an + e−an for n =
0,1,2, . . . . Does an− logn have a finite limit as n→∞?
(Here logn = loge n = lnn.)

B5 Prove that, for any two bounded functions g1,g2 : R→
[1,∞), there exist functions h1,h2 : R→R such that, for
every x ∈ R,

sup
s∈R

(g1(s)xg2(s)) = max
t∈R

(xh1(t)+h2(t)).

B6 Let p be an odd prime number such that p≡ 2 (mod 3).
Define a permutation π of the residue classes modulo p
by π(x)≡ x3 (mod p). Show that π is an even permu-
tation if and only if p≡ 3 (mod 4).
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A1 Without loss of generality, assume d1 ≤ d2 ≤ ·· · ≤ d12.
If d2

i+2 < d2
i + d2

i+1 for some i ≤ 10, then di,di+1,di+2
are the side lengths of an acute triangle, since in this
case d2

i < d2
i+1+d2

i+2 and d2
i+1 < d2

i +d2
i+2 as well. Thus

we may assume d2
i+2 ≥ d2

i + d2
i+1 for all i. But then

by induction, d2
i ≥ Fid2

1 for all i, where Fi is the i-th
Fibonacci number (with F1 = F2 = 1): i = 1 is clear, i =
2 follows from d2 ≥ d1, and the induction step follows
from the assumed inequality. Setting i = 12 now gives
d2

12 ≥ 144d2
1 , contradicting d1 > 1 and d12 < 12.

Remark. A materially equivalent problem appeared on
the 2012 USA Mathematical Olympiad and USA Junior
Mathematical Olympiad.

A2 Write d for a∗ c = b∗ c ∈ S. For some e ∈ S, d ∗ e = a,
and thus for f = c ∗ e, a ∗ f = a ∗ c ∗ e = d ∗ e = a and
b∗ f = b∗ c∗ e = d ∗ e = a. Let g ∈ S satisfy g∗a = b;
then b = g∗a = g∗ (a∗ f ) = (g∗a)∗ f = b∗ f = a, as
desired.

Remark. With slightly more work, one can show that
S forms an abelian group with the operation ∗.

A3 We will prove that f (x) =
√

1− x2 for all x ∈ [−1,1].
Define g : (−1,1)→ R by g(x) = f (x)/

√
1− x2. Plug-

ging f (x) = g(x)
√

1− x2 into equation (i) and simplify-
ing yields

g(x) = g
(

x2

2− x2

)
(1)

for all x ∈ (−1,1). Now fix x ∈ (−1,1) and define a

sequence {an}∞
n=1 by a1 = x and an+1 = a2

n
2−a2

n
. Then

an ∈ (−1,1) and thus |an+1| ≤ |an|2 for all n. It follows
that {|an|} is a decreasing sequence with |an| ≤ |x|n for
all n, and so limn→∞ an = 0. Since g(an) = g(x) for
all n by (1) and g is continuous at 0, we conclude that
g(x) = g(0) = f (0) = 1. This holds for all x ∈ (−1,1)
and thus for x = ±1 as well by continuity. The result
follows.

Remark. As pointed out by Noam Elkies, condition
(iii) is unnecessary. However, one can use it to derive
a slightly different solution by running the recursion in
the opposite direction.

A4 We begin with an easy lemma.

Lemma. Let S be a finite set of integers with the following
property: for all a,b,c ∈ S with a ≤ b ≤ c, we also have a+
c−b ∈ S. Then S is an arithmetic progression.

Proof. We may assume #S ≥ 3, as otherwise S is trivially an
arithmetic progression. Let a1,a2 be the smallest and second-
smallest elements of S, respectively, and put d = a2−a1. Let
m be the smallest positive integer such that a1 +md /∈ S. Sup-
pose that there exists an integer n contained in S but not in
{a1,a1 + d, . . . ,a1 +(m− 1)d}, and choose the least such n.
By the hypothesis applied with (a,b,c) = (a1,a2,n), we see
that n−d also has the property, a contradiction.

We now return to the original problem. By dividing
B,q,r by gcd(q,r) if necessary, we may reduce to the
case where gcd(q,r) = 1. We may assume #S ≥ 3, as
otherwise S is trivially an arithmetic progression. Let
a1,a2,a3 be any three distinct elements of S, labeled
so that a1 < a2 < a3, and write rai = bi + miq with
bi,mi ∈ Z and bi ∈ B. Note that b1,b2,b3 must also be
distinct, so the differences b2− b1,b3− b1,b3− b2 are
all nonzero; consequently, two of them have the same
sign. If bi−b j and bk−bl have the same sign, then we
must have

(ai−a j)(bk−bl) = (bi−b j)(ak−al)

because both sides are of the same sign, of absolute
value less than q, and congruent to each other modulo
q. In other words, the points (a1,b1),(a2,b2),(a3,b3)
in R2 are collinear. It follows that a4 = a1 + a3− a2
also belongs to S (by taking b4 = b1 + b3− b2), so S
satisfies the conditions of the lemma. It is therefore an
arithmetic progression.

Reinterpretations. One can also interpret this argu-
ment geometrically using cross products (suggested by
Noam Elkies), or directly in terms of congruences (sug-
gested by Karl Mahlburg).

Remark. The problem phrasing is somewhat confus-
ing: to say that “S is the intersection of [the interval]
A with an arithmetic progression” is the same thing as
saying that “S is the empty set or an arithmetic progres-
sion” unless it is implied that arithmetic progressions
are necessarily infinite. Under that interpretation, how-
ever, the problem becomes false; for instance, for

q = 5,r = 1,A = [1,3],B = [0,2],

we have

T = {· · · ,0,1,2,5,6,7, . . .},S = {1,2}.

A5 The pairs (p,n) with the specified property are those
pairs with n = 1, together with the single pair (2,2).
We first check that these do work. For n = 1, it is clear
that taking v = (1) and M = (0) has the desired effect.
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For (p,n) = (2,2), we take v =
(
0 1

)
and M =

(
1 1
0 1

)
and then observe that

G(k)(0) =
(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
, k = 0,1,2,3.

We next check that no other pairs work, keeping in mind
that the desired condition means that G acts on Fn

p as a
cyclic permutation. Assume by way of contradiction
that (p,n) has the desired property but does not appear
in our list. In particular, we have n≥ 2.

Let I be the n× n identity matrix over Fp. Decom-
pose Fn

p as a direct sum of two subspaces V,W such that
M− I is nilpotent on V and invertible on W . Suppose
that W 6= 0. Split v as v1+v2 with v1 ∈V , v2 ∈W . Since
M− I is invertible on W , there exists a unique w ∈W
such that (M− I)w = −v2. Then G(k)(w)−w ∈ V for
all nonnegative integers k. Let k be the least positive in-
teger such that G(k)(w) = w; then k is at most the cardi-
nality of V , which is strictly less than pn because W 6= 0.
This gives a contradiction and thus forces W = 0.

In other words, the matrix N = M− I is nilpotent; con-
sequently, Nn = 0. For any positive integer k, we have

G(k)(0) = v+Mv+ · · ·+Mk−1v

=
k−1

∑
j=0

n−1

∑
i=0

(
j
i

)
Niv

=
n−1

∑
i=0

(
k

i+1

)
Niv.

If n ≥ 2 and (p,n) 6= (2,2), then pn−1 > n and so
Gk(0) = 0 for k = pn−1 (because all of the binomial
coefficients are divisible by p). This contradiction com-
pletes the proof.

A6 First solution. Yes, f (x,y) must be identically 0. We
proceed using a series of lemmas.

Lemma 1. Let R be a rectangular region of area 1 with
corners A,B,C,D labeled in counterclockwise order. Then
f (A)+ f (C) = f (B)+ f (D).

Proof. We may choose coordinates so that for some c > 0,

A = (0,0),B = (c,0),C = (c,1/c),D = (0,1/c).

Define the functions

g(x,y) =
∫ x+c

x
f (t,y)dt

h(x,y) =
∫ y

0
g(x,u)du.

For any x,y ∈ R,

h(x,y+1/c)−h(x,y) =
∫ x+c

x

∫ y+1/c

y
f (t,u)dt du = 0

by hypothesis, so h(x,y+1/c) = h(x,y). By the fundamental
theorem of calculus, we may differentiate both sides of this
identity with respect to y to deduce that g(x,y+1/c) = g(x,y).
Differentiating this new identity with respect to x yields the
desired equality.

Lemma 2. Let C be a circle whose diameter d is at least
√

2,
and let AB and A′B′ be two diameters of C. Then f (A) +
f (B) = f (A′)+ f (B′).

Proof. By continuity, it suffices to check the case where α =
arcsin 2

d2 is an irrational multiple of 2π . Let β be the ra-
dian measure of the counterclockwise arc from A to A′. By
Lemma 1, the claim holds when β = α . By induction, the
claim also holds when β ≡ nα (mod 2π) for any positive in-
teger n. Since α is an irrational multiple of 2π , the positive
multiples of α fill out a dense subset of the real numbers mod-
ulo 2π , so by continuity the claim holds for all β .

Lemma 3. Let R be a rectangular region of arbitrary (posi-
tive) area with corners A,B,C,D labeled in counterclockwise
order. Then f (A)+ f (C) = f (B)+ f (D).

Proof. Let EF be a segment such that AEFD and BEFC
are rectangles whose diagonals have length at least

√
2. By

Lemma 2,

f (A)+ f (F) = f (D)+ f (E)
f (C)+ f (E) = f (B)+ f (F),

yielding the claim.

Lemma 4. The restriction of f to any straight line is constant.

Proof. We may choose coordinates so that the line in question
is the x-axis. Define the function g(y) by

g(y) = f (0,y)− f (0,0).

By Lemma 3, for all x ∈ R,

f (x,y) = f (x,0)+g(y).

For any c > 0, by the original hypothesis we have

0 =
∫ x+c

x

∫ y+1/c

y
f (u,v)dudv

=
∫ x+c

x

∫ y+1/c

y
( f (u,0)+g(v))dudv

=
1
c

∫ x+c

x
f (u,0)du+ c

∫ y+1/c

y
g(v)dv.

In particular, the function F(x) =
∫ x+c

x f (u,0)du is constant.
By the fundamental theorem of calculus, we may differentiate
to conclude that f (x+ c,0) = f (x,0) for all x ∈ R. Since c
was also arbitrary, we deduce the claim.
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To complete the proof, note that since any two points in
R2 are joined by a straight line, Lemma 4 implies that f
is constant. This constant equals the integral of f over
any rectangular region of area 1, and hence must be 0
as desired.

Second solution (by Eric Larson, communicated by
Noam Elkies). In this solution, we fix coordinates and
assume only that the double integral vanishes on each
rectangular region of area 1 with sides parallel to the
coordinate axes, and still conclude that f must be iden-
tically 0.

Lemma. Let R be a rectangular region of area 1 with sides
parallel to the coordinate axes. Then the averages of f over
any two adjacent sides of R are equal.

Proof. Without loss of generality, we may take R to have cor-
ners (0,0),(c,0),(c,1/c),(0,1/c) and consider the two sides
adjacent to (c,1/c). Differentiate the equality

0 =
∫ x+c

x

∫ y+1/c

y
f (u,v)dudv

with respect to c to obtain

0 =
∫ y+1/c

y
f (x+ c,v)dv− 1

c2

∫ x+c

x
f (u,y+1/c)du.

Rearranging yields

c
∫ y+1/c

y
f (x+ c,v)dv =

1
c

∫ x+c

x
f (u,y+1/c)du,

which asserts the desired result.

Returning to the original problem, given any c > 0, we
can tile the plane with rectangles of area 1 whose ver-
tices lie in the lattice {(mc,n/c) : m,n ∈ Z}. By re-
peated application of the lemma, we deduce that for any
positive integer n,∫ c

0
f (u,0)du =

∫ (n+1)c

nc
f (u,0)du.

Replacing c with c/n, we obtain∫ c/n

0
f (u,0)du =

∫ c+1/n

c
f (u,0)du.

Fixing c and taking the limit as n→ ∞ yields f (0,0) =
f (c,0). By similar reasoning, f is constant on any hor-
izontal line and on any vertical line, and as in the first
solution the constant value is forced to equal 0.

Third solution. (by Sergei Artamoshin) We retain the
weaker hypothesis of the second solution. Assume by
way of contradiction that f is not identically zero.

We first exhibit a vertical segment PQ with f (P) > 0
and f (Q)< 0. It cannot be the case that f (P)≤ 0 for all

P, as otherwise the vanishing of the zero over any rect-
angle would force f to vanish identically. By continuity,
there must exist an open disc U such that f (P) > 0 for
all P ∈ U . Choose a rectangle R of area 1 with sides
parallel to the coordinate axes with one horizontal edge
contained in U . Since the integral of f over R is zero,
there must exist a point Q ∈ R such that f (Q)< 0. Take
P to be the vertical projection of Q onto the edge of R
contained in U .

By translating coordinates, we may assume that P =
(0,0) and Q = (0,a) for some a > 0. For s sufficiently
small, f is positive on the square of side length 2s cen-
tered at P, which we call S, and negative on the square
of side length 2s centered at Q, which we call S′. Since
the ratio 2s/(1−4s2) tends to 0 as s does, we can choose
s so that 2s/(1−4s2) = a/n for some positive integer n.

For i ∈ Z, let Ai be the rectangle{
(x,y) : s≤ x≤ s+

1−4s2

2s
,

−s+ i
2s

1−4s2 ≤ y≤ s+ i
2s

1−4s2

}
and let Bi be the rectangle{

(x,y) : s≤ x≤ s+
1−4s2

2s
,

s+ i
2s

1−4s2 ≤ y≤−s+(i+1)
2s

1−4s2

}
.

Then for all i ∈ Z,

S∪A0,An∪S′,Ai∪Bi,Bi∪Ai+1

are all rectangles of area 1 with sides parallel to the co-
ordinate axes, so the integral over f over each of these
rectangles is zero. Since the integral over S is positive,
the integral over A0 must be negative; by induction, for
all i ∈ Z the integral over Ai is negative and the integral
over Bi is positive. But this forces the integral over S′

to be positive whereas f is negative everywhere on S′, a
contradiction.

B1 Each of the following functions belongs to S for the rea-
sons indicated.

f (x),g(x) given
ln(x+1) (i)
ln( f (x)+1), ln(g(x)+1) (ii) plus two previous lines
ln( f (x)+1)+ ln(g(x)+1) (ii)
ex−1 (i)
( f (x)+1)(g(x)+1)−1 (ii) plus two previous lines
f (x)g(x)+ f (x)+g(x) previous line
f (x)+g(x) (ii) plus first line
f (x)g(x) (iii) plus two previous lines

B2 Fix a face F of the polyhedron with area A. Suppose F
is completely covered by balls of radii r1, . . . ,rn whose
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volumes sum to V . Then on one hand,

n

∑
i=1

4
3

πr3
i =V.

On the other hand, the intersection of a ball of radius r
with the plane containing F is a disc of radius at most r,
which covers a piece of F of area at most πr2; therefore

n

∑
i=1

πr2
i ≥ A.

By writing n as ∑
n
i=1 1 and applying Hölder’s inequality,

we obtain

nV 2 ≥

(
n

∑
i=1

(
4
3

πr3
i

)2/3
)3

≥ 16
9π

A3.

Consequently, any value of c(P) less than 16
9π

A3 works.

B3 The answer is yes. We first note that for any collection
of m days with 1 ≤ m ≤ 2n− 1, there are at least m
distinct teams that won a game on at least one of those
days. If not, then any of the teams that lost games on
all of those days must in particular have lost to m other
teams, a contradiction.

If we now construct a bipartite graph whose vertices are
the 2n teams and the 2n−1 days, with an edge linking
a day to a team if that team won their game on that day,
then any collection of m days is connected to a total of at
least m teams. It follows from Hall’s Marriage Theorem
that one can match the 2n−1 days with 2n−1 distinct
teams that won on their respective days, as desired.

B4 First solution. We will show that the answer is yes.
First note that for all x >−1, ex ≥ 1+ x and thus

x≥ log(1+ x). (2)

We next claim that an > log(n+ 1) (and in particular
that an− logn > 0) for all n, by induction on n. For
n = 0 this follows from a0 = 1. Now suppose that
an > log(n+ 1), and define f (x) = x + e−x, which is
an increasing function in x > 0; then

an+1 = f (an)> f (log(n+1))
= log(n+1)+1/(n+1)≥ log(n+2),

where the last inequality is (2) with x = 1/(n+1). This
completes the induction step.

It follows that an− logn is a decreasing function in n:
we have

(an+1− log(n+1))− (an− logn)

= e−an + log(n/(n+1))
< 1/(n+1)+ log(n/(n+1))≤ 0,

where the final inequality is (2) with x = −1/(n+ 1).
Thus {an− logn}∞

n=0 is a decreasing sequence of posi-
tive numbers, and so it has a limit as n→ ∞.

Second solution. Put bn = ean , so that bn+1 = bne1/bn .
In terms of the bn, the problem is to prove that bn/n has
a limit as n→ ∞; we will show that the limit is in fact
equal to 1.

Expanding e1/bn as a Taylor series in 1/bn, we have

bn+1 = bn +1+Rn

where 0≤ Rn ≤ c/bn for some absolute constant c > 0.
By writing

bn = n+ e+
n−1

∑
i=0

Ri,

we see first that bn ≥ n+ e. We then see that

0≤ bn

n
−1

≤ e
n
+

n−1

∑
i=0

Ri

n

≤ e
n
+

n−1

∑
i=0

c
nbi

≤ e
n
+

n−1

∑
i=0

c
n(i+ e)

≤ e
n
+

c logn
n

.

It follows that bn/n→ 1 as n→ ∞.

Remark. This problem is an example of the general
principle that one can often predict the asymptotic be-
havior of a recursive sequence by studying solutions of
a sufficiently similar-looking differential equation. In
this case, we start with the equation an+1− an = e−an ,
then replace an with a function y(x) and replace the dif-
ference an+1−an with the derivative y′(x) to obtain the
differential equation y′ = e−y, which indeed has the so-
lution y = logx.

B5 Define the function

f (x) = sup
s∈R
{x logg1(s)+ logg2(s)}.

As a function of x, f is the supremum of a collection of
affine functions, so it is convex. The function e f (x) is
then also convex, as may be checked directly from the
definition: for x1,x2 ∈ R and t ∈ [0,1], by the weighted
AM-GM inequality

te f (x1)+(1− t)e f (x2) ≥ et f (x1)+(1−t) f (x2)

≥ e f (tx1+(1−t)x2).

For each t ∈ R, draw a supporting line to the graph of
e f (x) at x = t; it has the form y = xh1(t)+h2(t) for some
h1(t),h2(t) ∈ R. For all x, we then have

sup
s∈R
{g1(s)xg2(s)} ≥ xh1(t)+h2(t)
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with equality for x = t. This proves the desired equality
(including the fact that the maximum on the right side
is achieved).

Remark. This problem demonstrates an example of du-
ality for convex functions.

B6 First solution. Since fixed points do not affect the sig-
nature of a permutation, we may ignore the residue class
of 0 and consider π as a permutation on the nonzero
residue classes modulo p. These form a cyclic group of
order p− 1, so the signature of π is also the signature
of multiplication by 3 as a permutation σ of the residue
classes modulo p−1. If we identify these classes with
the integers 0, . . . , p− 2, then the signature equals the
parity of the number of inversions: these are the pairs
(i, j) with 0≤ i < j≤ p−2 for which σ(i)> σ( j). We
may write

σ(i) = 3i− (p−1)
⌊

3i
p−1

⌋
from which we see that (i, j) cannot be an inversion un-
less b 3 j

p−1c > b
3i

p−1c. In particular, we only obtain in-
versions when i < 2(p−1)/3.

If i < (p− 1)/3, the elements j of {0, . . . , p− 2} for
which (i, j) is an inversion correspond to the elements
of {0, . . . ,3i} which are not multiples of 3, which are
2i in number. This contributes a total of 0+ 2+ · · ·+
2(p−2)/3 = (p−2)(p+1)/9 inversions.

If (p − 1)/3 < i < 2(p − 1)/3, the elements j of
{0, . . . , p−2} for which (i, j) is an inversion correspond
to the elements of {0, . . . ,3i− p + 1} congruent to 1
modulo 3, which are (3i− p+ 2)/3 = i− (p− 2)/3 in
number. This contributes a total of 1+ · · ·+(p−2)/3=
(p−2)(p+1)/18 inversions.

Summing up, the total number of inversions is (p−
2)(p + 1)/6, which is even if and only if p ≡ 3
(mod 4). This proves the claim.

Second solution (by Noam Elkies). Recall that the sign
of π (which is +1 if π is even and −1 if π is odd) can
be computed as

∏
0≤x<y<p

π(x)−π(y)
x− y

(because composing π with a transposition changes the
sign of the product). Reducing modulo p, we get a con-
gruence with

∏
0≤x<y<p

x3− y3

x− y
= ∏

0≤x<y<p
(x2 + xy+ y2).

It thus suffices to count the number of times each pos-
sible value of x2 + xy+ y2 occurs. Each nonzero value
c modulo p occurs p+1 times as x2 + xy+ y2 with 0≤
x,y < p and hence (p+ χ(c/3))/2 times with 0 ≤ x <
y < p, where χ denotes the quadratic character modulo

p. Since p ≡ 2 (mod 3), by the law of quadratic reci-
procity we have χ(−3) = +1, so χ(c/3) = χ(−c). It
thus remains to evaluate the product ∏

p−1
c=1 c(p+χ(−c))/2

modulo p.

If p≡ 3 (mod 4), this is easy: each factor is a quadratic
residue (this is clear if c is a residue, and otherwise
χ(−c) = +1 so p+ χ(−c) is divisible by 4) and −1
is not, so we must get +1 modulo p.

If p≡ 1 (mod 4), we must do more work: we choose a
primitive root g modulo p and rewrite the product as

p−2

∏
i=0

gi(p+(−1)i)/2.

The sum of the exponents, split into sums over i odd
and i even, gives

(p−3)/2

∑
j=0

(
j(p+1)+

(2 j+1)(p−1)
2

)
which simplifies to

(p−3)(p−1)(p+1)
8

+
(p−1)3

8
=

p−1
2

(
p2−1

2
− p
)
.

Hence the product we are trying to evaluate is congruent
to g(p−1)/2 ≡−1 modulo p.

Third solution (by Mark van Hoeij). We compute the
parity of π as the parity of the number of cycles of even
length in the cycle decomposition of π . For x a nonzero
residue class modulo p of multiplicative order d, the
elements of the orbit of x under π also have order d
(because d divides p− 1 and hence is coprime to 3).
Since the group of nonzero residue classes modulo p
is cyclic of order p− 1, the elements of order d fall
into ϕ(d)/ f (d) orbits under π , where ϕ is the Euler
phi function and f (d) is the multiplicative order of 3
modulo d. The parity of π is then the parity of the sum
of ϕ(d)/ f (d) over all divisors d of p−1 for which f (d)
is even.

If d is odd, then ϕ(d)/ f (d) = ϕ(2d)/ f (2d), so the
summands corresponding to d and 2d coincide. It thus
suffices to consider those d divisible by 4. If p ≡ 3
(mod 4), then there are no such summands, so the sum
is trivially even.

If p ≡ 1 (mod 4), then d = 4 contributes a summand
of ϕ(4)/ f (4) = 2/2 = 1. For each d which is a larger
multiple of 4, the group (Z/dZ)∗ is isomorphic to the
product of Z/2Z with another group of even order,
so the maximal power of 2 dividing f (d) is strictly
smaller than the maximal power of 2 dividing d. Hence
ϕ(d)/ f (d) is even, and so the overall sum is odd.

Remark. Note that the second proof uses quadratic
reciprocity, whereas the first and third proofs are sim-
ilar to several classical proofs of quadratic reciprocity.
Abhinav Kumar notes that the problem itself is a spe-
cial case of the Duke-Hopkins quadratic reciprocity
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law for abelian groups (Quadratic reciprocity in a finite
group, Amer. Math. Monthly 112 (2005), 251–256; see
also http://math.uga.edu/~pete/morequadrec.

pdf).
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A1 Recall that a regular icosahedron is a convex polyhe-
dron having 12 vertices and 20 faces; the faces are con-
gruent equilateral triangles. On each face of a regular
icosahedron is written a nonnegative integer such that
the sum of all 20 integers is 39. Show that there are
two faces that share a vertex and have the same integer
written on them.

A2 Let S be the set of all positive integers that are not
perfect squares. For n in S, consider choices of inte-
gers a1,a2, . . . ,ar such that n < a1 < a2 < · · · < ar and
n · a1 · a2 · · ·ar is a perfect square, and let f (n) be the
minumum of ar over all such choices. For example,
2 ·3 ·6 is a perfect square, while 2 ·3, 2 ·4, 2 ·5, 2 ·3 ·4,
2 ·3 ·5, 2 ·4 ·5, and 2 ·3 ·4 ·5 are not, and so f (2) = 6.
Show that the function f from S to the integers is one-
to-one.

A3 Suppose that the real numbers a0,a1, . . . ,an and x, with
0 < x < 1, satisfy

a0

1− x
+

a1

1− x2 + · · ·+ an

1− xn+1 = 0.

Prove that there exists a real number y with 0 < y < 1
such that

a0 +a1y+ · · ·+anyn = 0.

A4 A finite collection of digits 0 and 1 is written around a
circle. An arc of length L≥ 0 consists of L consecutive
digits around the circle. For each arc w, let Z(w) and
N(w) denote the number of 0’s in w and the number of
1’s in w, respectively. Assume that |Z(w)−Z(w′)| ≤ 1
for any two arcs w,w′ of the same length. Suppose that
some arcs w1, . . . ,wk have the property that

Z =
1
k

k

∑
j=1

Z(w j) and N =
1
k

k

∑
j=1

N(w j)

are both integers. Prove that there exists an arc w with
Z(w) = Z and N(w) = N.

A5 For m≥ 3, a list of
(m

3

)
real numbers ai jk (1≤ i << j <

k≤m) is said to be area definite for Rn if the inequality

∑
1≤i< j<k≤m

ai jk ·Area(∆AiA jAk)≥ 0

holds for every choice of m points A1, . . . ,Am in Rn. For
example, the list of four numbers a123 = a124 = a134 =
1, a234 = −1 is area definite for R2. Prove that if a list
of
(m

3

)
numbers is area definite for R2, then it is area

definite for R3.

A6 Define a function w : Z× Z → Z as follows. For
|a| , |b| ≤ 2, let w(a,b) be as in the table shown; oth-
erwise, let w(a,b) = 0.

w(a,b) b
-2 -1 0 1 2

-2 -1 -2 2 -2 -1
-1 -2 4 -4 4 -2

a 0 2 -4 12 -4 2
1 -2 4 -4 4 -2
2 -1 -2 2 -2 -1

For every finite subset S of Z×Z, define

A(S) = ∑
(s,s′)∈S×S

w(s− s′).

Prove that if S is any finite nonempty subset of
Z × Z, then A(S) > 0. (For example, if S =
{(0,1),(0,2),(2,0),(3,1)}, then the terms in A(S) are
12,12,12,12,4,4,0,0,0,0,−1,−1,−2,−2,−4,−4.)

B1 For positive integers n, let the numbers c(n) be de-
termined by the rules c(1) = 1, c(2n) = c(n), and
c(2n+1) = (−1)nc(n). Find the value of

2013

∑
n=1

c(n)c(n+2).

B2 Let C =
⋃

∞
N=1 CN , where CN denotes the set of those

‘cosine polynomials’ of the form

f (x) = 1+
N

∑
n=1

an cos(2πnx)

for which:

(i) f (x)≥ 0 for all real x, and

(ii) an = 0 whenever n is a multiple of 3.

Determine the maximum value of f (0) as f ranges
through C, and prove that this maximum is attained.

B3 Let P be a nonempty collection of subsets of {1, . . . ,n}
such that:

(i) if S,S′ ∈P , then S∪S′ ∈P and S∩S′ ∈P , and

(ii) if S ∈P and S 6= /0, then there is a subset T ⊂ S
such that T ∈P and T contains exactly one fewer
element than S.

Suppose that f : P→R is a function such that f ( /0)= 0
and

f (S∪S′) = f (S)+ f (S′)− f (S∩S′) for all S,S′ ∈P .

Must there exist real numbers f1, . . . , fn such that

f (S) = ∑
i∈S

fi

for every S ∈P?
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B4 For any continuous real-valued function f defined on
the interval [0,1], let

µ( f ) =
∫ 1

0
f (x)dx, Var( f ) =

∫ 1

0
( f (x)−µ( f ))2 dx,

M( f ) = max
0≤x≤1

| f (x)| .

Show that if f and g are continuous real-valued func-
tions defined on the interval [0,1], then

Var( f g)≤ 2Var( f )M(g)2 +2Var(g)M( f )2.

B5 Let X = {1,2, . . . ,n}, and let k ∈ X . Show that there
are exactly k · nn−1 functions f : X → X such that for
every x ∈ X there is a j≥ 0 such that f ( j)(x)≤ k. [Here
f ( j) denotes the jth iterate of f , so that f (0)(x) = x and
f ( j+1)(x) = f ( f ( j)(x)).]

B6 Let n≥ 1 be an odd integer. Alice and Bob play the fol-
lowing game, taking alternating turns, with Alice play-

ing first. The playing area consists of n spaces, arranged
in a line. Initially all spaces are empty. At each turn, a
player either

– places a stone in an empty space, or

– removes a stone from a nonempty space s, places
a stone in the nearest empty space to the left of
s (if such a space exists), and places a stone in
the nearest empty space to the right of s (if such a
space exists).

Furthermore, a move is permitted only if the resulting
position has not occurred previously in the game. A
player loses if he or she is unable to move. Assuming
that both players play optimally throughout the game,
what moves may Alice make on her first turn?
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A1 Suppose otherwise. Then each vertex v is a vertex for
five faces, all of which have different labels, and so the
sum of the labels of the five faces incident to v is at least
0+1+2+3+4= 10. Adding this sum over all vertices
v gives 3×39 = 117, since each face’s label is counted
three times. Since there are 12 vertices, we conclude
that 10×12≤ 117, contradiction.

Remark: One can also obtain the desired result by
showing that any collection of five faces must contain
two faces that share a vertex; it then follows that each
label can appear at most 4 times, and so the sum of all
labels is at least 4(0+1+2+3+4) = 40 > 39, contra-
diction.

A2 Suppose to the contrary that f (n) = f (m) with n < m,
and let n ·a1 · · ·ar, m ·b1 · · ·bs be perfect squares where
n < a1 < · · ·< ar, m < b1 < · · ·< bs, ar,bs are minimal
and ar = bs. Then (n · a1 · · ·ar) · (m · b1 · · ·bs) is also a
perfect square. Now eliminate any factor in this product
that appears twice (i.e., if ai = b j for some i, j, then
delete ai and b j from this product). The product of what
remains must also be a perfect square, but this is now a
product of distinct integers, the smallest of which is n
and the largest of which is strictly smaller than ar = bs.
This contradicts the minimality of ar.

Remark: Sequences whose product is a perfect square
occur naturally in the quadratic sieve algorithm for fac-
toring large integers. However, the behavior of the func-
tion f (n) seems to be somewhat erratic. Karl Mahlburg
points out the upper bound f (n)≤ 2n for n ≥ 5, which
holds because the interval (n,2n) contains an integer of
the form 2m2. A trivial lower bound is f (n) ≥ n+ p
where p is the least prime factor of n. For n = p prime,
the bounds agree and we have f (p) = 2p. For more
discussion, see https://oeis.org/A006255.

A3 Suppose on the contrary that a0 + a1y + · · ·+ anyn is
nonzero for 0 < y < 1. By the intermediate value theo-
rem, this is only possible if a0+a1y+ · · ·+anyn has the
same sign for 0 < y < 1; without loss of generality, we
may assume that a0+a1y+ · · ·+anyn > 0 for 0< y< 1.
For the given value of x, we then have

a0xm +a1x2m + · · ·+anx(n+1)m ≥ 0

for m= 0,1, . . . , with strict inequality for m> 0. Taking
the sum over all m is absolutely convergent and hence
valid; this yields

a0

1− x
+

a1

1− x2 + · · ·+ an

1− xn+1 > 0,

a contradiction.

A4 Let w′1, . . . ,w
′
k be arcs such that: w′j has the same length

as w j; w′1 is the same as w1; and w′j+1 is adjacent to
w′j (i.e., the last digit of w′j comes right before the first
digit of w′j+1). Since w j has length Z(w j)+N(w j), the
sum of the lengths of w1, . . . ,wk is k(Z+N), and so the
concatenation of w′1, . . . ,w

′
k is a string of k(Z +N) con-

secutive digits around the circle. (This string may wrap
around the circle, in which case some of these digits
may appear more than once in the string.) Break this
string into k arcs w′′1 , . . . ,w

′′
k each of length Z +N, each

adjacent to the previous one. (Note that if the num-
ber of digits around the circle is m, then Z + N ≤ m
since Z(w j) + N(w j) ≤ m for all j, and thus each of
w′′1 , . . . ,w

′′
k is indeed an arc.)

We claim that for some j = 1, . . . ,k, Z(w′′j ) = Z and
N(w′′j ) = N (where the second equation follows from
the first since Z(w′′j ) + N(w′′j ) = Z + N). Otherwise,
since all of the Z(w′′j ) differ by at most 1, either
Z(w′′j ) ≤ Z − 1 for all j or Z(w′′j ) ≥ Z + 1 for all j.
In either case, |kZ − ∑ j Z(w′j)| = |kZ − ∑ j Z(w′′j )| ≥
k. But since w1 = w′1, we have |kZ − ∑ j Z(w′j)| =
|∑k

j=1(Z(w j) − Z(w′j))| = |∑k
j=2(Z(w j) − Z(w′j))| ≤

∑
k
j=2 |Z(w j)−Z(w′j)| ≤ k−1, contradiction.

A5 Let A1, . . . ,Am be points in R3, and let n̂i jk denote a
unit vector normal to ∆AiA jAk (unless Ai,A j,Ak are
collinear, there are two possible choices for n̂i jk). If n̂ is
a unit vector in R3, and Πn̂ is a plane perpendicular to
n̂, then the area of the orthogonal projection of ∆AiA jAk
onto Πn̂ is Area(∆AiA jAk)|n̂i jk · n̂|. Thus if {ai jk} is area
definite for R2, then for any n̂,

∑ai jkArea(∆AiA jAk)|n̂i jk · n̂| ≥ 0.

Note that integrating |n̂i jk · n̂| over n̂ ∈ S2, the unit
sphere in R3, with respect to the natural measure on
S2 gives a positive number c, which is independent of
n̂i jk since the measure on S2 is rotation-independent.
Thus integrating the above inequality over n̂ gives
c∑ai jkArea(∆AiA jAk)≥ 0. It follows that {ai jk} is area
definite for R3, as desired.

Remark: It is not hard to check (e.g., by integration
in spherical coordinates) that the constant c occurring
above is equal to 2π . It follows that for any convex body
C in R3, the average over n̂ of the area of the projection
of C onto Πn̂ equals 1/4 of the surface area of C.

More generally, let C be a convex body in Rn. For n̂
a unit vector, let Πn̂ denote the hyperplane through the
origin perpendicular to n̂. Then the average over n̂ of the
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volume of the projection of C onto Πn̂ equals a constant
(depending only on n) times the (n− 1)-dimensional
surface area of C.

Statements of this form inhabit the field of inverse prob-
lems, in which one attempts to reconstruct information
about a geometric object from low-dimensional sam-
ples. This field has important applications in imaging
and tomography.

A6 (by Harm Derksen) Consider the generating functions

f (x,y) = ∑
(a,b)∈S

xayb,

g(x,y) = ∑
(a,b)∈Z2

w(a,b)xayb.

Then A(S) is the constant coefficient of the Laurent
polynomial h(x,y) = f (x,y) f (x−1,y−1)g(x,y). We may
compute this coefficient by averaging over unit circles:

(2π)2A(S) =
∫ 2π

0

∫ 2π

0
h(eis,eit)dt ds

=
∫ 2π

0

∫ 2π

0

∣∣ f (eis,eit)
∣∣2 g(eis,eit)dt ds.

Consequently, it is enough to check that g(eis,eit) is a
nonnegative real number for all s, t ∈R. But g(eis,eit)=
16G(coss,cos t) for

G(z,w) = zw+ z2 +w2− z2w− zw2− z2w2.

If z,w ∈ [−1,1] and zw≥ 0, then

G(z,w) = zw(1− zw)+ z2(1−w)+w2(1− z)≥ 0.

If z,w ∈ [−1,1] and zw≤ 0, then

G(z,w) = (z+w)2− zw(1+ z)(1+w)≥ 0.

Hence g(eis,eit)≥ 0 as desired.

B1 Note that

c(2k+1)c(2k+3) = (−1)kc(k)(−1)k+1c(k+1)
=−c(k)c(k+1)
=−c(2k)c(2k+2).

It follows that ∑
2013
n=2 c(n)c(n+ 2) = ∑

1006
k=1 (c(2k)c(2k+

2)+ c(2k+1)c(2k+3)) = 0, and so the desired sum is
c(1)c(3) =−1.

Remark: Karl Mahlburg points out the general formula
c(n) = (−1)b0b1+b1b2+···+bk−1bk for n having binary rep-
resentation bk · · ·b0.

B2 We claim that the maximum value of f (0) is 3. This
is attained for N = 2, a1 = 4

3 , a2 = 2
3 : in this case

f (x) = 1+ 4
3 cos(2πx)+ 2

3 cos(4πx) = 1+ 4
3 cos(2πx)+

2
3 (2cos2(2πx)−1)= 1

3 (2cos(2πx)+1)2 is always non-
negative.

Now suppose that f = 1 + ∑
N
n=1 an cos(2πnx) ∈ C.

When n is an integer, cos(2πn/3) equals 0 if 3|n and
−1/2 otherwise. Thus an cos(2πn/3) = −an/2 for all
n, and f (1/3) = 1−∑

N
n=1(an/2). Since f (1/3) ≥ 0,

∑
N
n=1 an ≤ 2, whence f (0) = 1+∑

N
n=1 an ≤ 3.

B3 Yes, such numbers must exist. To define them, we make
the following observations.

Lemma 1. For any i ∈ {1, . . . ,n}, if there exists any S ∈ P
containing i, then there exist S,T ∈P such that S is the disjoint
union of T with {i}.

Proof. Let S be an element of P containing i of minimum car-
dinality. By (ii), there must be a subset T ⊂ S containing P
with exactly one fewer element than S. These sets have the
desired form.

Lemma 2. Suppose S1,S2,T1,T2 ∈ P have the property that
for some i ∈ {1, . . . ,n}, S1 is the disjoint union of T1 with {i}
and S2 is the disjoint union of T2 with {i}. Then

f (S1)− f (T1) = f (S2)− f (T2).

Proof. By (i) we have

f (T1∪T2∪{i}) = f (S1)+ f (T2)− f (T1∩T2)

f (T1∪T2∪{i}) = f (T1)+ f (S2)− f (T1∩T2),

from which the claim follows immediately.

We now define f1, . . . , fn as follows. If i does not ap-
pear in any element of P, we put fi = 0. Otherwise, by
Lemma 1, we can find S,T ∈P such that S is the disjoint
union of T with {i}. We then set fi = f (S)− f (T ); by
Lemma 2, this does not depend on the choice of S,T .

To check that f (S) =∑i∈S fi for S∈P, note first that /0∈
P by repeated application of (ii) and that f ( /0) = 0 by
hypothesis. This provides the base case for an induction
on the cardinality of S; for any nonempty S∈P, we may
apply (ii) to find T ⊂ S such that S is the disjoint union
of T and some singleton set { j}. By construction and
the induction hypothesis, we have f (S) = f (T )+ f j =
j+∑i∈T fi = ∑i∈S fi as desired.

B4 Write f0(x) = f (x)− µ( f ) and g0(x) = g(x)− µ(g),
so that

∫ 1
0 f0(x)2 dx = Var( f ),

∫ 1
0 g0(x)2 dx = Var(g),

and
∫ 1

0 f0(x)dx =
∫ 1

0 g0(x)dx = 0. Now since |g(x)| ≤
M(g) for all x, 0 ≤

∫ 1
0 f0(x)2(M(g)2 − g(x)2)dx =

Var( f )M(g)2 −
∫ 1

0 f0(x)2g(x)2 dx, and similarly 0 ≤
Var(g)M( f )2−

∫ 1
0 f (x)2g0(x)2 dx. Summing gives

Var( f )M(g)2+Var(g)M( f )2≥
∫ 1

0
( f0(x)2g(x)2+ f (x)2g0(x)2)dx.

(1)
Now∫ 1

0
( f0(x)2g(x)2 + f (x)2g0(x)2)dx−Var( f g)

=
∫ 1

0
( f0(x)2g(x)2 + f (x)2g0(x)2− ( f (x)g(x)−

∫ 1

0
f (y)g(y)dy)2)dx;
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substituting f0(x) + µ( f ) for f (x) everywhere and
g0(x) + µ(g) for g(x) everywhere, and using the fact
that

∫ 1
0 f0(x)dx =

∫ 1
0 g0(x)dx = 0, we can expand and

simplify the right hand side of this equation to obtain∫ 1

0
( f0(x)2g(x)2 + f (x)2g0(x)2)dx−Var( f g)

=
∫ 1

0
f0(x)2g0(x)2 dx

−2µ( f )µ(g)
∫ 1

0
f0(x)g0(x)dx+(

∫ 1

0
f0(x)g0(x)dx)2

≥−2µ( f )µ(g)
∫ 1

0
f0(x)g0(x)dx.

Because of (1), it thus suffices to show that

2µ( f )µ(g)
∫ 1

0
f0(x)g0(x)dx≤ Var( f )M(g)2 +Var(g)M( f )2.

(2)
Now since (µ(g) f0(x)− µ( f )g0(x))2 ≥ 0 for all x, we
have

2µ( f )µ(g)
∫ 1

0
f0(x)g0(x)dx≤

∫ 1

0
(µ(g)2 f0(x)2 +µ( f )2g0(x)2)dx

= Var( f )µ(g)2 +Var(g)µ( f )2

≤ Var( f )M(g)2 +Var(g)M( f )2,

establishing (2) and completing the proof.

B5 First solution: We assume n≥ 1 unless otherwise spec-
ified. For T a set and S1,S2 two subsets of T , we say
that a function f : T → T iterates S1 into S2 if for each
x ∈ S1, there is a j ≥ 0 such that f ( j)(x) ∈ S2.

Lemma 1. Fix k ∈ X. Let f ,g : X → X be two functions such
that f iterates X into {1, . . . ,k} and f (x) = g(x) for x ∈ {k+
1, . . . ,n}. Then g also iterates X into {1, . . . ,k}.

Proof. For x ∈ X , by hypothesis there exists a nonnegative in-
teger j such that f ( j)(x) ∈ {1, . . . ,k}. Choose the integer j as
small as possible; then f (i)(x) ∈ {k+ 1, . . . ,n} for 0 ≤ i < j.
By induction on i, we have f (i)(x) = g(i)(x) for i = 0, . . . , j, so
in particular g( j)(x) ∈ {1, . . . ,k}. This proves the claim.

We proceed by induction on n−k, the case n−k = 0 be-
ing trivial. For the induction step, we need only confirm
that the number x of functions f : X → X which iter-
ate X into {1, . . . ,k+1} but not into {1, . . . ,k} is equal
to nn−1. These are precisely the functions for which
there is a unique cycle C containing only numbers in
{k+1, . . . ,n} and said cycle contains k+1. Suppose C
has length ` ∈ {1, . . . ,n− k}. For a fixed choice of `,
we may choose the underlying set of C in

(n−k−1
`−1

)
ways

and the cycle structure in (`− 1)! ways. Given C, the
functions f we want are the ones that act on C as speci-
fied and iterate X into {1, . . . ,k}∪C. By Lemma 1, the
number of such functions is n−` times the total num-
ber of functions that iterate X into {1, . . . ,k}∪C. By

the induction hypothesis, we compute the number of
functions which iterate X into {1, . . . ,k+1} but not into
{1, . . . ,k} to be

n−k

∑
`=1

(n− k−1) · · ·(n− k− `+1)(k+ `)nn−`−1

By rewriting this as a telescoping sum, we get

n−k

∑
`=1

(n− k−1) · · ·(n− k− `+1)(n)nn−`−1

−
n−k

∑
`=1

(n− k−1) · · ·(n− k− `+1)(n− k− `)nn−`−1

=
n−k−1

∑
`=0

(n− k−1) · · ·(n− k− `)nn−`−1

−
n−k

∑
`=1

(n− k−1) · · ·(n− k− `)nn−`−1

= nn−1.

as desired.

Second solution: For T a set, f : T → T a function, and
S a subset of T , we define the contraction of f at S as
the function g : {∗}∪ (T −S)→{∗}∪ (T −S) given by

g(x) =


∗ x = ∗
∗ x 6= ∗, f (x) ∈ S
f (x) x 6= ∗, f (x) /∈ S.

Lemma 2. For S ⊆ X of cardinality ` ≥ 0, there are `nn−`−1

functions f : {∗}∪X →{∗}∪X with f−1(∗) = {∗}∪S which
iterate X into {∗}.

Proof. We induct on n. If `= n then there is nothing to check.
Otherwise, put T = f−1(S), which must be nonempty. The
contraction g of f at {∗}∪S is then a function on {∗}∪(X−S)
with f−1(∗) = {∗}∪T which iterates X − S into {∗}. More-
over, for given T , each such g arises from `#T functions of the
desired form. Summing over T and invoking the induction
hypothesis, we see that the number of functions f is

n−`

∑
k=1

(
n− `

k

)
`k · k(n− `)n−`−k−1

=
n−`

∑
k=1

(
n− `−1

k−1

)
`k(n− `)n−`−k = `nn−`−1

as claimed.

We now count functions f : X → X which iterate X
into {1, . . . ,k} as follows. By Lemma 1 of the first
solution, this count equals nk times the number of
functions with f (1) = · · · = f (k) = 1 which iterate X
into {1, . . . ,k}. For such a function f , put S = {k +
1, . . . ,n}∩ f−1({1, . . . ,k}) and let g be the contraction
of f at {1, . . . ,k}; then g−1(∗) = ∗∪{S} and g iterates
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its domain into ∗. By Lemma 2, for ` = #S, there are
`(n− k)n−k−`−1 such functions g. For given S, each
such g gives rise to k` functions f with f (1) = · · · =
f (k) = 1 which iterate X into {1, . . . ,k}. Thus the num-
ber of such functions f is

n−k

∑
`=0

(
n− k
`

)
k``(n− k)n−k−`−1

=
n−k

∑
`=0

(
n− k−1
`−1

)
k`(n− k)n−k−`

= knn−k−1.

The desired count is this times nk, or knn−1 as desired.

Remark: Functions of the sort counted in Lemma 2 can
be identified with rooted trees on the vertex set {∗}∪X
with root ∗. Such trees can be counted using Cayley’s
formula, a special case of Kirchoff’s matrix tree theo-
rem. The matrix tree theorem can also be used to show
directly that the number of rooted forests on n vertices
with k fixed roots is knn−k−1; the desired count follows
immediately from this formula plus Lemma 1. (One
can also use Prüfer sequences for a more combinatorial
interpretation.)

B6 We show that the only winning first move for Alice is
to place a stone in the central space. We start with some
terminology.

By a block of stones, we mean a (possibly empty) se-
quence of stones occupying consecutive spaces. By the
extremal blocks, we mean the (possibly empty) max-
imal blocks adjacent to the left and right ends of the
playing area.

We refer to a legal move consisting of placing a stone in
an empty space as a move of type 1, and any other legal
move as being of type 2. For i = 0, . . . ,n, let Pi be the
collection of positions containing i stones. Define the
end zone as the union Z = Pn−1 ∪Pn. In this language,
we make the following observations.

– Any move of type 1 from Pi ends in Pi+1.

– Any move of type 2 from Pn ends in Pn−1.

– For i < n, any move of type 2 from Pi ends in Pi∪
Pi+1.

– At this point, we see that the number of stones
cannot decrease until we reach the end zone.

– For i < n−1, if we start at a position in Pi where
the extremal blocks have length a,b, then the only
possible moves to Pi decrease one of a,b while
leaving the other unchanged (because they are
separated by at least two empty spaces). In par-
ticular, no repetition is possible within Pi, so the
number of stones must eventually increase to i+1.

– From any position in the end zone, the legal moves
are precisely to the other positions in the end

zone which have not previously occurred. Con-
sequently, after the first move into the end zone,
the rest of the game consists of enumerating all
positions in the end zone in some order.

– At this point, we may change the rules without
affecting the outcome by eliminating the rule on
repetitions and declaring that the first player to
move into the end zone loses (because #Z = n+1
is even).

To determine who wins in each position, number the
spaces of the board 1, . . . ,n from left to right. Define the
weight of a position to be the sum of the labels of the
occupied spaces, reduced modulo n+1. For any given
position outside of the end zone, for each s = 1, . . . ,n
there is a unique move that adds s to the weight: if s is
empty that a move of type 1 there does the job. Other-
wise, s inhabits a block running from i+1 to j−1 with
i and j empty (or equal to 0 or n+1), so the type 2 move
at i+ j− s (which belongs to the same block) does the
job.

We now verify that a position of weight s outside of
the end zone is a win for the player to move if and
only if s 6= (n+ 1)/2. We check this for positions in
Pi for i = n− 2, . . . ,0 by descending induction. For
positions in Pn−2, the only safe moves are in the ex-
tremal blocks; we may thus analyze these positions
as two-pile Nim with pile sizes equal to the lengths
of the extremal blocks. In particular, a position is a
win for the player to move if and only if the extremal
blocks are unequal, in which case the winning move
is to equalize the blocks. In other words, a position is
a win for the player to move unless the empty spaces
are at s and n+ 1− s for some s ∈ {1, . . . ,(n− 1)/2},
and indeed these are precisely the positions for which
the weight equals (1+ · · ·+ n)− (n+ 1) ≡ (n+ 1)/2
(mod n + 1). Given the analysis of positions in Pi+1
for some i, it is clear that if a position in Pi has weight
s 6=(n+1)/2, there is a winning move of weight t where
s + t ≡ (n + 1)/2 (mod n), whereas if s = (n + 1)/2
then no move leads to a winning position.

It thus follows that the unique winning move for Al-
ice at her first turn is to move at the central space, as
claimed.

Remark: Despite the existence of a simple description
of the winning positions, it is nonetheless necessary to
go through the preliminary analysis in order to establish
the nature of the end zone and to ensure that the repe-
tition clause does not affect the availability of moves
outside of the end zone. However, it is not strictly nec-
essary to study Pn−2 separately: none of the positions
in Pn−1 has weight (n+1)/2, so following the strategy
of forcing the weight to equal (n+1)/2 cannot force a
first move into the end zone.

Remark: It is easy to see that Alice’s winning strategy
is to ensure that after each of her moves, the stones are
placed symmetrically and the central space is occupied.
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However, it is somewhat more complicated to describe
Bob’s winning strategy without the modular interpreta-
tion.

Remark: To resolve a mild ambiguity in the problem
statement, it should be clarified that the initial position
(with no stones placed) should be treated as having oc-
curred previously once the first move has been made.
This only affects the case n = 1.

Remark: For the analogous problem with n even,
David Savitt has conjectured (based on the cases n = 2
and n = 4) that Alice has a winning strategy, and her
possible winning moves at her first turn are to place a
stone in one of the two central spaces. We give a par-
tial analysis based on an argument from Art of Problem
Solving user gnayijoag, with some clarification from
Savitt.

We first revise the endgame analysis from the original
solution. Define the sets Pi and the end zone Z as be-
fore. The first six observations from the previous solu-
tion remain correct; however, now the number of posi-
tions in Z is odd, so the first player to move into Z wins.
That is, every position in Pn−2 is a winning position for
the player to move. Consequently, the positions in Pn−3
can be identified with two-player Nim on the extremal
blocks (the subdivision between the two internal blocks
being immaterial).

This suggests that if we want to introduce a numeri-
cal invariant that detects the difference between win-
ning and losing positions for the player to move, we
must consider a formula that selectively discards some
information about some of the stones. To this end, for
a position x ∈ Pn−k for k ≥ 2 with vacant spaces at
a0 > · · · > ak−1 (or a0(x) > · · · > ak−1(x) if this needs
to be clarified), define

A(x) = a0 + · · ·+ak−1

f (x, t) = A−at − t(n+1) (t = 0, . . . ,k−1);

note that f (x,0) > · · · > f (x,k− 1). We say that x is
balanced if f (x, t) = 0 for some (necessarily unique)
choice of t, in which case we refer to at as the balance
point of x; otherwise, we say that x is unbalanced. This
definition then has the following properties.

– The property of being balanced is invariant under
left-right symmetry. This will permit some sim-
plification in the following arguments.

– Every position in Pn−2 is unbalanced, because
a0 < a0 +a1 < a1 +(n+1).

– For a position x ∈ P1 to be balanced, in order
to have f (x, t) ≡ 0 (mod n + 1) for some t, the
unique occupied space must be n + 1− t. We
must then have A(x)− t = 1+ · · ·+n− (n+1) =
(n/2− 1)(n+ 1), so x is balanced if and only if
f (x,n/2− 1) = 0. This occurs if and only if the
occupied space is n/2 or n/2+1.

– From every balanced position x ∈ Pn−k for k ≥ 3,
every move leads to an unbalanced position. To
check this, we need only consider moves at or to
the left of the balance point at of x. Let y be the
result of a move from x. If the move is at at , then

f (y, t ′)≡ f (x, t)−at ′(y) =−at ′(y) (mod n+1)

and the latter is not a nonzero residue because
at ′ ∈{1, . . . ,n}. For a move to the left of at , the va-
cant spaces to the right of at remain at a0, . . . ,at−1
and 0 < A(x)−A(y)< at ; consequently,

f (y, t−1) = f (x, t−1)− (A(x)−A(y))
≥ ( f (x, t)+at −at−1 +(n+1))− (at −1)
= n+2−at−1 > 0.

Meanwhile, either at remains vacant, or at and
at+1 are filled while some space b in between be-
comes vacant; in either case, we have f (y, t) <
f (x, t) = 0. Since f (y, t) < 0 < f (y, t − 1), y is
unbalanced.

To complete the analysis, one would need to show that
from every unbalanced position in Pn−k for k ≥ 3, there
is a move to some balanced position; this would then
show that a position in the game is a win for the player
to move if and only if it is unbalanced, from which the
conjecture of Savitt would follow.
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A1 Prove that every nonzero coefficient of the Taylor series
of

(1− x+ x2)ex

about x = 0 is a rational number whose numerator (in
lowest terms) is either 1 or a prime number.

A2 Let A be the n× n matrix whose entry in the i-th row
and j-th column is

1
min(i, j)

for 1≤ i, j ≤ n. Compute det(A).

A3 Let a0 = 5/2 and ak = a2
k−1−2 for k ≥ 1. Compute

∞

∏
k=0

(
1− 1

ak

)
in closed form.

A4 Suppose X is a random variable that takes on only non-
negative integer values, with E [X ] = 1, E

[
X2
]
= 2, and

E
[
X3
]
= 5. (Here E [y] denotes the expectation of the

random variable Y .) Determine the smallest possible
value of the probability of the event X = 0.

A5 Let

Pn(x) = 1+2x+3x2 + · · ·+nxn−1.

Prove that the polynomials Pj(x) and Pk(x) are relatively
prime for all positive integers j and k with j 6= k.

A6 Let n be a positive integer. What is the largest k
for which there exist n× n matrices M1, . . . ,Mk and
N1, . . . ,Nk with real entries such that for all i and j, the
matrix product MiN j has a zero entry somewhere on its
diagonal if and only if i 6= j?

B1 A base 10 over-expansion of a positive integer N is an
expression of the form

N = dk10k +dk−110k−1 + · · ·+d0100

with dk 6= 0 and di ∈ {0,1,2, . . . ,10} for all i. For
instance, the integer N = 10 has two base 10 over-
expansions: 10 = 10 ·100 and the usual base 10 expan-
sion 10 = 1 ·101 +0 ·100. Which positive integers have
a unique base 10 over-expansion?

B2 Suppose that f is a function on the interval [1,3] such
that −1 ≤ f (x) ≤ 1 for all x and

∫ 3
1 f (x)dx = 0. How

large can
∫ 3

1
f (x)

x dx be?

B3 Let A be an m× n matrix with rational entries. Sup-
pose that there are at least m+n distinct prime numbers
among the absolute values of the entries of A. Show that
the rank of A is at least 2.

B4 Show that for each positive integer n, all the roots of the
polynomial

n

∑
k=0

2k(n−k)xk

are real numbers.

B5 In the 75th annual Putnam Games, participants compete
at mathematical games. Patniss and Keeta play a game
in which they take turns choosing an element from the
group of invertible n× n matrices with entries in the
field Z/pZ of integers modulo p, where n is a fixed
positive integer and p is a fixed prime number. The
rules of the game are:

(1) A player cannot choose an element that has been
chosen by either player on any previous turn.

(2) A player can only choose an element that com-
mutes with all previously chosen elements.

(3) A player who cannot choose an element on his/her
turn loses the game.

Patniss takes the first turn. Which player has a winning
strategy? (Your answer may depend on n and p.)

B6 Let f : [0,1]→ R be a function for which there exists a
constant K > 0 such that | f (x)− f (y)| ≤K |x− y| for all
x,y ∈ [0,1]. Suppose also that for each rational number
r ∈ [0,1], there exist integers a and b such that f (r) =
a + br. Prove that there exist finitely many intervals
I1, . . . , In such that f is a linear function on each Ii and
[0,1] =

⋃n
i=1 Ii.
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Kiran Kedlaya and Lenny Ng

A1 The coefficient of xn in the Taylor series of (1− x +
x2)ex for n = 0,1,2 is 1,0, 1

2 , respectively. For n ≥ 3,
the coefficient of xn is

1
n!
− 1

(n−1)!
+

1
(n−2)!

=
1−n+n(n−1)

n!

=
n−1

n(n−2)!
.

If n− 1 is prime, then the lowest-terms numerator is
clearly either 1 or the prime n−1 (and in fact the latter,
since n−1 is relatively prime to n and to (n−2)!). If n−
1 is composite, either it can be written as ab for some
a 6= b, in which case both a and b appear separately in
(n− 2)! and so the numerator is 1, or n− 1 = p2 for
some prime p, in which case p appears in (n− 2)! and
so the numerator is either 1 or p. (In the latter case,
the numerator is actually 1 unless p = 2, as in all other
cases both p and 2p appear in (n−2)!.)

A2 Let v1, . . . ,vn denote the rows of A. The determinant is
unchanged if we replace vn by vn− vn−1, and then vn−1
by vn−1− vn−2, and so forth, eventually replacing vk by
vk−vk−1 for k≥ 2. Since vk−1 and vk agree in their first
k−1 entries, and the k-th entry of vk− vk−1 is 1

k −
1

k−1 ,
the result of these row operations is an upper triangular
matrix with diagonal entries 1, 1

2−1, 1
3−

1
2 , . . . ,

1
n−

1
n−1 .

The determinant is then

n

∏
k=2

(
1
k
− 1

k−1

)
=

n

∏
k=2

(
−1

k(k−1)

)
=

(−1)n−1

(n−1)!n!
.

Note that a similar calculation can be made whenever
A has the form Ai j = min{ai,a j} for any monotone se-
quence a1, . . . ,an. Note also that the standard Gaussian
elimination algorithm leads to the same upper triangu-
lar matrix, but the nonstandard order of operations used
here makes the computations somewhat easier.

Remark: The inverse of A can be identified explicitly:
for n≥ 2, it is the matrix B given by

Bi j =



−1 i = j = 1
−2i2 1 < i = j < n
−(n−1)n i = j = n
i j |i− j|= 1
0 otherwise.

For example, for n = 5,

B =


−1 2 0 0 0
2 −8 6 0 0
0 6 −18 12 0
0 0 12 −32 20
0 0 0 20 −20

 .

Let C denote the matrix obtained from B by replacing
the bottom-right entry with −2n2 (for consistency with
the rest of the diagonal). Expanding in minors along
the bottom row produces a second-order recursion for
det(C) solving to det(C) = (−1)n(n!)2; a similar ex-
pansion then yields det(B) = (−1)n−1n!(n−1)!.

Remark: This problem and solution are due to one of
us (Kedlaya). The statement appears in the comments
on sequence A010790 (i.e., the sequence (n−1)!n!) in
the On-Line Encyclopedia of Integer Sequences (http:
//oeis.org), attributed to Benoit Cloitre in 2002.

A3 First solution: Using the identity

(x+ x−1)2−2 = x2 + x−2,

we may check by induction on k that ak = 22k
+2−2k

; in
particular, the product is absolutely convergent. Using
the identities

x2 +1+ x−2

x+1+ x−1 = x−1+ x−1,

x2− x−2

x− x−1 = x+ x−1,

we may telescope the product to obtain

∞

∏
k=0

(
1− 1

ak

)
=

∞

∏
k=0

22k −1+2−2k

22k
+2−2k

=
∞

∏
k=0

22k+1
+1+2−2k+1

22k
+1+2−2k · 22k −2−2k

22k+1 −22−k−1

=
220 −2−20

220
+1+2−20 =

3
7
.

Second solution: (by Catalin Zara) In this solution, we
do not use the explicit formula for ak. We instead note
first that the ak form an increasing sequence which can-
not approach a finite limit (since the equation L= L2−2
has no real solution L > 2), and is thus unbounded. Us-
ing the identity

ak+1 +1 = (ak−1)(ak +1),
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one checks by induction on n that

n

∏
k=0

(
1− 1

ak

)
=

2
7

an+1 +1
a0a1 · · ·an

.

Using the identity

a2
n+2−4 = a4

n+1−4a2
n+1,

one also checks by induction on n that

a0a1 · · ·an =
2
3

√
a2

n+1−4.

Hence

n

∏
k=0

(
1− 1

ak

)
=

3
7

an+1 +1√
a2

n+1−4

tends to 3
7 as an+1 tends to infinity, hence as n tends to

infinity.

A4 The answer is 1
3 .

First solution: Let an = P(X = n); we want the min-
imum value for a0. If we write Sk = ∑

∞
n=1 nkan, then

the given expectation values imply that S1 = 1, S2 = 2,
S3 = 5. Now define f (n) = 11n− 6n2 + n3, and note
that f (0) = 0, f (1) = f (2) = f (3) = 6, and f (n) > 6
for n ≥ 4; thus 4 = 11S1− 6S2 + S3 = ∑

∞
n=1 f (n)an ≥

6∑
∞
n=1 an. Since ∑

∞
n=0 an = 1, it follows that a0 ≥ 1

3 .
Equality is achieved when a0 =

1
3 , a1 =

1
2 , a3 =

1
6 , and

an = 0 for all other n, and so the answer is 1
3 .

Second solution: (by Tony Qiao) Define the probabil-
ity generating function of P as the power series

G(z) =
∞

∑
n=0

P(x = n)zn.

We compute that G(1) = G′(1) = G′′(1) = G′′′(1) = 1.
By Taylor’s theorem with remainder, for any x ∈ [0,1],
there exists c ∈ [x,1] such that

G(x) = 1+(x−1)+
(x−1)2

2!
+

(x−1)3

3!
+

G′′′′(c)
4!

(x−1)4.

In particular, G(0) = 1
3 +

1
24 G′′′′(c) for some c ∈ [0,1].

However, since G has nonnegative coefficients and c≥
0, we must have G′′′′(c)≥ 0, and so G(0)≥ 1

3 . As in the
first solution, we see that this bound is best possible.

A5 First solution: Suppose to the contrary that there exist
positive integers i 6= j and a complex number z such that
Pi(z) = Pj(z) = 0. Note that z cannot be a nonnegative
real number or else Pi(z),Pj(z) > 0; we may put w =

z−1 6= 0,1. For n ∈ {i+1, j+1} we compute that

wn = nw−n+1, wn = nw−n+1;

note crucially that these equations also hold for n ∈
{0,1}. Therefore, the function f : [0,+∞)→ R given
by

f (t) = |w|2t − t2 |w|2 +2t(t−1)Re(w)− (t−1)2

satisfies f (t) = 0 for t ∈ {0,1, i+1, j+1}. On the other
hand, for all t ≥ 0 we have

f ′′′(t) = (2log |w|)3 |w|2t > 0,

so by Rolle’s theorem, the equation f (3−k)(t) = 0 has at
most k distinct solutions for k = 0,1,2,3. This yields
the desired contradiction.

Remark: By similar reasoning, an equation of the form
ex = P(x) in which P is a real polynomial of degree
d has at most d + 1 real solutions. This turns out to
be closely related to a concept in mathematical logic
known as o-minimality, which in turn has deep conse-
quences for the solution of Diophantine equations.

Second solution: (by Noam Elkies) We recall a result
commonly known as the Eneström-Kakeya theorem.

Lemma 1. Let

f (x) = a0 +a1x+ · · ·+anxn

be a polynomial with real coefficients such that 0 < a0 ≤ a1 ≤
·· · ≤ an. Then every root z ∈ C of f satisfies |z| ≤ 1.

Proof. If f (z) = 0, then we may rearrange the equality 0 =
f (z)(z−1) to obtain

anzn+1 = (an−an−1)zn + · · ·+(a1−a0)z+a0.

But if |z|> 1, then

|anzn+1| ≤ (|an−an−1|+ · · ·+ |a1−a0|)|z|n ≤ |anzn|,

contradiction.

Corollary 2. Let

f (x) = a0 +a1x+ · · ·+anxn

be a polynomial with positive real coefficients. Then every
root z ∈ C of f satisfies r ≤ |z| ≤ R for

r = min{a0/a1, . . . ,an−1/an}
R = max{a0/a1, . . . ,an−1/an}.

Proof. The bound |z| ≤ R follows by applying the lemma to
the polynomial f (x/R). The bound |z| ≥ r follows by applying
the lemma to the reverse of the polynomial f (x/r).

Suppose now that Pi(z) = Pj(z) = 0 for some z ∈ C and
some integers i< j. We clearly cannot have j = i+1, as
then Pi(0) 6= 0 and so Pj(z)−Pi(z) = (i+ 1)zi 6= 0; we
thus have j− i ≥ 2. By applying Corollary 2 to Pi(x),
we see that |z| ≤ 1− 1

i . On the other hand, by applying
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Corollary 2 to (Pj(x)− Pi(x))/xi−1, we see that |z| ≥
1− 1

i+2 , contradiction.

Remark: Elkies also reports that this problem is his
submission, dating back to 2005 and arising from work
of Joe Harris. It dates back further to Example 3.7 in:
Hajime Kaji, On the tangentially degenerate curves, J.
London Math. Soc. (2) 33 (1986), 430–440, in which
the second solution is given.

Remark: Elkies points out a mild generalization which
may be treated using the first solution but not the sec-
ond: for integers a < b < c < d and z ∈ C which is
neither zero nor a root of unity, the matrix 1 1 1 1

a b c d
za zb zc zd


has rank 3 (the problem at hand being the case a =
0,b = 1,c = i+1,d = j+1).

Remark: It seems likely that the individual polynomi-
als Pk(x) are all irreducible, but this appears difficult to
prove.

Third solution: (by David Feldman) Note that

Pn(x)(1− x) = 1+ x+ · · ·+ xn−1−nxn.

If |z| ≥ 1, then

n|z|n ≥ |z|n−1 + · · ·+1≥ |zn−1 + · · ·+1|,

with the first equality occurring only if |z| = 1 and the
second equality occurring only if z is a positive real
number. Hence the equation Pn(z)(1−z) = 0 has no so-
lutions with |z| ≥ 1 other than the trivial solution z = 1.
Since

Pn(x)(1− x)2 = 1− (n+1)xn +nxn+1,

it now suffices to check that the curves

Cn = {z ∈ C : 0 < |z|< 1, |z|n |n+1− zn|= 1}

are pairwise disjoint as n varies over positive integers.

Write z = u+ iv; we may assume without loss of gener-
ality that v≥ 0. Define the function

Ez(n) = n log |z|+ log |n+1− zn|.

One computes that for n ∈ R, E ′′z (n)< 0 if and only if

u− v−1
(1−u)2 + v2 < n <

u+ v−1
(1−u)2 + v2 .

In addition, Ez(0) = 0 and

E ′z(0) =
1
2

log(u2 + v2)+(1−u)≥ log(u)+1−u≥ 0

since log(u) is concave. From this, it follows that the
equation Ez(n) = 0 can have at most one solution with
n > 0.

Remark: The reader may notice a strong similarity be-
tween this solution and the first solution. The primary
difference is we compute that E ′z(0)≥ 0 instead of dis-
covering that Ez(−1) = 0.

Remark: It is also possible to solve this prob-
lem using a p-adic valuation on the field of alge-
braic numbers in place of the complex absolute value;
however, this leads to a substantially more compli-
cated solution. In lieu of including such a solution
here, we refer to the approach described by Victor
Wang here: http://www.artofproblemsolving.
com/Forum/viewtopic.php?f=80&t=616731.

A6 The largest such k is nn. We first show that this
value can be achieved by an explicit construction. Let
e1, . . . ,en be the standard basis of Rn. For i1, . . . , in ∈
{1, . . . ,n}, let Mi1,...,in be the matrix with row vectors
ei1 , . . . ,ein , and let Ni1,...,in be the transpose of Mi1,...,in .
Then Mi1,...,inN j1,..., jn has k-th diagonal entry eik · e jk ,
proving the claim.

We next show that for any families of matrices Mi,N j as
described, we must have k≤ nn. Let V be the n-fold ten-
sor product of Rn, i.e., the vector space with orthonor-
mal basis ei1⊗·· ·⊗ein for i1, . . . , in ∈ {1, . . . ,n}. Let mi
be the tensor product of the rows of Mi; that is,

mi =
n

∑
i1,...,in=1

(Mi)1,i1 · · ·(Mi)n,inei1 ⊗·· ·⊗ ein .

Similarly, let n j be the tensor product of the columns of
N j. One computes easily that mi ·n j equals the product
of the diagonal entries of MiN j, and so vanishes if and
only if i 6= j. For any ci ∈ R such that ∑i cimi = 0, for
each j we have

0 =

(
∑

i
cimi

)
·n j = ∑

i
ci(mi ·n j) = c j.

Therefore the vectors m1, . . . ,mk in V are linearly inde-
pendent, implying k ≤ nn as desired.

Remark: Noam Elkies points out that similar argument
may be made in the case that the Mi are m×n matrices
and the N j are n×m matrices.

B1 These are the integers with no 0’s in their usual base
10 expansion. If the usual base 10 expansion of N is
dk10k + · · ·+d0100 and one of the digits is 0, then there
exists an i ≤ k− 1 such that di = 0 and di+1 > 0; then
we can replace di+110i+1+(0)10i by (di+1−1)10i+1+
(10)10i to obtain a second base 10 over-expansion.

We claim conversely that if N has no 0’s in its usual
base 10 expansion, then this standard form is the unique
base 10 over-expansion for N. This holds by induc-
tion on the number of digits of N: if 1 ≤ N ≤ 9,
then the result is clear. Otherwise, any base 10 over-
expansion N = dk10k + · · ·+ d110+ d0100 must have
d0 ≡ N (mod 10), which uniquely determines d0 since
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N is not a multiple of 10; then (N−d0)/10 inherits the
base 10 over-expansion dk10k−1 + · · ·+ d1100, which
must be unique by the induction hypothesis.

Remark: Karl Mahlburg suggests an alternate proof of
uniqueness (due to Shawn Williams): write the usual
expansion N = dk10k + · · ·+d0100 and suppose di 6= 0
for all i. Let M = cl10l + · · ·+ c0100 be an over-
expansion with at least one 10. To have M = N, we
must have l ≤ k; we may pad the expansion of M with
zeroes to force l = k. Now define ei = ci − di; since
1≤ di ≤ 9 and 0≤ ci ≤ 10, we have 0≤ |ei| ≤ 9. More-
over, there exists at least one index i with ei 6= 0, since
any index for which ci = 10 has this property. But if i is
the largest such index, we have

10i ≤
∣∣ei10i∣∣= ∣∣∣∣∣− i−1

∑
j=0

ei10i

∣∣∣∣∣
≤

i−1

∑
j=0

∣∣ei|10i∣∣≤ 9 ·10i−1 + · · ·+9 ·100,

a contradiction.

B2 In all solutions, we assume that the function f is inte-
grable.

First solution: Let g(x) be 1 for 1 ≤ x ≤ 2 and −1
for 2 < x ≤ 3, and define h(x) = g(x)− f (x). Then∫ 3

1 h(x)dx = 0 and h(x) ≥ 0 for 1 ≤ x ≤ 2, h(x) ≤ 0
for 2 < x≤ 3. Now∫ 3

1

h(x)
x

dx =
∫ 2

1

|h(x)|
x

dx−
∫ 3

2

|h(x)|
x

dx

≥
∫ 2

1

|h(x)|
2

dx−
∫ 3

2

|h(x)|
2

dx = 0,

and thus
∫ 3

1
f (x)

x dx≤
∫ 3

1
g(x)

x dx= 2log2− log3= log 4
3 .

Since g(x) achieves the upper bound, the answer is
log 4

3 .

Reformulation: (by Karl Mahlburg and Karthik
Adimurthi) Since f is integrable, it can be expressed
in terms of the Hadamard basis

H0(x) =


1 x ∈ [1,2)
−1 x ∈ [2,3]
0 x /∈ [1,3]

Hn+1(x) = Hn(2(x−1)+1)+Hn(2(x−2)+1).

More precisely, we have f (x) = ∑n cnHn(x) for some cn

with |c0|+ |c1|+ | · · · | ≤ 1. Let gn =
∫ 3

1 (Hn(x)/x)dx; it
is easy to show that the gn are strictly decreasing in n.
Thus∫ 3

1
( f (x)/x)dx = c0g0 + c1g1 + · · · ≤ 1 ·g0 = log

4
3
.

Second solution: (Art of Problem Solving, user
libra_gold) Define the function F(x) =

∫ x
1 f (t)dt for

1 ≤ x ≤ 3; then F(1) = F(3) = 0 and F(x) ≤ min{x−
1,3− x}. Using integration by parts, we obtain∫ 3

1

f (x)
x

dx =
∫ 3

1

F(x)
x2 dx

≤
∫ 2

1

x−1
x2 dx+

∫ 3

2

3− x
x2 dx

= log
4
3
.

(Some minor adjustment is needed to make this com-
pletely rigorous, e.g., approximating f uniformly by
continuous functions.)

B3 First solution: Assume by way of contradiction that A
has rank at most 1; in this case, we can find rational
numbers a1, . . . ,am, b1, . . . ,bn such that Ai j = aib j for
all i, j. By deleting rows or columns, we may reduce to
the case where the ai’s and b j’s are all nonzero.

Recall that any nonzero rational number q has a unique
prime factorization

q =±2c13c25c3 · · ·

with exponents in Z. Set

c(q) = (c1,c2,c3, . . .).

Note that |aib j| is prime if and only if c(ai)+ c(b j) has
one entry equal to 1 and all others equal to 0. The con-
dition that m+ n distinct primes appear in the matrix
implies that the vector space{
∑

i
xic(ai)+∑

j
yic(b j) : xi,y j ∈ R,∑

i
xi = ∑

j
y j

}

contains a linearly independent set of size m+ n. But
that space evidently has dimension at most m+ n− 1,
contradiction.

Second solution: In this solution, we use standard
terminology of graph theory, considering only sim-
ple undirected graphs (with no self-loops or multiple
edges). We first recall the quick induction proof that
that a graph on k vertices with no cycles contains at
most k− 1 edges: for k = 1, the claim is trivially true
because there can be no edges. For k > 1, choose any
vertex v and let d be its degree. Removing the vertex v
and the edges incident to it leaves a disjoint union of d
different graphs, each having no cycles. If the numbers
of vertices in these graphs are k1, . . . ,kd , by induction
the total number of edges in the original graph is at most
(k1−1)+ · · ·+(kd−1)+d = k−1.

Returning to the original problem, suppose that A has
rank at most 1. Draw a bipartite graph whose vertices
correspond to the rows and columns of A, with an edge
joining a particular row and column if the entry where
they intersect has prime absolute value. By the previ-
ous paragraph, this graph must contain a cycle. Since
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the graph is bipartite, this cycle must be of length 2k for
some integer k ≥ 2 (we cannot have k = 1 because the
graph has no repeated edges). Without loss of gener-
ality, we may assume that the cycle consists of row 1,
column 1, row 2, column 2, and so on. There must then
exist distinct prime numbers p1, . . . , p2k such that

|A11|= p1, |A21|= p2, . . . , |Akk|= p2k−1, |A1k|= p2k.

However, since A has rank 1, the 2×2 minor A11Ai j−
Ai1A1 j must vanish for all i, j. If we put ri = |Ai1| and
c j =

∣∣Ai j/A11
∣∣, we have

p1 · · · p2k = (r1c1)(r2c1) · · ·(rkck)(r1ck)

= (r1c1 · · ·rkck)
2,

which contradicts the existence of unique prime factor-
izations for positive rational numbers: the prime p1 oc-
curs with exponent 1 on the left, but with some even
exponent on the right. This contradiction completes the
proof.

B4 Define the polynomial fn(x) = ∑
n
k=0 2k(n−k)xk. Since

f1(x) = 1+ x, f2(x) = 1+2x+ x2 = (1+ x)2,

the claim holds for for n = 1,2. For n≥ 3, we show that
the quantities

fn(−2−n), fn(−2−n+2), . . . , fn(−2n)

alternate in sign; by the intermediate value theorem, this
will imply that fn has a root in each of the n intervals
(−2−n,−2−n+2), . . . ,(−2n−2,−2n), forcing fn to have
as many distinct real roots as its degree.

For j ∈ {0, . . . ,n}, group the terms of fn(x) as

· · ·

+2( j−5)(n− j+5)x j−5 +2( j−4)(n− j+4)x j−4

+2( j−3)(n− j+3)x j−3 +2( j−2)(n− j+2)x j−2

+2( j−1)(n− j+1)x j−1 +2 j(n− j)x j +2( j+1)(n− j−1)x j+1

+2( j+2)(n− j−2)x j+2 +2( j+3)(n− j−3)x j+3

+2( j+4)(n− j−4)x j+4 +2( j+5)(n− j−5)x j+5

· · · .

Depending on the parity of j and of n− j, there may
be a single monomial left on each end. When evaluat-
ing at x =−2−n+2 j, the trinomial evaluates to 0. In the
binomials preceding the trinomial, the right-hand term
dominates, so each of these binomials contributes with
the sign of x j−2k, which is (−1) j. In the binomials fol-
lowing the trinomial, the left-hand term dominates, so
again the contribution has sign (−1) j.

Any monomials which are left over on the ends also
contribute with sign (−1) j. Since n ≥ 3, there ex-
ists at least one contribution other than the trinomial,

so fn(−2−n+2 j) has overall sign (−1) j, proving the
claimed alternation.

Remark: Karl Mahlburg suggests an alternate interpre-
tation of the preceding algebra: write 2− j2 fn(2−n+2 j) as

2− j2 −2−( j−1)2
+ · · ·+(−1) j−12−1 +(−1) j2−1

+(−1) j2−1 +(−1) j+12−1 +(−1) j+22−2 + · · · ,

where the two central terms (−1) j2−1 arise from split-
ting the term arising from x j. Then each row is an alter-
nating series whose sum carries the sign of (−1) j unless
it has only two terms. Since n≥ 3, one of the two sums
is forced to be nonzero.

Remark: One of us (Kedlaya) received this problem
and solution from David Speyer in 2009 and submitted
it to the problem committee.

B5 We show that Patniss wins if p = 2 and Keeta wins if
p > 2 (for all n). We first analyze the analogous game
played using an arbitrary finite group G. Recall that for
any subset S of G, the set of elements g∈G which com-
mute with all elements of S forms a subgroup Z(S) of
G, called the centralizer (or commutant) of S. At any
given point in the game, the set S of previously cho-
sen elements is contained in Z(S). Initially S = /0 and
Z(S) = G; after each turn, S is increased by one ele-
ment and Z(S) is replaced by a subgroup. In particular,
if the order of Z(S) is odd at some point, it remains
odd thereafter; conversely, if S contains an element of
even order, then the order of Z(S) remains even there-
after. Therefore, any element g ∈ G for which Z({g})
has odd order is a winning first move for Patniss, while
any other first move by Patniss loses if Keeta responds
with some h∈ Z({g}) of even order (e.g., an element of
a 2-Sylow subgroup of Z({g})). In both cases, the win
is guaranteed no matter what moves follow.

Now let G be the group of invertible n×n matrices with
entries in Z/pZ. If p> 2, then Z(S) will always contain
the scalar matrix −1 of order 2, so the win for Keeta is
guaranteed. (An explicit winning strategy is to answer
any move g with the move −g.)

If p = 2, we establish the existence of g ∈ G such that
Z({g}) has odd order using the existence of an irre-
ducible polynomial P(x) of degree n over Z/pZ (see
remark). We construct an n×n matrix over Z/pZ with
characteristic polynomial P(x) by taking the companion
matrix of P(x): write P(x) = xn +Pn−1xn−1 + · · ·+P0
and set

g =


0 0 · · · 0 −P0
1 0 · · · 0 −P1
0 1 · · · 0 −P2
...

...
. . .

...
...

0 0 · · · 1 −Pn−1

 .

In particular, det(g) = (−1)nP0 6= 0, so g ∈ G. Over
an algebraic closure of Z/pZ, g becomes diagonaliz-
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able with distinct eigenvalues, so any matrix commut-
ing with g must also be diagonalizable, and hence of
odd order. In particular, Z({g}) is of odd order, so Pat-
niss has a winning strategy.

Remark: It can be shown that in the case p = 2, the
only elements g ∈ G for which Z({g}) has odd order
are those for which g has distinct eigenvalues: in any
other case, Z({g}) contains a subgroup isomorphic to
the group of k× k invertible matrices over Z/2Z for
some k > 1, and this group has order (2k − 1)(2k −
2) · · ·(2k−2k−1).

Remark: We sketch two ways to verify the existence
of an irreducible polynomial of degree n over Z/pZ for
any positive integer n and any prime number p. One
is to use Möbius inversion to count the number of ir-
reducible polynomials of degree n over Z/pZ and then
give a positive lower bound for this count. The other
is to first establish the existence of a finite field F of
cardinality pn, e.g., as the set of roots of the polynomial
xpn−1 inside a splitting field, and then take the minimal
polynomial of a nonzero element of F over Z/pZ which
is a primitive (pn−1)-st root of unity in F (which exist
because the multiplicative group of F contains at most
one cyclic subgroup of any given order). One might be
tempted to apply the primitive element theorem for F
over Z/pZ, but in fact one of the preceding techniques
is needed in order to verify this result for finite fields,
as the standard argument that “most” elements of the
upper field are primitive breaks down for finite fields.

One may also describe the preceding analysis in terms
of an identification of F as a Z/pZ-vector space with
the space of column vectors of length n. Under such
an identification, if we take g to be an element of F−
{0} generating this group, then any element of Z({g})
commutes with all of F−{0} and hence must define an
F-linear endomorphism of F. Any such endomorphism
is itself multiplication by an element of F, so Z({g})
is identified with the multiplicative group of F, whose
order is the odd number 2n−1.

B6 Let us say that a linear function g on an interval is inte-
gral if it has the form g(x) = a+ bx for some a,b ∈ Z,
and that a piecewise linear function is integral if on ev-
ery interval where it is linear, it is also integral.

For each positive integer n, define the n-th Farey se-
quence Fn as the sequence of rational numbers in [0,1]
with denominators at most n. It is easily shown by in-
duction on n that any two consecutive elements r

s ,
r′
s′

of Fn, written in lowest terms, satisfy gcd(s,s′) = 1,
s+ s′ > n, and r′s− rs′ = 1. Namely, this is obvious
for n = 1 because F1 = 0

1 ,
1
1 . To deduce the claim for

Fn from the claim for Fn−1, let r
s ,

r′
s′ be consecutive el-

ements of Fn−1. If s+ s′ = n, then for m = r + r′ we
have r

s <
m
n < r′

s′ and the pairs r
s ,

m
n and m

n ,
r′
s′ satisfy the

desired conditions. Conversely, if s+ s′ > n, then we
cannot have r

s < m
n < r′

s′ for a ∈ Z, as this yields the

contradiction

n = (ms−nr)s′+(r′n−ms′)≥ s+ s′ > n;

hence r
s ,

r′
s′ remain consecutive in Fn.

Let fn : [0,1] → R be the piecewise linear function
which agrees with f at each element of Fn and is linear
between any two consecutive elements of Fn. Between
any two consecutive elements r

s ,
r′
s′ of Fn, fn coincides

with some linear function a+bx. Since s f ( r
s ),s

′ f ( r′
s′ )∈

Z, we deduce first that

b = ss′( f (
r′

s′
)− f (

r
s
))

is an integer of absolute value at most K, and second
that both as = s f ( r

s )− br and as′ = s′ f ( r′
s′ )− br′ are

integral. It follows that fn is integral.

We now check that if n > 2K, then fn = fn−1. For this,
it suffices to check that for any consecutive elements
r
s ,

m
n ,

r′
s′ in Fn, the linear function a0+b0x matching fn−1

from r
s to r′

s′ has the property that f (m
n ) = a0 + b0

m
n .

Define the integer t = n f (m
n )− a0n− b0m. We then

compute that the slope of fn from r
s to m

n is b0 + st,
while the slope of fn from m

n to r′
s′ is at most b0− s′t.

In order to have |b0 + st| , |b0− s′t| ≤ K, we must have
(s+ s′) |t| ≤ 2K; since s+ s′ = n > 2K, this is only pos-
sible if t = 0. Hence fn = fn−1, as claimed.

It follows that for any n > 2K, we must have fn =
fn+1 = · · · . Since the condition on f and K implies that
f is continuous, we must also have fn = f , completing
the proof.

Remark: The condition on f and K is called Lipschitz
continuity.

Remark: An alternate approach is to prove that for
each x ∈ [0,1), there exists ε ∈ (0,1− x) such that the
restriction of f to [x,x+ ε) is linear; one may then de-
duce the claim using the compactness of [0,1]. In this
approach, the role of the Farey sequence may also be
played by the convergents of the continued fraction of x
(at least in the case where x is irrational).

Remark: This problem and solution are due to one
of us (Kedlaya). Some related results can be proved
with the Lipschitz continuity condition replaced by suit-
able convexity conditions. See for example: Kiran S.
Kedlaya and Philip Tynan, Detecting integral polyhe-
dral functions, Confluentes Mathematici 1 (2009), 87–
109. Such results arise in the theory of p-adic differen-
tial equations; see for example: Kiran S. Kedlaya and
Liang Xiao, Differential modules on p-adic polyannuli,
J. Inst. Math. Jusssieu 9 (2010), 155–201 (errata, ibid.,
669–671).
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A1 Let A and B be points on the same branch of the hyper-
bola xy = 1. Suppose that P is a point lying between
A and B on this hyperbola, such that the area of the tri-
angle APB is as large as possible. Show that the re-
gion bounded by the hyperbola and the chord AP has
the same area as the region bounded by the hyperbola
and the chord PB.

A2 Let a0 = 1, a1 = 2, and an = 4an−1− an−2 for n ≥ 2.
Find an odd prime factor of a2015.

A3 Compute

log2

(
2015

∏
a=1

2015

∏
b=1

(1+ e2πiab/2015)

)

Here i is the imaginary unit (that is, i2 =−1).

A4 For each real number x, let

f (x) = ∑
n∈Sx

1
2n ,

where Sx is the set of positive integers n for which bnxc
is even. What is the largest real number L such that
f (x) ≥ L for all x ∈ [0,1)? (As usual, bzc denotes the
greatest integer less than or equal to z.)

A5 Let q be an odd positive integer, and let Nq denote
the number of integers a such that 0 < a < q/4 and
gcd(a,q) = 1. Show that Nq is odd if and only if q is
of the form pk with k a positive integer and p a prime
congruent to 5 or 7 modulo 8.

A6 Let n be a positive integer. Suppose that A, B, and M are
n×n matrices with real entries such that AM =MB, and
such that A and B have the same characteristic polyno-
mial. Prove that det(A−MX) = det(B−XM) for every
n×n matrix X with real entries.

B1 Let f be a three times differentiable function (defined
on R and real-valued) such that f has at least five dis-
tinct real zeros. Prove that f +6 f ′+12 f ′′+8 f ′′′ has at
least two distinct real zeros.

B2 Given a list of the positive integers 1,2,3,4, . . . , take the
first three numbers 1,2,3 and their sum 6 and cross all

four numbers off the list. Repeat with the three smallest
remaining numbers 4,5,7 and their sum 16. Continue
in this way, crossing off the three smallest remaining
numbers and their sum, and consider the sequence of
sums produced: 6,16,27,36, . . . . Prove or disprove that
there is some number in the sequence whose base 10
representation ends with 2015.

B3 Let S be the set of all 2×2 real matrices

M =

(
a b
c d

)
whose entries a,b,c,d (in that order) form an arithmetic
progression. Find all matrices M in S for which there is
some integer k > 1 such that Mk is also in S.

B4 Let T be the set of all triples (a,b,c) of positive integers
for which there exist triangles with side lengths a,b,c.
Express

∑
(a,b,c)∈T

2a

3b5c

as a rational number in lowest terms.

B5 Let Pn be the number of permutations π of {1,2, . . . ,n}
such that

|i− j|= 1 implies |π(i)−π( j)| ≤ 2

for all i, j in {1,2, . . . ,n}. Show that for n≥ 2, the quan-
tity

Pn+5−Pn+4−Pn+3 +Pn

does not depend on n, and find its value.

B6 For each positive integer k, let A(k) be the number of
odd divisors of k in the interval [1,

√
2k). Evaluate

∞

∑
k=1

(−1)k−1 A(k)
k

.
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A1 First solution: Without loss of generality, assume that
A and B lie in the first quadrant with A = (t1,1/t1), B =
(t2,1/t2), and t1 < t2. If P = (t,1/t) with t1 ≤ t ≤ t2,
then the area of triangle APB is

1
2

∣∣∣∣∣∣
1 1 1
t1 t t2

1/t1 1/t 1/t2

∣∣∣∣∣∣= t2− t1
2t1t2

(t1 + t2− t− t1t2/t).

When t1, t2 are fixed, this is maximized when t + t1t2/t
is minimized, which by AM-GM exactly holds when
t =
√

t1t2.

The line AP is given by y = t1+t−x
tt1

, and so the area of
the region bounded by the hyperbola and AP is∫ t

t1

(
t1 + t− x

tt1
− 1

x

)
dx =

t
2t1
− t1

2t
− log

(
t
t1

)
,

which at t =
√

t1t2 is equal to t2−t1
2
√

t1t2
− log(

√
t2/t1).

Similarly, the area of the region bounded by the hyper-
bola and PB is t2

2t −
t

2t2
− log t2

t , which at t =
√

t1t2 is

also t2−t1
2
√

t1t2
− log(

√
t2/t1), as desired.

Second solution: For any λ > 0, the map (x,y) 7→
(λx,λ−1y) preserves both areas and the hyperbola xy =
1. We may thus rescale the picture so that A,B are sym-
metric across the line y = x, with A above the line. As
P moves from A to B, the area of APB increases until P
passes through the point (1,1), then decreases. Conse-
quently, P = (1,1) achieves the maximum area, and the
desired equality is obvious by symmetry. Alternatively,
since the hyperbola is convex, the maximum is uniquely
achieved at the point where the tangent line is parallel
to AB, and by symmetry that point is P.

A2 First solution: One possible answer is 181. By in-
duction, we have an = ((2 +

√
3)n + (2−

√
3)n)/2 =

(αn + β n)/2 for all n, where α = 2 +
√

3 and β =

2−
√

3. Now note that if k is an odd positive integer
and an 6= 0, then akn

an
= αkn+β kn

αn+β n =α(k−1)n−α(k−2)nβ n+

· · · −αnβ (k−2)n + β (k−1)n. This expression is both ra-
tional (because an and akn are integers) and of the form
a+ b

√
3 for some integers a,b by the expressions for

α,β ; it follows that it must be an integer, and so akn is
divisible by an. Applying this to n = 5 and k = 403, we
find that a2015 is divisible by a5 = 362 and thus by 181.

Second solution: By rewriting the formula for an as
an−2 = 4an−1− an, we may extend the sequence back-
wards to define an for all integers n. Since a−1 = 2,
we may see by induction that a−n = an for all n. For

any integer m and any prime p dividing am, p also di-
vides a−m; on the other hand, p cannot divide a−m+1,
as otherwise p would also divide a−m+2, . . . ,a0 = 1, a
contradiction. We can thus find an integer k such that
am+1 ≡ ka−m+1 (mod p); by induction on n, we see
that an ≡ kan−2m (mod p) for all n. In particular, if k is
odd, then p also divides akm; we thus conclude (again)
that a2015 is divisible by a5 = 362 and thus by 181.

Remark: Although it was not needed in the solution,
we note in passing that if an ≡ 0 (mod p), then a2n+k ≡
−ak (mod p) for all k.

Remark: One can find other odd prime factors of a2015
in the same manner. For example, a2015 is divisible by
each of the following quantities. (The prime factoriza-
tions were computed using the Magma computer algebra
system.)

a13 = 2×6811741
a31 = 2×373×360250962984637

a5·13 = 2×181×6811741
×3045046274679316654761356161

a5·31 = 1215497709121×28572709494917432101
×13277360555506179816997827126375881581

a13·31 = 2×373×193441×6811741×360250962984637
×16866100753000669
×79988387992470656916594531961× p156

where p156 is a prime of 156 decimal digits. Dividing
a2015 by the product of the primes appearing in this list
yields a number N of 824 decimal digits which is defi-
nitely not prime, because 2N 6≡ 2 (mod N), but whose
prime factorization we have been unable to establish.
Note that N is larger than a 2048-bit RSA modulus, so
the difficulty of factoring it is not surprising.

One thing we can show is that each prime factor of N is
congruent to 1 modulo 6×2015 = 12090, thanks to the
following lemma.

Lemma. Let n be an odd integer. Then any odd prime factor
p of an which does not divide am for any divisor m of n is
congruent to 1 modulo lcm(6,n). (By either solution of the
original problem, p also does not divide am for any positive
integer m < n.)

Proof. We first check that p ≡ 1 (mod 3). In Fq = Fp(
√

3)
we have (α/β )n ≡ −1. If p ≡ 2 (mod 3), then q = p2 and
α and β are conjugate in p; consequently, the equality αn =
−β n in Fq2 means that αn = c

√
3, β n = −c

√
3 for some c ∈

Fp. But then −3c2 = αnβ n = 1 in Fq and hence in Fp, which
contradicts p≡ 2 (mod 3) by quadratic reciprocity.
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By the previous paragraph, α and β may be identified with
elements of Fp, and we have (α/β )n ≡−1, but the same does
not hold with n replaced by any smaller value. Since F×p is
a cyclic group of order p− 1, this forces p ≡ 1 (mod n) as
claimed.

A3 The answer is 13725. We first claim that if n is odd,
then ∏

n
b=1(1+ e2πiab/n) = 2gcd(a,n). To see this, write

d = gcd(a,n) and a = da1, n = dn1 with gcd(a1,n1) =
1. Then a1,2a1, . . . ,n1a1 modulo n1 is a permutation
of 1,2, . . . ,n1 modulo n1, and so ωa1 ,ω2a1 , . . . ,ωn1a1

is a permutation of ω,ω2, . . . ,ωn1 ; it follows that for
ω = e2πi/n1 ,

n1

∏
b=1

(1+ e2πiab/n) =
n1

∏
b=1

(1+ e2πia1b/n1) =
n1

∏
b=1

(1+ω
b).

Now since the roots of zn1−1 are ω,ω2, . . . ,ωn1 , it fol-
lows that zn1 − 1 = ∏

n1
b=1(z−ωb). Setting z = −1 and

using the fact that n1 is odd gives ∏
n1
b=1(1+ωb) = 2.

Finally, ∏
n
b=1(1+ e2πiab/n) = (∏

n1
b=1(1+ e2πiab/n))d =

2d , and we have proven the claim.

From the claim, we find that

log2

(
2015

∏
a=1

2015

∏
b=1

(1+ e2πiab/2015)

)

=
2015

∑
a=1

log2

(
2015

∏
b=1

(1+ e2πiab/2015)

)

=
2015

∑
a=1

gcd(a,2015).

Now for each divisor d of 2015, there are φ(2015/d)
integers between 1 and 2015 inclusive whose gcd with
2015 is d. Thus

2015

∑
a=1

gcd(a,2015) = ∑
d|2015

d ·φ(2015/d).

We factor 2015 = pqr with p = 5, q = 13, and r = 31,
and calculate

∑
d|pqr

d ·φ(pqr/d)

= 1 · (p−1)(q−1)(r−1)+ p · (q−1)(r−1)
+q · (p−1)(r−1)+ r · (p−1)(q−1)+ pq · (r−1)
+ pr · (q−1)+qr · (p−1)+ pqr ·1
= (2p−1)(2q−1)(2r−1).

When (p,q,r) = (5,13,31), this is equal to 13725.

Remark: Noam Elkies suggests the following similar
but shorter derivation of the equality ∏

n1
b=1(1+ωb) = 2:

write

n1−1

∏
b=1

(1+ω
b) =

∏
n1−1
b=1 (1−ω2b)

∏
n1−1
b=1 (1−ωb)

and note (as above) that ω2,ω4, . . . ,ω2(n1−1) is a per-
mutation of ω, . . . ,ωn1−1, so the two products in the
fraction are equal.

Remark: The function f (n) = ∑d|n d ·φ(n/d) is multi-
plicative: for any two coprime positive integers m,n, we
have f (mn)= f (m) f (n). This follows from the fact that
f (n) is the convolution of the two multiplicative func-
tions n 7→ n and n 7→ φ(n); it can also be seen directly
using the Chinese remainder theorem.

A4 The answer is L = 4/7. For S ⊂ N, let F(S) =
∑n∈S 1/2n, so that f (x) = F(Sx). Note that for T =
{1,4,7,10, . . .}, we have F(T ) = 4/7.

We first show by contradiction that for any x ∈ [0,1),
f (x) ≥ 4/7. Since each term in the geometric series
∑n 1/2n is equal to the sum of all subsequent terms, if
S,S′ are different subsets of N and the smallest positive
integer in one of S,S′ but not in the other is in S, then
F(S) ≥ F(S′). Assume f (x) < 4/7; then the smallest
integer in one of Sx,T but not in the other is in T . Now
1 ∈ Sx for any x ∈ [0,1), and we conclude that there
are three consecutive integers n,n+1,n+2 that are not
in Sx: that is, bnxc, b(n+ 1)xc, b(n+ 2)xc are all odd.
Since the difference between consecutive terms in nx,
(n+ 1)x, (n+ 2)x is x < 1, we conclude that bnxc =
b(n+1)xc= b(n+2)xc and so x < 1/2. But then 2∈ Sx
and so f (x)≥ 3/4, contradicting our assumption.

It remains to show that 4/7 is the greatest lower bound
for f (x), x ∈ [0,1). For any n, choose x = 2/3− ε with
0 < ε < 1/(9n); then for 1≤ k ≤ n, we have 0 < mε <
1/3 for m≤ 3n, and so

b(3k−2)xc= b(2k−2)+2/3− (3k−2)εc= 2k−2
b(3k−1)xc= b(2k−1)+1/3− (3k−1)εc= 2k−1
b(3k)xc= b(2k−1)+1−3kεc= 2k−1.

It follows that Sx is a subset of S = {1,4,7, . . . ,3n−
2,3n + 1,3n + 2,3n + 3, . . .}, and so f (x) = F(Sx) ≤
f (S) = (1/2+ 1/24 + · · ·+ 1/23n+1) + 1/23n+1. This
last expression tends to 4/7 as n→ ∞, and so no num-
ber greater than 4/7 can be a lower bound for f (x) for
all x ∈ [0,1).

A5 First solution: By inclusion-exclusion, we have

Nq = ∑
d|q

µ(d)
⌊
bq/4c

d

⌋
= ∑

d|q
µ(d)

⌊
q/d

4

⌋
≡ ∑

d|q squarefree

⌊
q/d

4

⌋
(mod 2),

where µ is the Möbius function. Now⌊
q/d

4

⌋
≡

{
0 (mod 2) if q/d ≡ 1,3 (mod 8)
1 (mod 2) if q/d ≡ 5,7 (mod 8).
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So Nq is odd if and only if q has an odd number of
squarefree factors q/d congruent to 5 or 7 (mod 8).

If q has a prime factor p congruent to 1 or 3 (mod 8),
then the squarefree factors d of q occur in pairs c, pc,
which are either both 1 or 3 (mod 8) or both 5 or 7
(mod 8). Hence q must have an even number of factors
that are congruent to 5 or 7 (mod 8), and so Nq is even
in this case.

If q has two prime factors p1 and p2, each congruent to
either 5 or 7 (mod 8), then the squarefree factors d of q
occur in quadruples d, p1d,q1d, p1q1d, which are then
congruent respectively to some permutation of 1,3,5,7
(mod 8) (if p1 and p2 are distinct mod 8) or are congru-
ent respectively to d, p1d, p1d,d (mod 8). Either way,
we see that exactly two of the four residues are congru-
ent to 5 or 7 (mod 8). Thus again q must have an even
number of factors that are 5 or 7 (mod 8), and so Nq is
even in this case as well.

If q= 1, then Nq = 0 is even. The only case that remains
is that q = pk is a positive power of a prime p congruent
to 5 or 7 (mod 8). In this case, q has two squarefree
factors, 1 and p, of which exactly one is congruent to 5
or 7 (mod 8). We conclude that Nq is odd in this case,
as desired.

Second solution:
Consider the set S of all integers in {1, . . . ,q− 1} that
are even and relatively prime to q. Then the product of
all elements in S is

2φ(q)/2
∏

1≤a≤(q−1)/2
(a,q)=1

a.

On the other hand, we can rewrite the set of ele-
ments in S (mod q) as a set T of residues in the in-
terval [−(q− 1)/2,(q− 1)/2]. Then for each 1 ≤ a ≤
(q− 1)/2 with (a,q) = 1, T contains exactly one el-
ement from {a,−a}: if −2r ≡ 2s (mod q) for some
r,s∈ {1, . . . ,(q−1)/2}, then r≡−s (mod q), which is
impossible given the ranges of r and s. Thus the product
of all elements in T is

(−1)n
∏

1≤a≤(q−1)/2
(a,q)=1

a,

where n denotes the number of elements of S greater
than (q− 1)/2. We conclude that (−1)n ≡ 2φ(q)/2

(mod q).

However, note that the number of elements of S less
than (q−1)/2 is equal to Nq, since dividing these num-
bers by 2 gives exactly the numbers counted by Nq.
Hence the total cardinality of S is Nq + n; however,
this cardinality also equals φ(q)/2 because the num-
bers in {1, . . . ,q−1} relatively prime to q come in pairs
{a,q−a} in each of which exactly one member is even.
We thus obtain

(−1)Nq = (−1)φ(q)/2+n

≡ (−1)φ(q)/22φ(q)/2 = (−2)φ(q)/2 (mod q).

If q = 1, then Nq is even. If q has more than one
prime factor, then the group (Z/qZ)× has exponent di-
viding φ(q)/2, so (−1)Nq ≡ (−2)φ(q)/2 ≡ 1 (mod q),
and thus Nq must be even in this case as well. Fi-
nally, suppose that q is a prime power pk with p odd
and k positive. Since (Z/qZ)× is a cyclic group of
order φ(q) = pk−1(p− 1), in which the only square
roots of unity are ±1, it follows that (−2)φ(q)/2 ≡ ±1
(mod q) in accordance with whether (−2)(p−1)/2 ≡±1
(mod p), i.e., whether−2 is a quadratic residue or non-
residue. But recall that −2 is a quadratic residue mod-
ulo p if and only if p ≡ 1,3 (mod 8). Thus Nq is odd
in this case if and only if p≡ 5 or 7 (mod 8).

We conclude that for any odd integer q≥ 1, the quantity
Nq is odd if and only if q = pk with k positive and p a
prime that is 5 or 7 (mod 8).

Remark: The combination of the two solutions recov-
ers Gauss’s criterion for when −2 is a quadratic residue
modulo p, with essentially the original proof.

A6 First solution: (by Noam Elkies) Using row and col-
umn operations, we may construct invertible matrices
U,V such that U−1MV is a block diagonal matrix of
the form (

I 0
0 0

)
.

Put A′ = U−1AU,M′ = U−1MV,B′ = V−1BV , X ′ =
V−1XU , so that A′M′ = M′B′, det(A − MX) =
det(U−1(A−MX)U) = det(A′ −M′X ′), and det(B−
XM) = det(V−1(B−XM)V ) = det(B′−X ′M′). Form
the corresponding block decompositions

A′ =
(

A11 A12
A21 A22

)
,B′ =

(
B11 B12
B21 B22

)
,X ′ =

(
X11 X12
X21 X22

)
.

We then have

A′M′ =
(

A11 0
A21 0

)
, M′B′ =

(
B11 B12
0 0

)
,

so we must have A11 =B11 and A21 =B12 = 0; in partic-
ular, the characteristic polynomial of A is the product of
the characteristic polynomials of A11 and A22, and the
characteristic polynomial of B is the product of the char-
acteristic polynomials of B11 and B22. Since A11 = B11,
it follows that A22 and B22 have the same characteristic
polynomial. Since

X ′M′ =
(

X11 0
X21 0

)
, M′X ′ =

(
X11 X12
0 0

)
,
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we conclude that

det(A−MX) = det(A′−M′X ′)

= det
(

A11−X11 A12−X12
0 A22

)
= det(A11−X11)det(A22)

= det(B11−X11)det(B22)

= det
(

B11−X11 0
B21−X21 B22

)
= det(B′−X ′M′)
= det(B−XM),

as desired. (By similar arguments, A−MX and B−XM
have the same characteristic polynomial.)

Second solution: We prove directly that A−MX and
B−XM have the same characteristic polynomial, i.e.,
for any t ∈ R, writing At = A− tI, Bt = B− tI, we have

det(At −MX) = det(Bt −XM).

For fixed A,B,M, the stated result is a polynomial iden-
tity in t and the entries of X . It thus suffices to check
it assuming that At ,Bt ,X are all invertible. Since AM =
MB, we also have AtM = MBt , so AtMB−1

t = M. Since
det(At) = det(Bt) by hypothesis,

det(At −MX) = det(At −AtMB−1
t X)

= det(At)det(1−MB−1
t X)

= det(At)det(X)det(Bt)
−1 det(X−1Bt −M)

= det(X)det(X−1Bt −M)

= det(Bt −XM).

Remark: One can also assert directly that det(1−
MB−1

t X) = det(1−XMB−1
t ) using the fact that for any

square matrices U and V , UV and VU have the same
characteristic polynomial; the latter is again proved by
reducing to the case where one of the two matrices is
invertible, in which case the two matrices are similar.

Third solution: (by Lev Borisov) We will check that
for each positive integer k,

Trace((A−MX)k) = Trace((B−XM)k).

This will imply that A−MX and B−XM have the same
characteristic polynomial, yielding the desired result.

We establish the claim by expanding both sides
and comparing individual terms. By hypothesis, Ak

and Bk have the same characteristic polynomial, so
Trace(Ak) = Trace(Bk). To compare the other terms,
it suffices to check that for any sequence i1, i2, . . . , im of
nonnegative integers,

Trace(Ai1MXAi2MX · · ·Aim−1MXAim)

= Trace(Bi1XMBi2XM · · ·Bim−1XMBim).

To establish this equality, first apply the remark follow-
ing the previous solution to write

Trace(Ai1MXAi2MX · · ·Aim−1MXAim)

= Trace(Aim+i1MXAi2MX · · ·Aim−1MX).

Then apply the relation AM = MB repeatedly to com-
mute M past A, to obtain

Trace(MBim+i1XMBi2XM · · ·XMBim−1X).

Finally, apply the remark again to shift MBim from the
left end to the right end.

Remark: The conclusion holds with R replaced by an
arbitrary field. In the second solution, one must reduce
to the case of an infinite field, e.g., by replacing the orig-
inal field with an algebraic closure. The third solution
only applies to fields of characteristic 0 or positive char-
acteristic greater than n.

Remark: It is tempting to try to reduce to the case
where M is invertible, as in this case A−MX and
B−XM are in fact similar. However, it is not clear how
to make such an argument work.

B1 Let g(x) = ex/2 f (x). Then g has at least 5 distinct real
zeroes, and by repeated applications of Rolle’s theorem,
g′,g′′,g′′′ have at least 4,3,2 distinct real zeroes, respec-
tively. But

g′′′(x) =
1
8

ex/2( f (x)+6 f ′(x)+12 f ′′(x)+8 f ′′′(x))

and ex/2 is never zero, so we obtain the desired result.

B2 We will prove that 42015 is such a number in the se-
quence. Label the sequence of sums s0,s1, . . . , and let
an,bn,cn be the summands of sn in ascending order. We
prove the following two statements for each nonnega-
tive integer n:

(a)n The sequence

a3n,b3n,c3n,a3n+1,b3n+1,c3n+1,a3n+2,b3n+2,c3n+2

is obtained from the sequence 10n+ 1, . . . ,10n+
10 by removing one of 10n+5,10n+6,10n+7.

(b)n We have

s3n = 30n+6,
s3n+1 ∈ {30n+15,30n+16,30n+17},
s3n+2 = 30n+27.

These statements follow by induction from the follow-
ing simple observations:

– by computing the table of values

n an bn cn sn

0 1 2 3 6
1 4 5 7 16
2 8 9 10 27

we see that (a)0 holds;
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– (a)n implies (b)n;

– (a)n and (b)1, . . . , (b)n together imply (a)n+1.

To produce a value of n for which sn ≡ 2015
(mod 10000), we take n = 3m+ 1 for some nonnega-
tive integer m for which s3m+1 = 30m+ 15. We must
also have 30m ≡ 2000 (mod 10000), or equivalently
m≡ 400 (mod 1000). By taking m = 1400, we ensure
that m≡ 2 (mod 3), so sm = 10m+7; this ensures that
sn does indeed equal 30m+15 = 42015, as desired.

Remark: With a bit more work, we can give a complete
description of sn, and in particular find the first term in
the sequence whose decimal expansion ends in 2015.
Define the function on nonnegative integers

f (n) = s3n+1− (30n+16)

which takes values in {−1,0,1}; we then have

f (n) =


0 n≡ 0 (mod 3)
− f ((n−1)/3) n≡ 1 (mod 3)
−1 n≡ 2 (mod 3).

Consequently, if we write n in base 3, then f (n) = 0
unless the expansion ends with 2 followed by a string
of 1s of length k ≥ 0, in which case f (n) = (−1)k+1.

In this notation, we have sn≡ 2015 (mod 10000) if and
only if n = 3m+ 1 for some nonnegative integer m for
which m ≡ 400 (mod 1000) and f (m) = −1. Since
400 = 112211(3), the first such term in the sequence is
in fact s1201 = 12015.

B3 First solution: Any element of S can be written as M =
αA+βB, where A =

(
1 1
1 1

)
, B =

(−3 −1
1 3

)
, and α,β ∈R.

Note that A2 =
(

4 4
4 4

)
and B3 =

(−24 −8
8 24

)
are both in S,

and so any matrix of the form αA or βB, α,β ∈ R,
satisfies the given condition.

We claim that these are also the only matrices in S
satisfying the given condition. Indeed, suppose M =

αA+βB where α,β 6= 0. Let C =
(

1 1/
√

2
−1 1/

√
2

)
with in-

verse C−1 =
(

1/2 −1/2
1/
√

2 1/
√

2

)
. If we define D = C−1MC,

then D = 2α

(
0 γ

γ 1

)
where γ = −β

√
2

α
. Now suppose

that Mk is in S with k ≥ 2. Since (1 −1)A
(

1
−1
)
=

(1 −1)B
(

1
−1
)
= 0, we have (1 −1)Mk

(
1
−1
)
= 0, and

so the upper left entry of C−1MkC = Dk is 0. On the
other hand, from the expression for D, an easy induc-
tion on k shows that Dk = (2α)k

(
γ2 pk−1 γ pk

γ pk pk+1

)
, where

pk is defined inductively by p0 = 0, p1 = 1, pk+2 =
γ2 pk + pk+1. In particular, it follows from the inductive
definition that pk > 0 when k≥ 1, whence the upper left
entry of Dk is nonzero when k ≥ 2, a contradiction.

Remark: A variant of this solution can be obtained by
diagonalizing the matrix M.

Second solution: If a,b,c,d are in arithmetic progres-
sion, then we may write

a = r−3s,b = r− s,c = r+ s,d = r+3s

for some r,s. If s = 0, then clearly all powers of M are
in xS. Also, if r = 0, then one easily checks that M3 is
in S.

We now assume rs 6= 0, and show that in that case M
cannot be in S. First, note that the characteristic polyno-
mial of M is x2−2rx−8s2, and since M is nonsingular
(as s 6= 0), this is also the minimal polynomial of M by
the Cayley-Hamilton theorem. By repeatedly using the
relation M2 = 2rM+8s2I, we see that for each positive
integer, we have Mk = tkM + ukI for unique real con-
stants tk,uk (uniqueness follows from the independence
of M and I). Since M is in S, we see that Mk lies in S
only if uk = 0.

On the other hand, we claim that if k > 1, then rtk > 0
and uk > 0 if k is even, and tk > 0 and ruk > 0 if k is
odd (in particular, uk can never be zero). The claim is
true for k = 2 by the relation M2 = 2rM+8s2I. Assum-
ing the claim for k, and multiplying both sides of the
relation Mk = tkM+ukI by M, yields

Mk+1 = tk(2rM+8s2I)+ukM = (2rtk +uk)M+8s2tkI,

implying the claim for k+1.

Remark: (from artofproblemsolving.com, user
hoeij) Once one has uk = 0, one can also finish using
the relation M ·Mk = Mk ·M.

B4 First solution: The answer is 17/21. For fixed b,c,
there is a triangle of side lengths a,b,c if and only if
|b− c|< a < b+ c. It follows that the desired sum is

S = ∑
b,c

1
3b5c

(
b+c−1

∑
a=|b−c|+1

2a

)
= ∑

b,c

2b+c−2|b−c|+1

3b5c .

We write this as S= S1+S2 where S1 sums over positive
integers b,c with b≤ c and S2 sums over b > c. Then

S1 =
∞

∑
b=1

∞

∑
c=b

2b+c−2c−b+1

3b5c

=
∞

∑
b=1

(((
2
3

)b

− 2
6b

)
∞

∑
c=b

(
2
5

)c
)

=
∞

∑
b=1

((
2
3

)b

− 2
6b

)
5
3

(
2
5

)b

=
∞

∑
b=1

(
5
3

(
4
15

)b

− 10
3

(
1

15

)b
)

=
85

231
.
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Similarly,

S2 =
∞

∑
c=1

∞

∑
b=c+1

2b+c−2b−c+1

3b5c

=
∞

∑
c=1

(((
2
5

)c

− 2
10c

)
∞

∑
b=c+1

(
2
3

)b
)

=
∞

∑
c=1

((
2
5

)c

− 2
10c

)
3
(

2
3

)c+1

=
∞

∑
c=1

(
2
(

4
15

)c

−4
(

1
15

)c)
=

34
77

.

We conclude that S = S1 +S2 =
17
21 .

Second solution: Recall that the real numbers a,b,c
form the side lengths of a triangle if and only if

s−a,s−b,s− c > 0 s =
a+b+ c

2
,

and that if we put x= 2(s−a),y= 2(s−b),z= 2(s−c),

a =
y+ z

2
,b =

z+ x
2

,c =
x+ y

2
.

To generate all integer triples (a,b,c) which form the
side lengths of a triangle, we must also assume that
x,y,z are either all even or all odd. We may therefore
write the original sum as

∑
x,y,z>0 odd

2(y+z)/2

3(z+x)/25(x+y)/2 + ∑
x,y,z>0 even

2(y+z)/2

3(z+x)/25(x+y)/2 .

To unify the two sums, we substitute in the first case
x = 2u + 1,y = 2v + 1,z = 2w + 1 and in the second
case x = 2u+2,y = 2v+2,z = 2w+2 to obtain

∑
(a,b,c)∈T

2a

3b5c =
∞

∑
u,v,w=1

2v+w

3w+u5u+v

(
1+

2−1

3−15−1

)

=
17
2

∞

∑
u=1

(
1

15

)u ∞

∑
v=1

(
2
5

)v ∞

∑
w=1

(
2
3

)w

=
17
2

1/15
1−1/15

2/5
1−2/5

2/3
1−2/3

=
17
21

.

B5 The answer is 4.

Assume n ≥ 3 for the moment. We write
the permutations π counted by Pn as sequences
π(1),π(2), . . . ,π(n). Let Un be the number of permuta-
tions counted by Pn that end with n−1,n; let Vn be the
number ending in n,n−1; let Wn be the number starting
with n− 1 and ending in n− 2,n; let Tn be the number
ending in n−2,n but not starting with n−1; and let Sn

be the number which has n− 1,n consecutively in that
order, but not at the beginning or end. It is clear that
every permutation π counted by Pn either lies in exactly
one of the sets counted by Un,Vn,Wn,Tn,Sn, or is the
reverse of such a permutation. Therefore

Pn = 2(Un +Vn +Wn +Tn +Sn).

By examining how each of the elements in the sets
counted by Un+1,Vn+1,Wn+1,Tn+1,Sn+1 can be ob-
tained from a (unique) element in one of the sets
counted by Un,Vn,Wn,Tn,Sn by suitably inserting the el-
ement n+1, we obtain the recurrence relations

Un+1 =Un +Wn +Tn,

Vn+1 =Un,

Wn+1 =Wn,

Tn+1 =Vn,

Sn+1 = Sn +Vn.

Also, it is clear that Wn = 1 for all n.

So far we have assumed n≥ 3, but it is straightforward
to extrapolate the sequences Pn,Un,Vn,Wn,Tn,Sn back
to n = 2 to preserve the preceding identities. Hence for
all n≥ 2,

Pn+5 = 2(Un+5 +Vn+5 +Wn+5 +Tn+5 +Sn+5)

= 2((Un+4 +Wn+4 +Tn+4)+Un+4

+Wn+4 +Vn+4 +(Sn+4 +Vn+4))

= Pn+4 +2(Un+4 +Wn+4 +Vn+4)

= Pn+4 +2((Un+3 +Wn+3 +Tn+3)+Wn+3 +Un+3)

= Pn+4 +Pn+3 +2(Un+3−Vn+3 +Wn+3−Sn+3)

= Pn+4 +Pn+3 +2((Un+2 +Wn+2 +Tn+2)−Un+2

+Wn+2− (Sn+2−Vn+2))

= Pn+4 +Pn+3 +2(2Wn+2 +Tn+2−Sn+2−Vn+2)

= Pn+4 +Pn+3 +2(2Wn+1 +Vn+1

− (Sn+1 +Vn+1)−Un+1)

= Pn+4 +Pn+3 +2(2Wn +Un− (Sn +Vn)−Un

− (Un +Wn +Tn))

= Pn+4 +Pn+3−Pn +4,

as desired.

Remark: There are many possible variants of the
above solution obtained by dividing the permutations
up according to different features. For example, Karl
Mahlburg suggests writing

Pn = 2P′n, P′n = Q′n +R′n

where P′n counts those permutations counted by Pn for
which 1 occurs before 2, and Q′n counts those permuta-
tions counted by P′n for which π(1) = 1. One then has
the recursion

Q′n = Q′n−1 +Q′n−3 +1
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corresponding to the cases where π(1),π(2) = 1,2;
where π(1),π(2),π(3) = 1,3,2; and the unique case
1,3,5, . . . ,6,4,2. Meanwhile, one has

R′n = R′n−1 +Q′n−2

corresponding to the cases containing 3,1,2,4 (where
removing 1 and reversing gives a permutation counted
by R′n−1); and where 4 occurs before 3,1,2 (where re-
moving 1,2 and reversing gives a permutation counted
by Q′n−2).

Remark: The permutations counted by Pn are known as
key permutations, and have been studied by E.S. Page,
Systematic generation of ordered sequences using re-
currence relations, The Computer Journal 14 (1971),
no. 2, 150–153. We have used the same notation for
consistency with the literature. The sequence of the Pn
also appears as entry A003274 in the On-line Encyclo-
pedia of Integer Sequences (http://oeis.org).

B6 (from artofproblemsolving.com) We will prove
that the sum converges to π2/16. Note first that the
sum does not converge absolutely, so we are not free to
rearrange it arbitrarily. For that matter, the standard al-
ternating sum test does not apply because the absolute
values of the terms does not decrease to 0, so even the
convergence of the sum must be established by hand.

Setting these issues aside momentarily, note that the el-
ements of the set counted by A(k) are those odd posi-
tive integers d for which m = k/d is also an integer and
d <
√

2dm; if we write d = 2`− 1, then the condition
on m reduces to m≥ `. In other words, the original sum
equals

S1 :=
∞

∑
k=1

∑
`≥1,m≥`

k=m(2`−1)

(−1)m−1

m(2`−1)
,

and we would like to rearrange this to

S2 :=
∞

∑
`=1

1
2`−1

∞

∑
m=`

(−1)m−1

m
,

in which both sums converge by the alternating sum
test. In fact a bit more is true: we have∣∣∣∣∣ ∞

∑
m=`

(−1)m−1

m

∣∣∣∣∣< 1
`
,

so the outer sum converges absolutely. In particular, S2
is the limit of the truncated sums

S2,n = ∑
`(2`−1)≤n

1
2`−1

∞

∑
m=`

(−1)m−1

m
.

To see that S1 converges to the same value as S2, write

S2,n−
n

∑
k=1

(−1)k−1 A(k)
k

= ∑
`(2`−1)≤n

1
2`−1

∞

∑
m=b n

2`−1+1c

(−1)m−1

m
.

The expression on the right is bounded above in abso-
lute value by the sum ∑`(2`−1)≤n

1
n , in which the number

of summands is at most
√

n (since
√

n(2
√

n− 1) ≥ n),
and so the total is bounded above by 1/

√
n. Hence the

difference converges to zero as n→ ∞; that is, S1 con-
verges and equals S2.

We may thus focus hereafter on computing S2. We be-
gin by writing

S2 =
∞

∑
`=1

1
2`−1

∞

∑
m=`

(−1)m−1
∫ 1

0
tm−1 dt.

Our next step will be to interchange the inner sum and
the integral, but again this requires some justification.

Lemma 1. Let f0, f1, . . . be a sequence of continuous func-
tions on [0,1] such that for each x ∈ [0,1], we have

f0(x)≥ f1(x)≥ ·· · ≥ 0.

Then

∞

∑
n=0

(−1)n
∫ 1

0
fn(t)dt =

∫ 1

0

(
∞

∑
n=0

(−1)n fn(t)

)
dt

provided that both sums converge.

Proof. Put gn(t) = f2n(t)− f2n+1(t)≥ 0; we may then rewrite
the desired equality as

∞

∑
n=0

∫ 1

0
gn(t)dt =

∫ 1

0

(
∞

∑
n=0

gn(t)

)
dt,

which is a case of the Lebesgue monotone convergence theo-
rem.

By Lemma 1, we have

S2 =
∞

∑
`=1

1
2`−1

∫ 1

0

(
∞

∑
m=`

(−1)m−1tm−1

)
dt

=
∞

∑
`=1

1
2`−1

∫ 1

0

(−t)`−1

1+ t
dt.

Since the outer sum is absolutely convergent, we may
freely interchange it with the integral:

S2 =
∫ 1

0

(
∞

∑
`=1

1
2`−1

(−t)`−1

1+ t

)
dt

=
∫ 1

0

1√
t(1+ t)

(
∞

∑
`=1

(−1)`−1t`−1/2

2`−1

)
dt

=
∫ 1

0

1√
t(1+ t)

arctan(
√

t)dt

=
∫ 1

0

2
1+u2 arctan(u)du (u =

√
t)

= arctan(1)2− arctan(0)2 =
π2

16
.
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A1 Find the smallest positive integer j such that for every
polynomial p(x) with integer coefficients and for every
integer k, the integer

p( j)(k) =
d j

dx j p(x)
∣∣∣∣
x=k

(the j-th derivative of p(x) at k) is divisible by 2016.

A2 Given a positive integer n, let M(n) be the largest inte-
ger m such that(

m
n−1

)
>

(
m−1

n

)
.

Evaluate

lim
n→∞

M(n)
n

.

A3 Suppose that f is a function from R to R such that

f (x)+ f
(

1− 1
x

)
= arctanx

for all real x 6= 0. (As usual, y= arctanx means−π/2<
y < π/2 and tany = x.) Find∫ 1

0
f (x)dx.

A4 Consider a (2m − 1) × (2n − 1) rectangular region,
where m and n are integers such that m,n ≥ 4. This
region is to be tiled using tiles of the two types shown:

(The dotted lines divide the tiles into 1× 1 squares.)
The tiles may be rotated and reflected, as long as their
sides are parallel to the sides of the rectangular region.
They must all fit within the region, and they must cover
it completely without overlapping.

What is the minimum number of tiles required to tile
the region?

A5 Suppose that G is a finite group generated by the two
elements g and h, where the order of g is odd. Show
that every element of G can be written in the form

gm1hn1gm2hn2 · · ·gmr hnr

with 1 ≤ r ≤ |G| and m1,n1,m2,n2, . . . ,mr,nr ∈
{−1,1}. (Here |G| is the number of elements of G.)

A6 Find the smallest constant C such that for every real
polynomial P(x) of degree 3 that has a root in the in-
terval [0,1],∫ 1

0
|P(x)| dx≤C max

x∈[0,1]
|P(x)| .

B1 Let x0,x1,x2, . . . be the sequence such that x0 = 1 and
for n≥ 0,

xn+1 = ln(exn − xn)

(as usual, the function ln is the natural logarithm). Show
that the infinite series

x0 + x1 + x2 + · · ·

converges and find its sum.

B2 Define a positive integer n to be squarish if either n is
itself a perfect square or the distance from n to the near-
est perfect square is a perfect square. For example, 2016
is squarish, because the nearest perfect square to 2016
is 452 = 2025 and 2025−2016 = 9 is a perfect square.
(Of the positive integers between 1 and 10, only 6 and
7 are not squarish.)

For a positive integer N, let S(N) be the number of
squarish integers between 1 and N, inclusive. Find pos-
itive constants α and β such that

lim
N→∞

S(N)

Nα
= β ,

or show that no such constants exist.

B3 Suppose that S is a finite set of points in the plane such
that the area of triangle4ABC is at most 1 whenever A,
B, and C are in S. Show that there exists a triangle of
area 4 that (together with its interior) covers the set S.

B4 Let A be a 2n×2n matrix, with entries chosen indepen-
dently at random. Every entry is chosen to be 0 or 1,
each with probability 1/2. Find the expected value of
det(A−At) (as a function of n), where At is the trans-
pose of A.

B5 Find all functions f from the interval (1,∞) to (1,∞)
with the following property: if x,y ∈ (1,∞) and x2 ≤
y≤ x3, then ( f (x))2 ≤ f (y)≤ ( f (x))3.

B6 Evaluate

∞

∑
k=1

(−1)k−1

k

∞

∑
n=0

1
k2n +1

.



Solutions to the 77th William Lowell Putnam Mathematical Competition
Saturday, December 3, 2016

Kiran Kedlaya and Lenny Ng

A1 The answer is j = 8. First suppose that j satisfies the
given condition. For p(x) = x j, we have p( j)(x) = j!
and thus j! is divisible by 2016. Since 2016 is divisible
by 25 and 7! is not, it follows that j≥ 8. Conversely, we
claim that j = 8 works. Indeed, let p(x) = ∑

n
m=0 amxm

be a polynomial with integer coefficients; then if k is
any integer,

p(8)(k) =
n

∑
m=8

m(m−1) · · ·(m−7)amkm−8

=
n

∑
m=8

(
m
8

)
8!amkm−8

is divisible by 8! = 20 ·2016, and so p(8)(k) is divisible
by 2016.

Remark: By the same reasoning, if one replaces 2016
in the problem by a general integer N, then the min-
imum value of j is the smallest one for which N di-
vides j!. This can be deduced from Pólya’s observation
that the set of integer-valued polynomials is the free Z-
module generated by the binomial polynomials

(x
n

)
for

n = 0,1, . . . . That statement can be extended to polyno-
mials evaluated on a subset of a Dedekind domain using
Bhargava’s method of P-orderings; we do not know if
this generalization can be adapted to the analogue of
this problem, where one considers polynomials whose
j-th derivatives take integral values on a prescribed sub-
set.

A2 The answer is 3+
√

5
2 . Note that for m > n+ 1, both bi-

nomial coefficients are nonzero and their ratio is(
m

n−1

)
/

(
m−1

n

)
=

m!n!(m−n−1)!
(m−1)!(n−1)!(m−n+1)!

=
mn

(m−n+1)(m−n)
.

Thus the condition
( m

n−1

)
>
(m−1

n

)
is equivalent to (m−

n+ 1)(m− n)−mn < 0. The left hand side of this last
inequality is a quadratic function of m with roots

α(n) =
3n−1+

√
5n2−2n+1
2

,

β (n) =
3n−1−

√
5n2−2n+1
2

,

both of which are real since 5n2−2n+1 = 4n2 +(n−
1)2 > 0; it follows that m satisfies the given inequality
if and only if β (n)< m < α(n). (Note in particular that
since α(n)−β (n) =

√
5n2−2n+1> 1, there is always

some integer m between β (n) and α(n).)

We conclude that M(n) is the greatest integer strictly
less than α(n), and thus that α(n)−1≤M(n)< α(n).
Now

lim
n→∞

α(n)
n

= lim
n→∞

3− 1
n +
√

5− 2
n +

1
n2

2
=

3+
√

5
2

and similarly limn→∞
α(n)−1

n = 3+
√

5
2 , and so by the

sandwich theorem, limn→∞
M(n)

n = 3+
√

5
2 .

A3 The given functional equation, along with the same
equation but with x replaced by x−1

x and 1
1−x respec-

tively, yields:

f (x)+ f
(

1− 1
x

)
= tan−1(x)

f
(

x−1
x

)
+ f

(
1

1− x

)
= tan−1

(
x−1

x

)
f
(

1
1− x

)
+ f (x) = tan−1

(
1

1− x

)
.

Adding the first and third equations and subtracting the
second gives:

2 f (x) = tan−1(x)+ tan−1
(

1
1− x

)
− tan−1

(
x−1

x

)
.

Now tan−1(t)+ tan−1(1/t) is equal to π/2 if t > 0 and
−π/2 if t < 0; it follows that for x ∈ (0,1),

2( f (x)+ f (1− x)) =
(
tan−1(x)+ tan−1(1/x)

)
+

(
tan−1(1− x)+ tan−1

(
1

1− x

))
−
(

tan−1
(

x−1
x

)
+ tan−1

(
x

x−1

))
=

π

2
+

π

2
+

π

2

=
3π

2
.

Thus

4
∫ 1

0
f (x)dx = 2

∫ 1

0
( f (x)+ f (1− x))dx =

3π

2

and finally
∫ 1

0 f (x)dx = 3π

8 .

Remark: Once one has the formula for f (x), one can
also (with some effort) directly evaluate the integral of
each summand over [0,1] to obtain the same result. A
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much cleaner variant of this approach (suggested on
AoPS, user henrikjb) is to write

tan−1(x) =
∫ y

0

1
1+ y2 dy

and do a change of variable on the resulting double in-
tegral.

A4 The minimum number of tiles is mn. To see that this
many are required, label the squares (i, j) with 1 ≤ i ≤
2m−1 and 1≤ j≤ 2n−1, and for each square with i, j
both odd, color the square red; then no tile can cover
more than one red square, and there are mn red squares.

It remains to show that we can cover any (2m− 1)×
(2n− 1) rectangle with mn tiles when m,n ≥ 4. First
note that we can tile any 2× (2k− 1) rectangle with
k ≥ 3 by k tiles: one of the first type, then k− 2 of the
second type, and finally one of the first type. Thus if we
can cover a 7×7 square with 16 tiles, then we can do the
general (2m−1)× (2n−1) rectangle, by decomposing
this rectangle into a 7×7 square in the lower left corner,
along with m− 4 (2× 7) rectangles to the right of the
square, and n−4 ((2m−1)×2) rectangles above, and
tiling each of these rectangles separately, for a total of
16+4(m−4)+m(n−4) = mn tiles.

To cover the 7×7 square, note that the tiling must con-
sist of 15 tiles of the first type and 1 of the second type,
and that any 2×3 rectangle can be covered using 2 tiles
of the first type. We may thus construct a suitable cov-
ering by covering all but the center square with eight
2× 3 rectangles, in such a way that we can attach the
center square to one of these rectangles to get a shape
that can be covered by two tiles. An example of such
a covering, with the remaining 2× 3 rectangles left in-
tact for visual clarity, is depicted below. (Many other
solutions are possible.)

A5 First solution: For s∈G and r a positive integer, define
a representation of s of length r to be a sequence of

values m1,n1, . . . ,mr,nr ∈ {−1,1} for which

s = gm1hn1 · · ·gmr hnr .

We first check that every s ∈ G admits at least one rep-
resentation of some length; this is equivalent to saying
that the set S of s ∈ G which admit representations of
some length is equal to G itself. Since S is closed un-
der the group operation and G is finite, S is also closed
under formation of inverses and contains the identity
element; that is, S is a subgroup of G. In particular, S
contains not only gh but also its inverse h−1g−1; since
S also contains g−1h, we deduce that S contains g−2.
Since g is of odd order in G, g−2 is also a generator of
the cyclic subgroup containing g; it follows that g ∈ S
and hence h ∈ S. Since we assumed that g,h generate
G, we now conclude that S = G, as claimed.

To complete the proof, we must now check that for each
s∈G, the smallest possible length of a representation of
s cannot exceed |G|. Suppose the contrary, and let

s = gm1hn1 · · ·gmr hnr

be a representation of the smallest possible length. Set

si = gm1hn1 · · ·gmihni (i = 0, . . . ,r−1),

interpreting s0 as e; since r > |G| by hypothesis, by the
pigeonhole principle there must exist indices 0 ≤ i <
j ≤ r−1 such that si = s j. Then

s = gm1hn1 · · ·gmihnigm j+1hn j+1 · · ·gmr hnr

is another representation of s of length strictly less than
r, a contradiction.

Remark: If one considers s1, . . . ,sr instead of
s0, . . . ,sr−1, then the case s = e must be handled sep-
arately: otherwise, one might end up with a represen-
tation of length 0 which is disallowed by the problem
statement.

Reinterpretation: Note that the elements
gh,gh−1,g−1h,g−1h−1 generate gh(g−1h)−1 = g2

and hence all of G (again using the hypothesis that g
has odd order, as above). Form the Cayley digraph on
the set G, i.e., the directed graph with an edge from s1 to
s2 whenever s2 = s1∗ for ∗ ∈ {gh,gh−1,g−1h,g−1h−1}.
Since G is finite, this digraph is strongly connected:
there exists at least one path from any vertex to any
other vertex (traveling all edges in the correct direc-
tion). The shortest such path cannot repeat any vertices
(except the starting and ending vertices in case they
coincide), and so has length at most |G|.
Second solution: For r a positive integer, let Sr be the
set of s ∈ G which admit a representation of length at
most r (terminology as in the first solution); obviously
Sr ⊆ Sr+1. We will show that Sr 6= Sr+1 unless Sr = G;
this will imply by induction on r that #Sr ≥min{r, |G|}
and hence that Sr = G for some r ≤ |G|.
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Suppose that Sr = Sr+1. Then the map s 7→ sgh de-
fines an injective map Sr → Sr+1 = Sr, so Sr is closed
under right multiplication by gh. By the same to-
ken, Sr is closed under right multiplication by each of
gh−1,g−1h,g−1h−1. Since gh,gh−1,g−1h,g−1h−1 gen-
erate G as in the first solution, it follows that Sr = G as
claimed.since r+1≤ |G|, we are done in this case also.

Remark: The condition on the order of g is needed
to rule out the case where G admits a (necessarily nor-
mal) subgroup H of index 2 not containing either g or
h; in this case, all products of the indicated form be-
long to H. On the other hand, if one assumes that both
g and h have odd order, then one can say a bit more:
there exists some positive integer r with 1 ≤ r ≤ |G|
such that every element of G has a representation of
length exactly r. (Namely, the set of such elements for
a given r strictly increases in size until it is stable un-
der right multiplication by both gh(g−1h)−1 = g2 and
gh(gh−1)−1 = gh2g−1, but under the present hypothe-
ses these generate G.)

A6 We prove that the smallest such value of C is 5/6.

First solution: (based on a suggestion of Daniel Kane)

We first reduce to the case where P is nonnegative in
[0,1] and P(0) = 0. To achieve this reduction, suppose
that a given value C obeys the inequality for such P.
For P general, divide the interval [0,1] into subintervals
I1, . . . , Ik at the roots of P. Write `(Ii) for the length of
the interval Ii; since each interval is bounded by a root
of P, we may make a linear change of variable to see
that∫

Ii
|P(x)|dx≤C`(Ii)max

x∈Ii
|P(x)| (i = 1, . . . ,k).

Summing over i yields the desired inequality.

Suppose now that P takes nonnegative values on [0,1],
P(0) = 0, and maxx∈[0,1] P(x) = 1. Write P(x) = ax3 +

bx2 + cx for some a,b,c ∈ R; then∫ 1

0
P(x)dx =

1
4

a+
1
3

b+
1
2

c

=
2
3

(
1
8

a+
1
4

b+
1
2

c
)
+

1
6
(a+b+ c)

=
2
3

P
(

1
2

)
+

1
6

P(1)

≤ 2
3
+

1
6
=

5
6
.

Consequently, the originally claimed inequality holds
with C = 5/6. To prove that this value is best possi-
ble, it suffices to exhibit a polynomial P as above with∫ 1

0 P(x)dx = 5/6; we will verify that

P(x) = 4x3−8x2 +5x

has this property. It is apparent that
∫ 1

0 P(x)dx = 5/6.
Since P′(x) = (2x−1)(6x−5) and

P(0) = 0, P
(

1
2

)
= 1, P

(
5
6

)
=

25
27

,P(1) = 1,

it follows that P increases from 0 at x = 0 to 1 at x =
1/2, then decreases to a positive value at x = 5/6, then
increases to 1 at x = 1. Hence P has the desired form.

Remark: Here is some conceptual motivation for the
preceding solution. Let V be the set of polynomials
of degree at most 3 vanishing at 0, viewed as a three-
dimensional vector space over R. Let S be the subset
of V consisting of those polynomials P(x) for which
0 ≤ P(x) ≤ 1 for all x ∈ [0,1]; this set is convex and
compact. We may then compute the minimal C as the
maximum value of

∫ 1
0 P(x)dx over all P ∈ S, provided

that the maximum is achieved for some polynomial of
degree exactly 3. (Note that any extremal polynomial
must satisfy maxx∈[0,1] P(x) = 1, as otherwise we could
multiply it by some constant c > 1 so as to increase∫ 1

0 P(x)dx.)

Let f : V →R be the function taking P(x) to
∫ 1

0 P(x)dx.
This function is linear, so we can characterize its ex-
trema on S easily: there exist exactly two level surfaces
for f which are supporting planes for S, and the inter-
sections of these two planes with S are the minima and
the maxima. It is obvious that the unique minimum is
achieved by the zero polynomial, so this accounts for
one of the planes.

It thus suffices to exhibit a single polynomial P(x) ∈ S
such that the level plane of f through P is a support-
ing plane for S. The calculation made in the solution
amounts to verifying that

P(x) = 4x3−8x2 +5x

has this property, by interpolating between the con-
straints P(1/2)≤ 1 and P(1)≤ 1.

This still leaves the matter of correctly guessing the op-
timal polynomial. If one supposes that it should be
extremized both at x = 1 and at an interval value of
the disc, it is forced to have the form P(x) = 1+(x−
1)(cx− 1)2 for some c > 0; the interpolation property
then pins down c uniquely.

Second solution: (by James Merryfield, via AoPS) As
in the first solution, we may assume that P is nonnega-
tive on [0,1] and P(0)= 0. Since P has degree at most 3,
Simpson’s rule for approximating

∫ 1
0 P(x)dx is an exact

formula:∫ 1

0
P(x)dx =

1
6
(P(0)+4P

(
1
2

)
+P(1)).

This immediately yields the claimed inequality for C =
5/6. Again as in the first solution, we obtain an example
showing that this value is best possible.
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B1 Note that the function ex − x is strictly increasing for
x > 0 (because its derivative is ex−1, which is positive
because ex is strictly increasing), and its value at 0 is 1.
By induction on n, we see that xn > 0 for all n.

By exponentiating the equation defining xn+1, we ob-
tain the expression

xn = exn − exn+1 .

We use this equation repeatedly to acquire increasingly
precise information about the sequence {xn}.

– Since xn > 0, we have exn > exn+1 , so xn > xn+1.

– Since the sequence {xn} is decreasing and
bounded below by 0, it converges to some limit
L.

– Taking limits in the equation yields L = eL− eL,
whence L = 0.

– Since L = 0, the sequence {exn} converges to 1.

We now have a telescoping sum:

x0 + · · ·+ xn = (ex0 − ex1)+ · · ·+(exn − exn+1)

= ex0 − exn+1 = e− exn+1 .

By taking limits, we see that the sum x0 + x1 + · · · con-
verges to the value e−1.

B2 We prove that the limit exists for α = 3
4 , β = 4

3 .

For any given positive integer n, the integers which are
closer to n2 than to any other perfect square are the ones
in the interval [n2−n−1,n2+n]. The number of squar-
ish numbers in this interval is 1 + b

√
n−1c+ b

√
nc.

Roughly speaking, this means that

S(N)∼
∫ √N

0
2
√

xdx =
4
3

N3/4.

To make this precise, we use the bounds x−1≤bxc≤ x,
and the upper and lower Riemann sum estimates for the
integral of

√
x, to derive upper and lower bounds on

S(N):

S(N)≥
b
√

Nc−1

∑
n=1

(2
√

n−1−1)

≥
∫ b√Nc−2

0
2
√

xdx−
√

N

≥ 4
3
(
√

N−3)3/2−
√

N

S(N)≤
d
√

Ne

∑
n=1

(2
√

n+1)

≤
∫ d√Ne+1

0
2
√

xdx+
√

N +1

≤ 4
3
(
√

N +2)3/2 +
√

N +1.

Remark: John Rickert points out that when N = n4,
one can turn the previous estimates into exact calcula-
tions to obtain the formula

S(N) =
4
3

(
n3 +

n
2

)
=

4
3

N3/4 +
2
3

N1/4.

For general N, one can then use the estimates

4
3
(N−1)3/4 +

2
3
(N−1)1/4 ≤ S(bN1/4c4)

≤ S(N)

≤ S(dN1/4e4)

≤ 4
3
(N +1)3/4 +

2
3
(N +1)1/4

to obtain the desired limit.

B3 Since S is finite, we can choose three points A,B,C in
S so as to maximize the area of the triangle ABC. Let
A′,B′,C′ be the points in the plane such that A,B,C are
the midpoints of the segments B′C′,C′A′,A′B′; the tri-
angle A′B′C′ is similar to ABC with sides twice as long,
so its area is 4 times that of ABC and hence no greater
than 4.

We claim that this triangle has the desired effect; that
is, every point P of S is contained within the triangle
A′B′C′. (To be precise, the problem statement requires
a triangle of area exactly 4, which need not be the case
for A′B′C′, but this is trivially resolved by scaling up by
a homothety.) To see this, note that since the area of the
triangle PBC is no more than that of ABC, P must lie
in the half-plane bounded by B′C′ containing B and C.
Similarly, P must lie in the half-plane bounded by C′A′

containing C and A, and the half-plane bounded by A′B′

containing A and B. These three half-planes intersect
precisely in the region bounded by the triangle A′B′C′,
proving the claim.

B4 The expected value equals

(2n)!
4nn!

.

First solution:
Write the determinant of A−At as the sum over permu-
tations σ of {1, . . . ,2n} of the product

sgn(σ)
2n

∏
i=1

(A−At)iσ(i) = sgn(σ)
2n

∏
i=1

(Aiσ(i)−Aσ(i)i);

then the expected value of the determinant is the sum
over σ of the expected value of this product, which we
denote by Eσ .

Note that if we partition {1, . . . ,2n} into orbits for the
action of σ , then partition the factors of the product
accordingly, then no entry of A appears in more than
one of these factors; consequently, these factors are in-
dependent random variables. This means that we can
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compute Eσ as the product of the expected values of
the individual factors.

It is obvious that any orbit of size 1 gives rise to the
zero product, and hence the expected value of the cor-
responding factor is zero. For an orbit of size m ≥ 3,
the corresponding factor contains 2m distinct matrix en-
tries, so again we may compute the expected value of
the factor as the product of the expected values of the
individual terms Aiσ(i)−Aσ(i)i. However, the distribu-
tion of this term is symmetric about 0, so its expected
value is 0.

We conclude that Eσ = 0 unless σ acts with n orbits of
size 2. To compute Eσ in this case, assume without loss
of generality that the orbits of σ are {1,2}, . . . ,{2n−
1,2n}; note that sgn(σ) = (−1)n. Then Eσ is the ex-
pected value of ∏

n
i=1−(A(2i−1)2i−A2i(2i−1))

2, which is
(−1)n times the n-th power of the expected value of
(A12−A21)

2. Since A12−A21 takes the values −1,0,1
with probabilities 1

4 ,
1
2 ,

1
4 , its square takes the values 0,1

with probabilities 1
2 ,

1
2 ; we conclude that

Eσ = 2−n.

The permutations σ of this form correspond to un-
ordered partitions of {1, . . . ,2n} into n sets of size 2,
so there are

(2n)!
n!(2!)n

such permutations. Putting this all together yields the
claimed result.

Second solution: (by Manjul Bhargava) Note that the
matrix A−At is skew-symmetric:

(A−At)t = At −A =−(A−At).

The determinant of a 2n× 2n skew-symmetric matrix
M is the square of the Pfaffian of M, which is a polyno-
mial of degree n in the entries of M defined as follows.
Define a perfect matching of {1, . . . ,2n} to be a per-
mutation of {1, . . . ,2n} that is the product of n disjoint
transpositions. Then the Pfaffian of M is given by

∑
α

sgn(α)Mi1, j1 · · ·Min, jn (1)

where the sum is over perfect matchings α =
(i1, j1) · · ·(in, jn), and sgn(α) denotes the sign of the
permutation

(
1 2 3 4 ··· (2n−1) 2n
i1 j1 i2 j2 ··· in jn

)
. The determinant

of M is then the square of (1), i.e.,

det(M) = ∑
α,β

sgn(α)sgn(β )Mi1, j1 · · ·Min, jnMi′1, j
′
1
· · ·Mi′n, j′n

(2)
where the sum is now over ordered pairs

(α = (i1, j1) · · ·(in, jn),β = (i′1, j′1) · · ·(i′n, j′n))

of perfect matchings.

Taking M = A−At , so that Mi j = Ai j −A ji, we wish
to find the expected value of (2); again, this is the sum
of the expected values of each summand in (2). Note
that each Mi j with i < j is an independent random vari-
able taking the values−1,0,1 with probabilities 1

4 ,
1
2 ,

1
4 ,

respectively.

Consider first a summand in (2) with α 6= β . Then some
factor Mi j occurs with exponent 1; since the distribution
of Mi j is symmetric about 0, any such summand has
expected value 0.

Consider next a summand in (2) with α = β . This sum-
mand is a product of distinct factors of the form M2

i j;
from the distributions of the Mi j, we see that the ex-
pected value of each of these terms is 1/2n.

Since the total number of perfect matchings α is
(2n)!/(2nn!), the expected value of (2) is therefore
(2n)!/(2nn!) ·1/2n = (2n)!/(4nn!), as desired.

B5 It is obvious that for any c > 0, the function f (x) = xc

has the desired property; we will prove that conversely,
any function with the desired property has this form for
some c.

Define the function g : (0,∞)→ (0,∞) given by g(x) =
log f (ex); this function has the property that if x,y ∈
(0,∞) and 2x ≤ y ≤ 3x, then 2g(x) ≤ g(y) ≤ 3g(x). It
will suffice to show that there exists c > 0 such that
g(x) = cx for all x > 0.

Similarly, define the function h :R→R given by h(x)=
logg(ex); this function has the property that if x,y ∈ R
and x+ log2≤ y≤ x+ log3, then h(x)+ log2≤ h(y)≤
h(x)+ log3. It will suffice to show that there exists c >
0 such that h(x) = x+c for all x ∈R (as then h(x) = ecx
for all x > 0).

By interchanging the roles of x and y, we may restate the
condition on h as follows: if x− log3 ≤ y ≤ x− log2,
then h(x)− log3≤ h(y)≤ h(x)− log2. This gives us the
cases a+b = 0,1 of the following statement, which we
will establish in full by induction on a+ b, we deduce
the following: for any nonnegative integers a,b, for all
x,y ∈ R such that

x+a log2−b log3≤ y≤ x+a log3−b log2,

we have

h(x)+a log2−b log3≤ h(y)≤ h(x)+a log3−b log2.

To this end, suppose that a+ b > 0 and that the claim
is known for all smaller values of a+ b. In particular,
either a > 0 or b > 0; the two cases are similar, so we
treat only the first one. Define the function

j(t) =
(a+b−1)t−b(log2+ log3)

a+b
,

so that

j(a log2−b log3) = a log2−b log3,
j(a log3−b log2) = (a−1) log3−b log2,

log2≤ t ≤ log3 (t ∈ [a log2−b log3,a log3−b log2]).
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For t ∈ [a log2− b log3,a log3− b log2] and y = x+ t,
we then have

(a−1) log2−b log3≤ h(x+ j(t))−h(x)≤ (a−1) log3−b log2
log2≤ h(y)−h(x+ j(t))≤ log3

and thus the desired inequalities.

Now fix two values x,y ∈ R with x ≤ y. Since log2
and log3 are linearly independent over Q, the fractional
parts of the nonnegative integer multiples of log3/ log2
are dense in [0,1). (This result is due to Kronecker;
a stronger result of Weyl shows that the fractional parts
are uniformly distributed in [0,1).) In particular, for any
ε > 0 and any N > 0, we can find integers a,b > N such
that

y− x < a log3−b log2 < y− x+ ε.

By writing

a log2−b log3 =
log2
log3

(a log3−b log2)

−b
(log3)2− (log2)2

log3
,

we see that this quantity tends to −∞ as N→ ∞; in par-
ticular, for N sufficiently large we have that a log2−
b log3 < y− x. We thus have h(y) ≤ h(x) + a log2−
b log3 < y− x+ ε; since ε > 0 was chosen arbitrarily,
we deduce that h(y)− h(x) ≤ y− x. A similar argu-
ment shows that h(y)− h(x) ≥ y− x; we deduce that
h(y)−h(x) = y−x, or equivalently h(y)−y = h(x)−x.
In other words, the function x 7→ h(x)−x is constant, as
desired.

B6 Let S denote the desired sum. We will prove that S = 1.

First solution: Write

∞

∑
n=0

1
k2n +1

=
1

k+1
+

∞

∑
n=1

1
k2n +1

;

then we may write S = S1 +S2 where

S1 =
∞

∑
k=1

(−1)k−1

k(k+1)

S2 =
∞

∑
k=1

(−1)k−1

k

∞

∑
n=1

1
k2n +1

.

The rearrangement is valid because both S1 and S2 con-
verge absolutely in k, by comparison to ∑1/k2.

To compute S1, note that

N

∑
k=1

(−1)k−1

k(k+1)
=

N

∑
k=1

(−1)k−1
(

1
k
− 1

k+1

)
=−1+

(−1)N

N +1
+2

N

∑
k=1

(−1)k−1

k

converges to 2ln2−1 as N→∞, and so S1 = 2ln2−1.

To compute S2, write 1
k2n+1 = 1

k2n · 1
1+1/(k2n) as the geo-

metric series ∑
∞
m=0

(−1)m

km+12mn+n , whence

S2 =
∞

∑
k=1

∞

∑
n=1

∞

∑
m=0

(−1)k+m−1

km+22mn+n .

(This step requires n ≥ 1, as otherwise the geometric
series would not converge for k = 0.) Now note that
this triple sum converges absolutely: we have

∞

∑
m=0

1
km+22mn+n =

1
k22n ·

1
1− 1

k2n

=
1

k(k2n−1)
≤ 1

k22n−1

and so

∞

∑
k=1

∞

∑
n=1

∞

∑
m=0

1
km+22mn+n ≤

∞

∑
k=1

∞

∑
n=1

1
k22n−1

=
∞

∑
k=1

2
k2 < ∞.

Thus we can rearrange the sum to get

S2 =
∞

∑
m=0

(−1)m

(
∞

∑
n=1

1
2mn+n

)(
∞

∑
k=1

(−1)k−1

km+2

)
.

The sum in n is the geometric series

1
2m+1(1− 1

2m+1 )
=

1
2m+1−1

.

If we write the sum in k as S3, then note that

∞

∑
k=1

1
km+2 = S3 +2

∞

∑
k=1

1
(2k)m+2 = S3 +

1
2m+1

∞

∑
k=1

1
km+2

(where we can rearrange terms in the first equality be-
cause all of the series converge absolutely), and so

S3 =

(
1− 1

2m+1

)
∞

∑
k=1

1
km+2 .

It follows that

S2 =
∞

∑
m=0

(−1)m

2m+1

∞

∑
k=1

1
km+2

=
∞

∑
k=1

1
2k2

∞

∑
m=0

(
− 1

2k

)m

=
∞

∑
k=1

1
k(2k+1)

= 2
∞

∑
k=1

(
1
2k
− 1

2k+1

)
= 2(1− ln2).
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Finally, we have S = S1 +S2 = 1.

Second solution: (by Tewodros Amdeberhan) Since∫ 1
0 xt dx = 1

1+t for any t ≥ 1, we also have

S =
∞

∑
k=1

∞

∑
n=0

(−1)k−1

k

∫ 1

0
xk2n

dx.

Again by absolute convergence, we are free to permute
the integral and the sums:

S =
∫ 1

0
dx

∞

∑
n=0

∞

∑
k=1

(−1)k−1

k
xk2n

=−
∫ 1

0
dx

∞

∑
n=0

log(1+ x2n
).

Due to the uniqueness of binary expansions of nonneg-
ative integers, we have the identity of formal power se-
ries

1
1− x

=
∞

∏
n=0

(1+ x2n
);

the product converges absolutely for 0≤ x < 1. We thus
have

S =−
∫ 1

0
log(1− x)dx

= ((1− x) log(1− x)− (1− x))1
0

= 1.

Third solution: (by Serin Hong) Again using absolute
convergence, we may write

S =
∞

∑
m=2

1
m ∑

k

(−1)k−1

k

where k runs over all positive integers for which m =
k2n+1 for some n. If we write e for the 2-adic valuation
of m−1 and j = (m−1)2−e for the odd part of m−1,
then the values of k are j2i for i = 0, . . . ,e. The inner
sum can thus be evaluated as

1
j
−

e

∑
i=1

1
2i j

=
1

2e j
=

1
m−1

.

We thus have

S =
∞

∑
m=2

1
m(m−1)

=
∞

∑
m=2

(
1

m−1
− 1

m

)
= 1.

Fourth solution: (by Liang Xiao) Let S0 and S1 be the
sums ∑k

1
k ∑

∞
n=0

1
k2n+1 with k running over all odd and

all even positive integers, respectively, so that

S = S0−S1.
In S1, we may write k = 2` to obtain

S1 =
∞

∑
`=1

1
2`

∞

∑
n=0

1
`2n+1 +1

=
1
2
(S0 +S1)−

∞

∑
`=1

1
2`(`+1)

=
1
2
(S0 +S1)−

1
2

because the last sum telescopes; this immediately yields
S = 1.
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A1 Let S be the smallest set of positive integers such that

(a) 2 is in S,

(b) n is in S whenever n2 is in S, and

(c) (n+5)2 is in S whenever n is in S.

Which positive integers are not in S?

(The set S is “smallest” in the sense that S is contained
in any other such set.)

A2 Let Q0(x) = 1, Q1(x) = x, and

Qn(x) =
(Qn−1(x))2−1

Qn−2(x)

for all n≥ 2. Show that, whenever n is a positive integer,
Qn(x) is equal to a polynomial with integer coefficients.

A3 Let a and b be real numbers with a < b, and let f and
g be continuous functions from [a,b] to (0,∞) such that∫ b

a f (x)dx =
∫ b

a g(x)dx but f 6= g. For every positive
integer n, define

In =
∫ b

a

( f (x))n+1

(g(x))n dx.

Show that I1, I2, I3, . . . is an increasing sequence with
limn→∞ In = ∞.

A4 A class with 2N students took a quiz, on which the pos-
sible scores were 0,1, . . . ,10. Each of these scores oc-
curred at least once, and the average score was exactly
7.4. Show that the class can be divided into two groups
of N students in such a way that the average score for
each group was exactly 7.4.

A5 Each of the integers from 1 to n is written on a separate
card, and then the cards are combined into a deck and
shuffled. Three players, A, B, and C, take turns in the
order A,B,C,A, . . . choosing one card at random from
the deck. (Each card in the deck is equally likely to
be chosen.) After a card is chosen, that card and all
higher-numbered cards are removed from the deck, and
the remaining cards are reshuffled before the next turn.
Play continues until one of the three players wins the
game by drawing the card numbered 1.

Show that for each of the three players, there are arbi-
trarily large values of n for which that player has the
highest probability among the three players of winning
the game.

A6 The 30 edges of a regular icosahedron are distinguished
by labeling them 1,2, . . . ,30. How many different ways

are there to paint each edge red, white, or blue such that
each of the 20 triangular faces of the icosahedron has
two edges of the same color and a third edge of a dif-
ferent color? [Note: the top matter on each exam paper
included the logo of the Mathematical Association of
America, which is itself an icosahedron.]

B1 Let L1 and L2 be distinct lines in the plane. Prove that
L1 and L2 intersect if and only if, for every real number
λ 6= 0 and every point P not on L1 or L2, there exist
points A1 on L1 and A2 on L2 such that

−→
PA2 = λ

−→
PA1.

B2 Suppose that a positive integer N can be expressed as
the sum of k consecutive positive integers

N = a+(a+1)+(a+2)+ · · ·+(a+ k−1)

for k = 2017 but for no other values of k > 1. Consid-
ering all positive integers N with this property, what is
the smallest positive integer a that occurs in any of these
expressions?

B3 Suppose that f (x) = ∑
∞
i=0 cixi is a power series for

which each coefficient ci is 0 or 1. Show that if
f (2/3) = 3/2, then f (1/2) must be irrational.

B4 Evaluate the sum

∞

∑
k=0

(
3 · ln(4k+2)

4k+2
− ln(4k+3)

4k+3
− ln(4k+4)

4k+4
− ln(4k+5)

4k+5

)
= 3 · ln2

2
− ln3

3
− ln4

4
− ln5

5
+3 · ln6

6
− ln7

7

− ln8
8
− ln9

9
+3 · ln10

10
−·· · .

(As usual, lnx denotes the natural logarithm of x.)

B5 A line in the plane of a triangle T is called an equal-
izer if it divides T into two regions having equal area
and equal perimeter. Find positive integers a > b > c,
with a as small as possible, such that there exists a trian-
gle with side lengths a,b,c that has exactly two distinct
equalizers.

B6 Find the number of ordered 64-tuples (x0,x1, . . . ,x63)
such that x0,x1, . . . ,x63 are distinct elements of
{1,2, . . . ,2017} and

x0 + x1 +2x2 +3x3 + · · ·+63x63

is divisible by 2017.
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A1 We claim that the positive integers not in S are 1 and all
multiples of 5. If S consists of all other natural numbers,
then S satisfies the given conditions: note that the only
perfect squares not in S are 1 and numbers of the form
(5k)2 for some positive integer k, and it readily follows
that both (b) and (c) hold.

Now suppose that T is another set of positive integers
satisfying (a), (b), and (c). Note from (b) and (c) that if
n ∈ T then n+ 5 ∈ T , and so T satisfies the following
property:

(d) if n ∈ T , then n+5k ∈ T for all k ≥ 0.

The following must then be in T , with implications la-
beled by conditions (b) through (d):

2 c⇒ 49 c⇒ 542 d⇒ 562 b⇒ 56 d⇒ 121 b⇒ 11

11 d⇒ 16 b⇒ 4 d⇒ 9 b⇒ 3

16 d⇒ 36 b⇒ 6

Since 2,3,4,6 ∈ T , by (d) S⊆ T , and so S is smallest.

A2 First solution. Define Pn(x) for P0(x) = 1, P1(x) = x,
and Pn(x) = xPn−1(x)−Pn−2(x). We claim that Pn(x) =
Qn(x) for all n ≥ 0; since Pn(x) clearly is a polynomial
with integer coefficients for all n, this will imply the
desired result.

Since {Pn} and {Qn} are uniquely determined by their
respective recurrence relations and the initial conditions
P0,P1 or Q0,Q1, it suffices to check that {Pn} satis-
fies the same recurrence as Q: that is, (Pn−1(x))2 −
Pn(x)Pn−2(x) = 1 for all n ≥ 2. Here is one proof of
this: for n≥ 1, define the 2×2 matrices

Mn =

(
Pn−1(x) Pn(x)
Pn−2(x) Pn−1(x)

)
, T =

(
x −1
1 0

)
with P−1(x) = 0 (this value being consistent with the
recurrence). Then det(T ) = 1 and T Mn = Mn+1, so by
induction on n we have

(Pn−1(x))2−Pn(x)Pn−2(x) = det(Mn) = det(M1) = 1.

Remark: A similar argument shows that any second-
order linear recurrent sequence also satisfies a quadratic
second-order recurrence relation. A familiar example
is the identity Fn−1Fn+1 − F2

n = (−1)n for Fn the n-
th Fibonacci number. More examples come from var-
ious classes of orthogonal polynomials, including the
Chebyshev polynomials mentioned below.

Second solution. We establish directly that Qn(x) =
xQn−1(x)−Qn−2(x), which again suffices. From the
equation

1 = Qn−1(x)2−Qn(x)Qn−2(x) = Qn(x)2−Qn+1(x)Qn−1(x)

we deduce that

Qn−1(x)(Qn−1(x)+Qn+1(x)) = Qn(x)(Qn(x)+Qn−2(x)).

Since deg(Qn(x)) = n by an obvious induction, the
polynomials Qn(x) are all nonzero. We may thus
rewrite the previous equation as

Qn+1(x)+Qn−1(x)
Qn(x)

=
Qn(x)+Qn−2(x)

Qn−1(x)
,

meaning that the rational functions Qn(x)+Qn−2(x)
Qn−1(x)

are all
equal to a constant value. By taking n = 2 and comput-
ing from the definition that Q2(x) = x2−1, we find the
constant value to be x; this yields the desired recurrence.

Remark: By induction, one may also obtain the ex-
plicit formula

Qn(x) =
bn/2c

∑
k=0

(−1)k
(

n− k
k

)
xn−2k.

Remark: In light of the explicit formula for Qn(x),
Karl Mahlburg suggests the following bijective inter-
pretation of the identity Qn−1(x)2−Qn(x)Qn−2(x) = 1.
Consider the set Cn of integer compositions of n with
all parts 1 or 2; these are ordered tuples (c1, . . . ,ck) such
that c1+ · · ·+ck = n and ci ∈ {1,2} for all i. For a given
composition c, let o(c) and d(c) denote the number of
1’s and 2’s, respectively. Define the generating function

Rn(x) = ∑
c∈Cn

xo(c);

then Rn(x) = ∑ j
(n− j

j

)
xn−2 j, so that Qn(x) =

i−n/2Rn(ix). (The polynomials Rn(x) are some-
times called Fibonacci polynomials; they satisfy
Rn(1) = Fn. This interpretation of Fn as the cardinality
of Cn first arose in the study of Sanskrit prosody,
specifically the analysis of a line of verse as a sequence
of long and short syllables, at least 500 years prior to
the work of Fibonacci.)

The original identity is equivalent to the identity

Rn+1(x)Rn−1(x)−Rn(x)2 = (−1)n−1.



2

This follows because if we identify the composition c
with a tiling of a 1× n rectangle by 1× 1 squares and
1× 2 dominoes, it is almost a bijection to place two
tilings of length n on top of each other, offset by one
square, and hinge at the first possible point (which is
the first square in either). This only fails when both
tilings are all dominoes, which gives the term (−1)n−1.

Remark: This problem appeared on the
2012 India National Math Olympiad; see
https://artofproblemsolving.com/community/
c6h1219629. Another problem based on the same idea
is problem A2 from the 1993 Putnam.

A3 First solution. Extend the definition of In to n = 0, so
that I0 =

∫ b
a f (x)dx > 0. Since

∫ b
a ( f (x)−g(x))dx = 0,

we have

I1− I0 =
∫ b

a

f (x)
g(x)

( f (x)−g(x))dx

=
∫ b

a

( f (x)−g(x))2

g(x)
dx > 0,

where the inequality follows from the fact that the in-
tegrand is a nonnegative continuous function on [a,b]
that is not identically 0. Now for n ≥ 0, the Cauchy–
Schwarz inequality gives

InIn+2 =

(∫ b

a

( f (x))n+1

(g(x))n dx
)(∫ b

a

( f (x))n+3

(g(x))n+2 dx
)

≥
(∫ b

a

( f (x))n+2

(g(x))n+1 dx
)2

= I2
n+1.

It follows that the sequence {In+1/In}∞
n=0 is nondecreas-

ing. Since I1/I0 > 1, this implies that In+1 > In for
all n; also, In/I0 = ∏

n−1
k=0(Ik+1/Ik) ≥ (I1/I0)

n, and so
limn→∞ In = ∞ since I1/I0 > 1 and I0 > 0.

Remark: Noam Elkies suggests the following vari-
ant of the previous solution, which eliminates the need
to separately check that I1 > I0. First, the proof that
InIn+2 ≥ I2

n+1 applies also for n = −1 under the con-
vention that I−1 =

∫ b
a g(x)dx (as in the fourth solution

below). Second, this equality must be strict for each
n ≥ −1: otherwise, the equality condition in Cauchy–
Schwarz would imply that g(x) = c f (x) identically for
some c > 0, and the equality

∫ b
a f (x)dx =

∫ b
a g(x)dx

would then force c = 1, contrary to assumption. Con-
sequently, the sequence In+1/In is strictly increasing;
since I0/I−1 = 1, it follows that for n ≥ 0, we again
have In+1/In ≥ I1/I0 > 1 and so on.

Second solution. (from Art of Problem Solving, user

MSTang) Since
∫ b

a ( f (x)−g(x))dx = 0, we have

In+1− In =
∫ b

a

(
( f (x))n+2

(g(x))n+1 −
( f (x))n+1

(g(x))n

)
dx

=
∫ b

a

( f (x))n+1

(g(x))n+1 ( f (x)−g(x))dx

=
∫ b

a

(
( f (x))n+1

(g(x))n+1 −1
)
( f (x)−g(x))dx

=
∫ b

a

( f (x)−g(x))2(( f (x))n + · · ·+g(x)n)

(g(x))n+1 dx.

The integrand is continuous, nonnegative, and not iden-
tically zero; hence In+1− In > 0.

To prove that limn→∞ In = ∞, note that we cannot
have f (x) ≤ g(x) identically, as then the equality∫ b

a f (x)dx =
∫ b

a g(x)dx would imply f (x) = g(x) iden-
tically. That is, there exists some t ∈ [a,b] such that
f (t) > g(t). By continuity, there exist a quantity c > 1
and an interval J = [t0, t1] in [a,b] such that f (x)≥ cg(x)
for all x ∈ J. We then have

In ≥
∫ t1

t0

( f (x))n+1

(g(x))n dx≥ cn
∫ t1

t0
f (x)dx;

since f (x)> 0 everywhere, we have
∫ t1

t0 f (x)dx > 0 and
hence In is bounded below by a quantity which tends to
∞.

Remark: One can also give a variation of the second
half of the solution which shows directly that In+1 −
In ≥ cnd for some c > 1,d > 0, thus proving both asser-
tions at once.

Third solution. (from David Savitt, via Art of Problem
Solving) Extend the definition of In to all real n, and
note that

I−1 =
∫ b

a
g(x)dx =

∫ b

a
f (x)dx = I0.

By writing

In =
∫ b

a
exp((n+1) log f (x)−n logg(x))dx,

we see that the integrand is a strictly convex function of
n, as then is In. It follows that In is strictly increasing
and unbounded for n≥ 1.

Fourth solution. (by David Rusin) Again, extend the
definition of In to n =−1. Now note that for n≥ 0 and
x ∈ [a,b], we have

( f (x)−g(x))

((
f (x)
g(x)

)n+1

−
(

f (x)
g(x)

)n
)
≥ 0

because both factors have the same sign (depending
on the comparison between f (x) and g(x)); moreover,
equality only occurs when f (x) = g(x). Since f and g
are not identically equal, we deduce that

In+1− In > In− In−1
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and so in particular

In+1− In ≥ I1− I0 > I0− I−1 = 0.

This proves both claims.

Remark: This problem appeared in 2005 on
an undergraduate math olympiad in Brazil. See
https://artofproblemsolving.com/community/
c7h57686p354392 for discussion.

A4 First solution. Let a1, . . . ,a2N be the scores in non-
decreasing order, and define the sums si = ∑

i+N
j=i+1 a j

for i = 0, . . . ,N. Then s0 ≤ ·· · ≤ sN and s0 + sN =
∑

2N
j=1 a j = 7.4(2N), so s0 ≤ 7.4N ≤ sN . Let i be the

largest index for which si ≤ 7.4N; note that we can-
not have i = N, as otherwise s0 = sN = 7.4N and hence
a1 = · · · = a2N = 7.4, contradiction. Then 7.4N− si <
si+1− si = ai+N+1−ai and so

ai < si +ai+N+1−7.4N ≤ ai+N+1;

since all possible scores occur, this means that we can
find N scores with sum 7.4N by taking ai+1, . . . ,ai+N+1
and omitting one occurrence of the value si +ai+N+1−
7.4N.

Remark: David Savitt (via Art of Problem Solving)
points out that a similar argument applies provided that
there are an even number of students, the total score is
even, and the achieved scores form a block of consecu-
tive integers.

Second solution. We first claim that for any integer m
with 15 ≤ m ≤ 40, we can find five distinct elements
of the set {1,2, . . . ,10} whose sum is m. Indeed, for
0≤ k ≤ 4 and 1≤ `≤ 6, we have(

k

∑
j=1

j

)
+(k+ `)+

(
10

∑
j=k+7

j

)
= 34−5k+ `,

and for fixed k this takes all values from 35−5k to 40−
5k inclusive; then as k ranges from 0 to 4, this takes all
values from 15 to 40 inclusive.

Now suppose that the scores are a1, . . . ,a2N , where we
order the scores so that ak = k for k≤ 10 and the subse-
quence a11,a12, . . . ,a2N is nondecreasing. For 1 ≤ k ≤
N − 4, define Sk = ∑

k+N+4
j=k+10 a j. Note that for each k,

Sk+1−Sk = ak+N+5−ak+10 and so 0≤ Sk+1−Sk ≤ 10.
Thus S1, . . . ,SN−4 is a nondecreasing sequence of inte-
gers where each term is at most 10 more than the previ-
ous one. On the other hand, we have

S1 +SN−4 =
2N

∑
j=11

a j

= (7.4)(2N)−
10

∑
j=1

a j

= (7.4)(2N)−55,

whence S1 ≤ 7.4N−27.5≤ SN−4. It follows that there
is some k such that Sk ∈ [7.4N− 40,7.4N− 15], since
this interval has length 25 and 7.4N−27.5 lies inside it.

For this value of k, note that both Sk and 7.4N are inte-
gers (the latter since the sum of all scores in the class is
the integer (7.4)(2N) and so N must be divisible by 5).
Thus there is an integer m with 15≤ m≤ 40 for which
Sk = 7.4N−m. By our first claim, we can choose five
scores from a1, . . . ,a10 whose sum is m. When we add
these to the sum of the N−5 scores ak+10, . . . ,ak+N+4,
we get precisely 7.4N. We have now found N scores
whose sum is 7.4N and thus whose average is 7.4.

Third solution. It will suffices to show that given any
partition of the students into two groups of N, if the
sums are not equal we can bring them closer together by
swapping one pair of students between the two groups.
To state this symbolically, let S be the set of students
and, for any subset T of S, let ΣT denote the sum of
the scores of the students in T ; we then show that if
S = A∪B is a partition into two N-element sets with
ΣA > ΣB, then there exist students a ∈ A,B ∈ B such
that the sets

A′ = A\{a}∪{b}, B′ = A\{b}∪{a}

satisfy

0≤ ΣA′−ΣB′ < ΣA−ΣB.

In fact, this argument will apply at the same level of
generality as in the remark following the first solution.

To prove the claim, let a1, . . . ,an be the scores in A and
let b1, . . . ,bn be the scores in B (in any order). Since
ΣA−ΣB≡ ΣS (mod 2) and the latter is even, we must
have ΣA− ΣB ≥ 2. In particular, there must exist in-
dices i, j ∈ {1, . . . ,n} such that ai > b j. Consequently,
if we sort the sequence a1, . . . ,an,b1, . . . ,bn into nonde-
creasing order, it must be the case that some term b j is
followed by some term ai. Moreover, since the achieved
scores form a range of consecutive integers, we must in
fact have ai = b j + 1. Consequently, if we take a = ai,
b = b j, we then have ΣA′−Σ′B = ΣA−ΣB− 2, which
proves the claim.

A5 First solution. Let an,bn,cn be the probabilities that
players A, B, C, respectively, will win the game. We
compute these by induction on n, starting with the val-
ues

a1 = 1, b1 = 0, c1 = 0.

If player A draws card k, then the resulting game state
is that of a deck of k− 1 cards with the players taking
turns in the order B,C,A,B, . . . . In this state, the proba-
bilities that players A,B,C will win are ck−1,ak−1,bk−1
provided that we adopt the convention that

a0 = 0, b0 = 0, c0 = 1.
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We thus have

an =
1
n

n

∑
k=1

ck−1, bn =
1
n

n

∑
k=1

ak−1, cn =
1
n

n

∑
k=1

bk−1.

Put

xn = an−bn, yn = bn− cn, zn = cn−an;

we then have

xn+1 =
n

n+1
xn +

1
n+1

zn,

yn+1 =
n

n+1
yn +

1
n+1

xn,

zn+1 =
n

n+1
zn +

1
n+1

yn.

Note that if an+1 = bn+1 = cn+1 = 0, then

xn =−nzn = n2yn =−n3xn = n4zn

and so xn = zn = 0, or in other words an = bn = cn. By
induction on n, we deduce that an,bn,cn cannot all be
equal. That is, the quantities xn,yn,zn add up to zero
and at most one of them vanishes; consequently, the
quantity rn =

√
x2

n + y2
n + z2

n is always positive and the
quantities

x′n =
xn

rn
, y′n =

yn

rn
, z′n =

zn

rn

form the coordinates of a point Pn on a fixed circle C in
R3.

Let P′n be the point (zn,xn,yn) obtained from Pn by a
clockwise rotation of angle 2π

3 . The point Pn+1 then lies
on the ray through the origin passing through the point
dividing the chord from Pn to P′n in the ratio 1 : n. The
(clockwise) arc from Pn to Pn+1 therefore has a measure
of

arctan

√
3

2n−1
=

√
3

2n−1
+O(n−3);

these measures form a null sequence whose sum di-
verges. It follows that any arc of C contains infinitely
many of the Pn; taking a suitably short arc around the
point (

√
2

2 ,0,−
√

2
2 ), we deduce that for infinitely many

n, A has the highest winning probability, and similarly
for B and C.

Remark: From the previous analysis, we also deduce
that

rn+1

rn
=

√
n2−n+1

n+1
= 1− 3

2(n+1)
+O(n−2),

from which it follows that rn ∼ cn−3/2 for some c > 0.

Second solution. (by Noam Elkies) In this approach,
we instead compute the probability pn(m) that the game
ends after exactly m turns (the winner being determined

by the residue of m mod 3). We use the convention that
p0(0) = 1, p0(m) = 0 for m > 0. Define the generating
function Pn(X) = ∑

n
m=0 pn(m)xm. We will establish that

Pn(X) =
X(X +1) · · ·(X +n−1)

n!

(which may be guessed by computing pn(m) for small
n by hand). There are several ways to do this; for in-
stance, this follows from the recursion

Pn(X) =
1
n

XPn−1(X)+
(n−1)

n
Pn−1(X).

(In this recursion, the first term corresponds to condi-
tional probabilities given that the first card drawn is
n, and the second term corresponds to the remaining
cases.)

Let ω be a primitive cube root of 1. With notation as in
the first solution, we have

Pn(ω) = an +bnω + cnω;

combining this with the explicit formula for Pn(X) and
the observation that

arg(w+n) = arctan

√
3

2n−1

recovers the geometric description of an,bn,cn given in
the first solution (as well as the remark following the
first solution).

Third solution. For this argument, we use the auxiliary
quantities

a′n = an−
1
3
, b′n = bn−

1
3
, c′n = cn−

1
3

;

these satisfy the relations

a′n =
1
n

n

∑
k=1

c′k−1, b′n =
1
n

n

∑
k=1

a′k−1, c′n =
1
n

n

∑
k=1

b′k−1

as well as

a′n+1 = a′n +
1

n+1
(c′n−a′n)

b′n+1 = b′n +
1

n+1
(a′n−b′n)

c′n+1 = c′n +
1

n+1
(b′n− c′n).

We now show that ∑
∞
n=1 a′n cannot diverge to +∞ (and

likewise for ∑
∞
n=1 b′n and ∑

∞
n=1 c′n by similar reasoning).

Suppose the contrary; then there exists some ε > 0
and some n0 > 0 such that ∑

n
k=1 a′k ≥ ε for all n ≥ n0.

For n > n0, we have b′n ≥ ε; this in turn implies that
∑

∞
n=1 b′n diverges to +∞. Continuing around the cir-

cle, we deduce that for n sufficiently large, all three of
a′n,b

′
n,c
′
n are positive; but this contradicts the identity
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a′n + b′n + c′n = 0. We thus conclude that ∑
∞
n=1 a′n does

not diverge to +∞; in particular, liminfn→∞ a′n ≤ 0.

By the same token, we may see that ∑
∞
n=1 a′n cannot con-

verge to a positive limit L (and likewise for ∑
∞
n=1 b′n and

∑
∞
n=1 c′n by similar reasoning). Namely, this would im-

ply that b′n ≥ L/2 for n sufficiently large, contradicting
the previous argument.

By similar reasoning, ∑
∞
n=1 a′n cannot diverge to −∞ or

converge to a negative limit L (and likewise for ∑
∞
n=1 b′n

and ∑
∞
n=1 c′n by similar reasoning).

We next establish that there are infinitely many n for
which a′n > 0 (and likewise for b′n and c′n by similar
reasoning). Suppose to the contrary that for n suffi-
ciently large, we have a′n ≤ 0. By the previous argu-
ments, the sum ∑

∞
n=1 a′n cannot diverge to ∞ or con-

verge to a nonzero limit; it must therefore converge
to 0. In particular, for n sufficiently large, we have
b′n = ∑

n
k=1 a′k−1 ≥ 0. Iterating the construction, we see

that for n sufficiently large, we must have c′n≤ 0, a′n≥ 0,
b′n ≤ 0, and c′n ≥ 0. As a result, for n sufficiently large
we must have a′n = b′n = c′n = 0; but we may rule this
out as in the original solution.

By similar reasoning, we may deduce that there are in-
finitely many n for which a′n < 0 (and likewise for b′n
and c′n by similar reasoning). We now continue us-
ing a suggestion of Jon Atkins. Define the values of
the sequence xn according to the relative comparison of
a′n,b

′
n,c
′
n (using the fact that these cannot all be equal):

xn = 1 : a′n ≤ b′n < c′n
xn = 2 : b′n ≤ c′n < a′n
xn = 3 : c′n ≤ a′n < b′n
xn = 4 : a′n < c′n ≤ b′n
xn = 5 : b′n < a′n ≤ c′n
xn = 6 : c′n < b′n ≤ a′n.

We consider these values as states and say that there is
a transition from state i to state j, and write i⇒ j, if for
every n≥ 2 with xn = i there exists n′ > n with xn′ = j.
(In all cases when we use this notation, it will in fact be
the case that the first value of n′ > n for which xn′ 6= i
satisfes xn′ = j, but this is not logically necessary for
our final conclusion.)

Suppose that xn = 1. By the earlier discussion, we must
have a′n′ > 0 for some n′ > n, and so we cannot have
xn′ = 1 for all n′ > n. On the other hand, as long as
xn = 1, we have

c′n+1−b′n+1 = c′n−b′n +
1

n+1
(2b′n−a′n− c′n)

=
n−1
n+1

(c′n−b′n)+
1

n+1
(c′n−a′n)> 0

c′n+1−a′n+1 = c′n−a′n +
1

n+1
(a′n +b′n−2c′n)

=
n−1
n+1

(c′n−a′n)+
1

n+1
(b′n−a′n)> 0.

Consequently, for n′ the smallest value for which xn′ 6=
xn, we must have xn′ = 2. By this and two similar argu-
ments, we deduce that

1⇒ 5, 2⇒ 6, 3⇒ 4.

Suppose that xn = 4. By the earlier discussion, we must
have a′n′ < 0 for some n′ > n, and so we cannot have
xn′ = 4 for all n′ > n. On the other hand, as long as
xn = 4, we have

b′n+1−a′n+1 = b′n−a′n +
1

n+1
(2a′n−b′n− c′n)

=
n−1
n+1

(b′n−a′n)+
1

n+1
(b′n− c′n)> 0

c′n+1−a′n+1 = c′n−a′n +
1

n+1
(a′n +b′n−2c′n)

=
n−1
n+1

(c′n−a′n)+
1

n+1
(b′n−a′n)> 0.

Consequently, for n′ the smallest value for which xn′ 6=
xn, we must have xn′ = 1. By this and two similar argu-
ments, we deduce that

4⇒ 1, 5⇒ 2, 6⇒ 3.

Combining, we obtain

1⇒ 5⇒ 2⇒ 6⇒ 3⇒ 4⇒ 1

and hence the desired result.

A6 The number of such colorings is 220310 =
61917364224.

First solution: Identify the three colors red, white, and
blue with (in some order) the elements of the field F3 of
three elements (i.e., the ring of integers mod 3). The set
of colorings may then be identified with the F3-vector
space FE

3 generated by the set E of edges. Let F be
the set of faces, and let FF

3 be the F3-vector space on
the basis F ; we may then define a linear transformation
T : FE

3 → FF
3 taking a coloring to the vector whose com-

ponent corresponding to a given face equals the sum of
the three edges of that face. The colorings we wish to
count are the ones whose images under T consist of vec-
tors with no zero components.

We now show that T is surjective. (There are many pos-
sible approaches to this step; for instance, see the fol-
lowing remark.) Let Γ be the dual graph of the icosa-
hedron, that is, Γ has vertex set F and two elements of
F are adjacent in Γ if they share an edge in the icosa-
hedron. The graph Γ admits a hamiltonian path, that is,
there exists an ordering f1, . . . , f20 of the faces such that
any two consecutive faces are adjacent in Γ. For exam-
ple, such an ordering can be constructed with f1, . . . , f5
being the five faces sharing a vertex of the icosahedron
and f16, . . . , f20 being the five faces sharing the antipo-
dal vertex.

For i = 1, . . . ,19, let ei be the common edge of fi and
fi+1; these are obviously all distinct. By prescribing
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components for e1, . . . ,e19 in turn and setting the oth-
ers to zero, we can construct an element of FE

3 whose
image under T matches any given vector of FF

3 in the
components of f1, . . . , f19. The vectors in FF

3 obtained
in this way thus form a 19-dimensional subspace; this
subspace may also be described as the vectors for which
the components of f1, . . . , f19 have the same sum as the
components of f2, . . . , f20.

By performing a mirror reflection, we can construct a
second hamiltonian path g1, . . . ,g20 with the property
that

g1 = f1,g2 = f5,g3 = f4,g4 = f3,g5 = f2.

Repeating the previous construction, we obtain a differ-
ent 19-dimensional subspace of FF

3 which is contained
in the image of T . This implies that T is surjective, as
asserted earlier.

Since T is a surjective homomorphism from a 30-
dimensional vector space to a 20-dimensional vector
space, it has a 10-dimensional kernel. Each of the 220

elements of FF
3 with no zero components is then the im-

age of exactly 310 colorings of the desired form, yield-
ing the result.

Remark: There are many ways to check that T is sur-
jective. One of the simplest is the following (from Art
of Problem Solving, user Ravi12346): form a vector in
FE with components 2,1,2,1,2 at the five edges around
some vertex and all other components 0. This maps to
a vector in FF with only a single nonzero component;
by symmetry, every standard basis vector of FF arises
in this way.

Second solution: (from Bill Huang, via Art of Problem
Solving user superpi83) Let v and w be two antipodal
vertices of the icosahedron. Let Sv (resp. Sw) be the set
of five edges incident to v (resp. w). Let Tv (resp. Tw) be
the set of five edges of the pentagon formed by the op-
posite endpoints of the five edges in Sv (resp. Sw). Let U
be the set of the ten remaining edges of the icosahedron.

Consider any one of the 310 possible colorings of U .
The edges of Tv ∪U form the boundaries of five faces
with no edges in common; thus each edge of Tv can be
colored in one of two ways consistent with the given
condition, and similarly for Tw. That is, there are 310210

possible colorings of Tv ∪ Tw ∪U consistent with the
given condition.

To complete the count, it suffices to check that there are
exactly 25 ways to color Sv consistent with any given
coloring of Tv. Using the linear-algebraic interpretation
from the first solution, this follows by observing that
(by the previous remark) the map from FSv

3 to the F3-
vector space on the faces incident to v is surjective, and
hence an isomorphism for dimensional reasons. A di-
rect combinatorial proof is also possible.

B1 Recall that L1 and L2 intersect if and only if they are not
parallel. In one direction, suppose that L1 and L2 inter-
sect. Then for any P and λ , the dilation (homothety) of

the plane by a factor of λ with center P carries L1 to
another line parallel to L1 and hence not parallel to L2.
Let A2 be the unique intersection of L2 with the image
of L1, and let A1 be the point on L1 whose image under
the dilation is A2; then

−→
PA2 = λ

−→
PA1.

In the other direction, suppose that L1 and L2 are par-
allel. Let P be any point in the region between L1 and
L2 and take λ = 1. Then for any point A1 on L1 and
any point A2 on L2, the vectors

−→
PA1 and

−→
PA2 have com-

ponents perpendicular to L1 pointing in opposite direc-
tions; in particular, the two vectors cannot be equal.

Reinterpretation: (by Karl Mahlburg) In terms of vec-
tors, we may find vectors ~v1,~v2 and scalars c1,c2 such
that Li = {~x ∈ R2 : ~vi ·~x = ci}. The condition in the
problem amounts to finding a vector ~w and a scalar t
such that P+~w ∈ L1,P+λw ∈ L2; this comes down to
solving the linear system

~v1 · (P+~w) = c1

~v2 · (P+λ~w) = c2

which is nondegenerate and solvable for all λ if and
only if~v1,~v2 are linearly independent.

B2 We prove that the smallest value of a is 16.

Note that the expression for N can be rewritten as
k(2a + k− 1)/2, so that 2N = k(2a + k− 1). In this
expression, k > 1 by requirement; k < 2a+ k− 1 be-
cause a > 1; and obviously k and 2a+k−1 have oppo-
site parity. Conversely, for any factorization 2N = mn
with 1 < m < n and m,n of opposite parity, we obtain
an expression of N in the desired form by taking k = m,
a = (n+1−m)/2.

We now note that 2017 is prime. (On the exam, solvers
would have had to verify this by hand. Since 2017 <
452, this can be done by trial division by the primes up
to 43.) For 2N = 2017(2a+ 2016) not to have another
expression of the specified form, it must be the case that
2a + 2016 has no odd divisor greater than 1; that is,
2a+ 2016 must be a power of 2. This first occurs for
2a+2016 = 2048, yielding the claimed result.

Reinterpretation: (by Karl Mahlburg) To avoid N hav-
ing another representation, for k = 2, . . . ,2016, we must
have

N 6≡

{
k/2 k ≡ 0 (mod 2)
0 k ≡ 1 (mod 2).

Consequently, N 6≡ 0 (mod p) for any odd prime p <
2017 and N≡ 0 (mod 1024). Since N must be divisible
by 2017, this again yields the claimed value of a.

B3 Suppose by way of contradiction that f (1/2) is rational.
Then ∑

∞
i=0 ci2−i is the binary expansion of a rational

number, and hence must be eventually periodic; that is,
there exist some integers m,n such that ci = cm+i for all
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i≥ n. We may then write

f (x) =
n−1

∑
i=0

cixi +
xn

1− xm

m−1

∑
i=0

cn+ixi.

Evaluating at x = 2/3, we may equate f (2/3) = 3/2
with

1
3n−1

n−1

∑
i=0

ci2i3n−i−1 +
2n3m

3n+m−1(3m−2m)

m−1

∑
i=0

cn+i2i3m−1−i;

since all terms on the right-hand side have odd denomi-
nator, the same must be true of the sum, a contradiction.

Remark: Greg Marks asks whether the assumption that
f (2/3) = 3/2 further ensures that f (1/2) is transcen-
dental. We do not know of any existing results that
would imply this. However, the following result fol-
lows from a theorem of T. Tanaka (Algebraic indepen-
dence of the values of power series generated by linear
recurrences, Acta Arith. 74 (1996), 177–190), building
upon work of Mahler. Let {an}∞

n=0 be a linear recurrent
sequence of positive integers with characteristic poly-
nomial P. Suppose that P(0),P(1),P(−1) 6= 0 and that
no two distinct roots of P have ratio which is a root
of unity. Then for f (x) = ∑

∞
n=0 xan , the values f (1/2)

and f (2/3) are algebraically independent over Q. (Note
that for f as in the original problem, the condition on
ratios of roots of P fails.)

B4 We prove that the sum equals (log2)2; as usual, we
write logx for the natural logarithm of x instead of lnx.
Note that of the two given expressions of the original
sum, the first is absolutely convergent (the summands
decay as log(x)/x2) but the second one is not; we must
thus be slightly careful when rearranging terms.

First solution. Define ak =
logk

k −
log(k+1)

k+1 . The infinite
sum ∑

∞
k=1 ak converges to 0 since ∑

n
k=1 ak telescopes to

− log(n+1)
n+1 and this converges to 0 as n→ ∞. Note that

ak > 0 for k ≥ 3 since logx
x is a decreasing function of x

for x > e, and so the convergence of ∑
∞
k=1 ak is absolute.

Write S for the desired sum. Then since 3a4k+2 +
2a4k+3 + a4k+4 = (a4k+2 + a4k+4) + 2(a4k+2 + a4k+3),
we have

S =
∞

∑
k=0

(3a4k+2 +2a4k+3 +a4k+4)

=
∞

∑
k=1

a2k +
∞

∑
k=0

2(a4k+2 +a4k+3),

where we are allowed to rearrange the terms in the
infinite sum since ∑ak converges absolutely. Now
2(a4k+2 + a4k+3) = log(4k+2)

2k+1 − log(4k+4)
2k+2 = a2k+1 +

(log2)( 1
2k+1 −

1
2k+2 ), and summing over k gives

∞

∑
k=0

2(a4k+2 +a4k+3) =
∞

∑
k=0

a2k+1 +(log2)
∞

∑
k=1

(−1)k+1

k

=
∞

∑
k=0

a2k+1 +(log2)2.

Finally, we have

S =
∞

∑
k=1

a2k +
∞

∑
k=0

a2k+1 +(log2)2

=
∞

∑
k=1

ak +(log2)2 = (log2)2.

Second solution. We start with the following observa-
tion: for any positive integer n,

d
ds

n−s
∣∣∣∣
s=1

=−(logn)n−s.

(Throughout, we view s as a real parameter, but see the
remark below.) For s > 0, consider the absolutely con-
vergent series

L(s)=
∞

∑
k=0

(3(4k+2)−s−(4k+3)−s−(4k+4)−s−(4k+5)−s);

in the same range we have

L′(s) =
∞

∑
k=0

(
3

log(4k+2)
(4k+2)s −

log(4k+3)
(4k+3)s

+
log(4k+4)
(4k+4)s −

log(4k+5)
(4k+5)s

)
,

so we may interchange the summation with taking the
limit at s = 1 to equate the original sum with −L′(1).

To make further progress, we introduce the Riemann
zeta function ζ (s) = ∑

∞
n=1 n−s, which converges abso-

lutely for s > 1. In that region, we may freely rearrange
sums to write

L(s)+ζ (s) = 1+4(2−s +6−s +10−s + · · ·)
= 1+22−s(1+3−s +5−s + · · ·)
= 1+22−s(ζ (s)−2−s−4−s−·· ·)
= 1+22−s

ζ (s)−22−2s
ζ (s).

In other words, for s > 1, we have

L(s) = 1+ζ (s)(−1+22−s−22−2s).

Now recall that ζ (s)− s
s−1 extends to a C∞ function for

s > 0, e.g., by applying Abel summation to obtain

ζ (s)− s
s−1

= ∑
n=1

n(n−s− (n+1)−s)− s
s−1

= s
∞

∑
n=1

n
∫ n+1

n
x−s−1 dx− s

s−1

=−s
∫

∞

1
(x−bxc)x−s−1 dx.

Also by writing 22−s = 2exp((1− s) log2 and 22−2s =
exp(2(1− s) log2), we may use the exponential series
to compute the Taylor expansion of

f (s) =
−1+22−s−22−2s

s−1
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at s = 1; we get

f (s) =−(log2)2(s−1)2 +O((s−1)3).

Consequently, if we rewrite the previous expression for
L(s) as

L(s) = 1+(s−1)ζ (s) · −1+22−s−22−2s

s−1
,

then we have an equality of C∞ functions for s > 1, and
hence (by continuity) an equality of Taylor series about
s = 1. That is,

L(s) = 1− (log2)2(s−1)+O((s−1)2),

which yields the desired result.

Remark:
The use of series ∑

∞
n=1 cnn−s as functions of a real pa-

rameter s dates back to Euler, who observed that the di-
vergence of ζ (s) as s→ 1 gives a proof of the infinitude
of primes distinct from Euclid’s approach, and Dirich-
let, who upgraded this idea to prove his theorem on the
distribution of primes across arithmetic progressions. It
was Riemann who introduced the idea of viewing these
series as functions of a complex parameter, thus mak-
ing it possible to use the tools of complex analysis (e.g.,
the residue theorem) and leading to the original proof
of the prime number theorem by Hadamard and de la
Vallée Poussin.

In the language of complex analysis, one may handle
the convergence issues in the second solution in a dif-
ferent way: use the preceding calculation to establish
the equality

L(s) = 1+ζ (s)(−1+22−s−22−2s)

for Real(s) > 1, then observe that both sides are holo-
morphic for Real(s) > 0 and so the equality extends to
that larger domain.

B5 The desired integers are (a,b,c) = (9,8,7).

Suppose we have a triangle T = 4ABC with BC = a,
CA = b, AB = c and a > b > c. Say that a line is
an area equalizer if it divides T into two regions of
equal area. A line intersecting T must intersect two of
the three sides of T . First consider a line intersecting
the segments AB at X and BC at Y , and let BX = x,
BY = y. This line is an area equalizer if and only if
xysinB = 2area(4XBY ) = area(4ABC) = 1

2 acsinB,
that is, 2xy = ac. Since x≤ c and y≤ a, the area equal-
izers correspond to values of x,y with xy = ac/2 and
x ∈ [c/2,c]. Such an area equalizer is also an equal-
izer if and only if p/2 = x + y, where p = a + b + c
is the perimeter of T . If we write f (x) = x+ ac/(2x),
then we want to solve f (x) = p/2 for x ∈ [c/2,c]. Now
note that f is convex, f (c/2) = a + c/2 > p/2, and
f (c) = a/2+ c < p/2; it follows that there is exactly
one solution to f (x) = p/2 in [c/2,c]. Similarly, for

equalizers intersecting T on the sides AB and AC, we
want to solve g(x) = p/2 where g(x) = x + bc/(2x)
and x ∈ [c/2,c]; since g is convex and g(c/2) < p/2,
g(c)< p/2, there are no such solutions.

It follows that if T has exactly two equalizers, then it
must have exactly one equalizer intersecting T on the
sides AC and BC. Here we want to solve h(x) = p/2
where h(x) = x+ ab/(2x) and x ∈ [a/2,a]. Now h is
convex and h(a/2)> p/2, h(a)> p/2; thus h(x) = p/2
has exactly one solution x ∈ [a/2,a] if and only if there
is x0 ∈ [a/2,a] with h′(x0) = 0 and h(x0) = p/2. The
first condition implies x0 =

√
ab/2, and then the sec-

ond condition gives 8ab = p2. Note that
√

ab/2 is in
[a/2,a] since a > b and a < b+ c < 2b.

We conclude that T has two equalizers if and only if
8ab = (a+b+c)2. Note that (a,b,c) = (9,8,7) works.
We claim that this is the only possibility when a> b> c
are integers and a ≤ 9. Indeed, the only integers (a,b)
such that 2 ≤ b < a ≤ 9 and 8ab is a perfect square
are (a,b) = (4,2), (6,3), (8,4), (9,2), and (9,8), and
the first four possibilities do not produce triangles since
they do not satisfy a< 2b. This gives the claimed result.

B6 First solution. The desired count is 2016!
1953! − 63! · 2016,

which we compute using the principle of inclusion-
exclusion. As in A2, we use the fact that 2017 is prime;
this means that we can do linear algebra over the field
F2017. In particular, every nonzero homogeneous linear
equation in n variables over F2017 has exactly 2017n−1

solutions.

For π a partition of {0, . . . ,63}, let |π| denote the num-
ber of distinct parts of π , Let π0 denote the partition of
{0, . . . ,63} into 64 singleton parts. Let π1 denote the
partition of {0, . . . ,63} into one 64-element part. For
π,σ two partitions of {0, . . . ,63}, write π|σ if π is a re-
finement of σ (that is, every part in σ is a union of parts
in π). By induction on |π|, we may construct a collec-
tion of integers µπ , one for each π , with the properties
that

∑
π|σ

µπ =

{
1 σ = π0

0 σ 6= π0
.

Define the sequence c0, . . . ,c63 by setting c0 = 1 and
ci = i for i > 1. Let Nπ be the number of ordered 64-
tuples (x0, . . . ,x63) of elements of F2017 such that xi = x j

whenever i and j belong to the same part and ∑
63
i=0 cixi is

divisible by 2017. Then Nπ equals 2017|π|−1 unless for
each part S of π , the sum ∑i∈S ci vanishes; in that case,
Nπ instead equals 2017|π|. Since c0, . . . ,c63 are positive
integers which sum to 1+ 63·64

2 = 2017, the second out-
come only occurs for π = π1. By inclusion-exclusion,
the desired count may be written as

∑
π

µπ Nπ = 2016 ·µπ1 +∑
π

µπ 2017|π|−1.
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Similarly, the number of ordered 64-tuples with no re-
peated elements may be written as

64!
(

2017
64

)
= ∑

π

µπ 2017|π|.

The desired quantity may thus be written as 2016!
1953! +

2016µπ1 .

It remains to compute µπ1 . We adopt an approach sug-
gested by David Savitt: apply inclusion-exclusion to
count distinct 64-tuples in an arbitrary set A. As above,
this yields

|A|(|A|−1) · · ·(|A|−63) = ∑
π

µπ |A||π|.

Viewing both sides as polynomials in |A| and comparing
coefficients in degree 1 yields µπ = −63! and thus the
claimed answer.

Second solution. (from Art of Problem Solving, user
ABCDE) We first prove an auxiliary result.

Lemma. Fix a prime p and define the function f (k) on posi-
tive integers by the conditions

f (1, p) = 0

f (k, p) =
(p−1)!
(p− k)!

− k f (k−1, p) (k > 1).

Then for any positive integers a1, . . . ,ak with a1+ · · ·+ak < p,
there are exactly f (p) solutions to the equation a1x1 + · · ·+
akxk = 0 with x1, . . . ,xk ∈ Fp nonzero and pairwise distinct.

Proof. We check the claim by induction, with the base case
k = 1 being obvious. For the induction step, assume the claim
for k− 1. Let S be the set of k-tuples of distinct elements of
Fp; it consists of p!

(p−k)! elements. This set is stable under the
action of i ∈ Fp by translation:

(x1, . . . ,xk) 7→ (x1 + i, . . . ,xk + i).

Since 0 < a1 · · ·+ ak < p, exactly one element of each orbit
gives a solution of a1x1 + · · ·+ akxk = 0. Each of these solu-
tions contributes to f (k) except for those in which xi = 0 for

some i. Since then x j 6= 0 for all j 6= i, we may apply the in-
duction hypothesis to see that there are f (k− 1, p) solutions
that arise this way for a given i (and these do not overlap).
This proves the claim.

To compute f (k, p) explicitly, it is convenient to work
with the auxiliary function

g(k, p) =
p f (k, p)

k!
;

by the lemma, this satisfies g(1, p) = 0 and

g(k, p) =
(

p
k

)
−g(k−1, p)

=

(
p−1

k

)
+

(
p−1
k−1

)
−g(k−1, p) (k > 1).

By induction on k, we deduce that

g(k, p)−
(

p−1
k

)
= (−1)k−1

(
g(1, p)−

(
p−1

1

))
= (−1)k(p−1)

and hence g(k, p) =
(p−1

k

)
+(−1)k(p−1).

We now set p = 2017 and count the tuples in ques-
tion. Define c0, . . . ,c63 as in the first solution. Since
c0+ · · ·+c63 = p, the translation action of Fp preserves
the set of tuples; we may thus assume without loss of
generality that x0 = 0 and multiply the count by p at the
end. That is, the desired answer is

2017 f (63,2017) = 63!g(63,2017)

= 63!
((

2016
63

)
−2016

)
as claimed.
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A1 Find all ordered pairs (a,b) of positive integers for
which

1
a
+

1
b
=

3
2018

.

A2 Let S1,S2, . . . ,S2n−1 be the nonempty subsets of
{1,2, . . . ,n} in some order, and let M be the (2n−1)×
(2n−1) matrix whose (i, j) entry is

mi j =

{
0 if Si∩S j = /0;
1 otherwise.

Calculate the determinant of M.

A3 Determine the greatest possible value of ∑
10
i=1 cos(3xi)

for real numbers x1,x2, . . . ,x10 satisfying ∑
10
i=1 cos(xi) =

0.

A4 Let m and n be positive integers with gcd(m,n) = 1, and
let

ak =

⌊
mk
n

⌋
−
⌊

m(k−1)
n

⌋
for k = 1,2, . . . ,n. Suppose that g and h are elements in
a group G and that

gha1gha2 · · ·ghan = e,

where e is the identity element. Show that gh = hg. (As
usual, bxc denotes the greatest integer less than or equal
to x.)

A5 Let f : R→ R be an infinitely differentiable function
satisfying f (0) = 0, f (1) = 1, and f (x) ≥ 0 for all x ∈
R. Show that there exist a positive integer n and a real
number x such that f (n)(x)< 0.

A6 Suppose that A,B,C, and D are distinct points, no three
of which lie on a line, in the Euclidean plane. Show that
if the squares of the lengths of the line segments AB,
AC, AD, BC, BD, and CD are rational numbers, then the
quotient

area(4ABC)

area(4ABD)

is a rational number.

B1 Let P be the set of vectors defined by

P =

{(
a
b

)∣∣∣∣0≤ a≤ 2,0≤ b≤ 100, and a,b ∈ Z
}
.

Find all v ∈P such that the set P \ {v} obtained by
omitting vector v from P can be partitioned into two
sets of equal size and equal sum.

B2 Let n be a positive integer, and let fn(z) = n+(n−1)z+
(n−2)z2 + · · ·+ zn−1. Prove that fn has no roots in the
closed unit disk {z ∈ C : |z| ≤ 1}.

B3 Find all positive integers n < 10100 for which simulta-
neously n divides 2n, n− 1 divides 2n − 1, and n− 2
divides 2n−2.

B4 Given a real number a, we define a sequence by x0 = 1,
x1 = x2 = a, and xn+1 = 2xnxn−1−xn−2 for n≥ 2. Prove
that if xn = 0 for some n, then the sequence is periodic.

B5 Let f = ( f1, f2) be a function from R2 to R2 with con-
tinuous partial derivatives ∂ fi

∂x j
that are positive every-

where. Suppose that

∂ f1

∂x1

∂ f2

∂x2
− 1

4

(
∂ f1

∂x2
+

∂ f2

∂x1

)2

> 0

everywhere. Prove that f is one-to-one.

B6 Let S be the set of sequences of length 2018 whose
terms are in the set {1,2,3,4,5,6,10} and sum to 3860.
Prove that the cardinality of S is at most

23860 ·
(

2018
2048

)2018

.



Solutions to the 79th William Lowell Putnam Mathematical Competition
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Kiran Kedlaya and Lenny Ng

While preparing these solutions, we learned of the Novem-
ber 27 death of Kent Merryfield, who moderated the Put-
nam discussions on the Art of Problem Solving Forums and
thereby contributed directly and indirectly to these solutions
over many years. His presence will be dearly missed.

A1 By clearing denominators and regrouping, we see that
the given equation is equivalent to

(3a−2018)(3b−2018) = 20182.

Each of the factors is congruent to 1 (mod 3). There
are 6 positive factors of 20182 = 22 · 10092 that are
congruent to 1 (mod 3): 1, 22, 1009, 22 · 1009,
10092, 22 · 10092. These lead to the 6 possible pairs:
(a,b) = (673,1358114), (674,340033), (1009,2018),
(2018,1009), (340033,674), and (1358114,673).

As for negative factors, the ones that are congruent to 1
(mod 3) are −2,−2 ·1009,−2 ·10092. However, all of
these lead to pairs where a≤ 0 or b≤ 0.

A2 The answer is 1 if n = 1 and −1 if n > 1. Write Mn
for a (2n− 1)× (2n− 1) matrix of the given form, and
note that detMn does not depend on the ordering of the
subsets: transposing two subsets has the effect of trans-
posing two rows and then transposing two columns in
Mn, and this does not change the determinant.

Clearly detM1 = 1. We claim that for n > 1, detMn =
−(detMn−1)

2, and the desired answer will follow by in-
duction. Let S′1, . . . ,S

′
2n−1−1 denote the nonempty sub-

sets of {1, . . . ,n−1} in any order, with resulting matrix
Mn−1. Let m′i j denote the (i, j) entry of Mn−1. Now or-
der the nonempty subsets S1, . . . ,S2n−1 of {1, . . . ,n} as
follows:

Si =


S′i i≤ 2n−1−1
S′i−2n−1+1∪{n} 2n−1 ≤ i≤ 2n−2
{n} i = 2n−1.

(For example, if S′1, . . . ,S
′
2n−1−1 are ordered in lex-

icographic order as binary strings, then so are
S1, . . . ,S2n−1.) Let Mn be the resulting matrix. Then
we have:

Mn =



0

Mn−1 Mn−1
...
0

1 · · · 1 1

Mn−1
...

. . .
...

...
1 · · · 1 1

0 · · · 0 1 · · · 1 1


.

In Mn, perform the following operations, which do not
change the determinant: subtract the final row from
rows 2n−1 through 2n − 2, and then subtract the final
column from columns 2n−1 through 2n− 2. The result
is the matrix

0

Mn−1 Mn−1
...
0

0 · · · 0 0

Mn−1
...

. . .
...

...
0 · · · 0 0

0 · · · 0 0 · · · 0 1


.

We can remove the final row and column with-
out changing the determinant. Now swap the
first 2n−1 − 1 rows with the final 2n−1 − 1 rows:
this changes the determinant by an overall factor
of (−1)(2

n−1−1)2
= −1. The result is the block-

diagonal matrix

(
Mn−1 0
Mn−1 Mn−1

)
, whose determinant is

(detMn−1)
2. Thus detMn =−(detMn−1)

2 as desired.

A3 The maximum value is 480/49. Since cos(3xi) =
4cos(xi)

3 − 3cos(xi), it is equivalent to maximize
4∑

10
i=1 y3

i for y1, . . . ,y10 ∈ [−1,1] with ∑
10
i=1 yi = 0; note

that this domain is compact, so the maximum value
is guaranteed to exist. For convenience, we establish
something slightly stronger: we maximize 4∑

n
i=1 y3

i for
y1, . . . ,yn ∈ [−1,1] with ∑

n
i=1 yi = 0, where n may be

any even nonnegative integer up to 10, and show that
the maximum is achieved when n = 10.

We first study the effect of varying yi and y j while
fixing their sum. If that sum is s, then the function
y 7→ y3 + (s− y)3 has constant second derivative 6s,
so it is either everywhere convex or everywhere con-
cave. Consequently, if (y1, . . . ,yn) achieves the maxi-
mum, then for any two indices i < j, at least one of the
following must be true:

– one of yi, y j is extremal (i.e., equal to 1 or −1);

– yi = y j < 0 (in which case s< 0 and the local max-
imum is achieved above);

– yi =−y j (in which case s = 0 above).

In the third case, we may discard yi and y j and achieve a
case with smaller n; we may thus assume that this does
not occur. In this case, all of the non-extremal values
are equal to some common value y < 0, and moreover
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we cannot have both 1 and -1. We cannot omit 1, as
otherwise the condition ∑

n
i=1 yi = 0 cannot be achieved;

we must thus have only the terms 1 and y, occurring
with some positive multiplicities a and b adding up to
n. Since a+b = n and a+by = 0, we can solve for y to
obtain y =−a/b; we then have

4
n

∑
i=1

y3
i = a+by3 = 4a

(
1− a2

b2

)
.

Since y > −1, we must have a < b. For fixed a, the
target function increases as b increases, so the optimal
case must occur when a+ b = 10. The possible pairs
(a,b) at this point are

(1,9),(2,8),(3,7),(4,6);

computing the target function for these values yields re-
spectively

32
9
,

15
2
,

480
49

,
80
9
,

yielding 480/49 as the maximum value.

Remark. Using Lagrange multipliers yields a similar
derivation, but with a slight detour required to separate
local minima and maxima. For general n, the above
argument shows that the target function is maximized
when a+b = n.

A4 First solution. We prove the claim by induction on
m+ n. For the base case, suppose that n = 1; we then
have m = 1 and the given equation becomes gh = e.
The claim then reduces to the fact that a one-sided in-
verse in G is also a two-sided inverse. (Because G is
a group, g has an inverse g−1; since gh = e, we have
h = g−1(gh) = g−1e = g−1, so hg = e = gh.)

Suppose now that n > 1. In case m > n, set g̃ = gh,
h̃ = h, and

bk =

⌊
(m−n)k

n

⌋
−
⌊
(m−n)(k−1)

n

⌋
(k = 1, . . . ,n).

then

g̃h̃b1 · · · g̃h̃bn = gha1 · · ·ghan = e,

so the induction hypothesis implies that g̃ and h̃ com-
mute; this implies that g and h commute.

In case m < n, note that ak ∈ {0,1} for all k. Set g̃ =
h−1, h̃ = g−1, and

bl =

⌊
n`
m

⌋
−
⌊

n(`−1)
m

⌋
(`= 1, . . . ,m);

we claim that

g̃h̃b1 · · · g̃h̃bm = (gha1 · · ·ghan)−1 = e,

so the induction hypothesis implies that h̃ and g̃ com-
mute; this implies that g and h commute.

To clarify this last equality, consider a lattice walk start-
ing from (0,0), ending at (n,m), staying below the line
y = mx/n, and keeping as close to this line as possible.
If one follows this walk and records the element g for
each horizontal step and h for each vertical step, one ob-
tains the word gha1 · · ·ghan . Now take this walk, reflect
across the line y = x, rotate by a half-turn, then trans-
late to put the endpoints at (0,0) and (m,n); this is the
analogous walk for the pair (n,m).

Remark. By tracing more carefully through the argu-
ment, one sees in addition that there exists an element k
of G for which g = km,h = k−n.

Second solution. (by Greg Martin) Since gcd(m,n) =
1, there exist integers x,y such that mx+ny= 1; we may
further assume that x ∈ {1, . . . ,n}. We first establish the
identity

ak−x =


ak−1 if k ≡ 0 (mod n)
ak +1 if k ≡ 1 (mod n)
ak otherwise.

Namely, by writing −mx = ny−1, we see that

ak−x =

⌊
m(k− x)

n

⌋
−
⌊

m(k− x−1)
n

⌋
=

⌊
mk+ny−1

n

⌋
−
⌊

m(k−1)+ny−1
n

⌋
=

⌊
mk−1

n

⌋
−
⌊

m(k−1)−1
n

⌋
and so

ak−x−ak =

(⌊
mk−1

n

⌋
−
⌊

mk
n

⌋)
−
(⌊

m(k−1)−1
n

⌋
−
⌊

m(k−1)
n

⌋)
.

The first parenthesized expression equals 1 if n divides
mk, or equivalently n divides k, and 0 otherwise. Sim-
ilarly, the second parenthesized expression equals 1 if
n divides k−1 and 0 otherwise. This proves the stated
identity.

We now use the given relation gha1 · · ·ghan = e to write

ghg−1h−1 = gh(ha1gha2 · · ·ghan−1ghan)h−1

= gha1+1gha2 · · ·ghan−1ghan−1

= gha1−x · · ·ghan−x

= (ghan+1−x · · ·ghan)(gha1 · · ·ghan−x).

The two parenthesized expressions multiply in the
opposite order to gha1 · · ·ghan = e, so they must be
(two-sided) inverses of each other. We deduce that
ghg−1h−1 = e, meaning that g and h commute.

Third solution. (by Sucharit Sarkar) Let T denote the
torus R2/Z2. The line segments from (0,0) to (1,0)
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and from (0,0) to (0,1) are closed loops in T , and we
denote them by g and h respectively. Now let p be the
(image of the) point (ε,−ε) in T for some 0 < ε � 1.
The punctured torus T \ {p} deformation retracts onto
the union of the loops g and h, and so π1(T \{p}), the
fundamental group of T \{p} based at (0,0), is the free
group on two generators, 〈g,h〉.
Let γ and γ̃ denote the following loops based at (0,0)
in T : γ is the image of the line segment from (0,0) to
(n,m) under the projection R2→ T , and γ̃ is the image
of the lattice walk from (0,0) to (n,m), staying just be-
low the line y = mx/n, that was described in the first
solution. There is a straight-line homotopy with fixed
endpoints between the two paths in R2 from (0,0) to
(n,m), the line segment and the lattice walk, and this
homotopy does not pass through any point of the form
(a+ε,b−ε) for a,b ∈ Z by the construction of the lat-
tice walk. It follows that γ and γ̃ are homotopic loops
in T \ {p}. Since the class of γ̃ in π1(T \ {p}) is evi-
dently gha1gha2 · · ·ghan , it follows that the class of γ in
π1(T \{p}) is the same.

Now since gcd(m,n) = 1, there is an element φ ∈
GL2(Z) sending (n,m) to (1,0), which then sends the
line segment from (0,0) to (n,m) to the segment from
(0,0) to (1,0). Then φ induces a homeomorphism of T
sending γ to g, which in turn induces an isomorphism
φ∗ : π1(T \{p})→ π1(T \{φ−1(p)}). Both fundamen-
tal groups are equal to 〈g,h〉, and we conclude that φ∗
sends gha1gha2 · · ·ghan to g. It follows that φ∗ induces
an isomorphism

〈g,h |gha1gha2 · · ·ghan〉 → 〈g,h |g〉 ∼= 〈h〉 ∼= Z.

Since Z is abelian, g and h must commute in
〈g,h |gha1gha2 · · ·ghan〉, whence they must also com-
mute in G.

A5 First solution. Call a function f : R→ R ultraconvex
if f is infinitely differentiable and f (n)(x) ≥ 0 for all
n ≥ 0 and all x ∈ R, where f (0)(x) = f (x); note that if
f is ultraconvex, then so is f ′. Define the set

S = { f : R→ R | f ultraconvex and f (0) = 0}.

For f ∈ S, we must have f (x) = 0 for all x < 0: if
f (x0)> 0 for some x0 < 0, then by the mean value theo-
rem there exists x ∈ (0,x0) for which f ′(x) = f (x0)

x0
< 0.

In particular, f ′(0) = 0, so f ′ ∈ S also.

We show by induction that for all n≥ 0,

f (x)≤ f (n)(1)
n!

xn ( f ∈ S,x ∈ [0,1]).

We induct with base case n = 0, which holds because
any f ∈ S is nondecreasing. Given the claim for n = m,
we apply the induction hypothesis to f ′ ∈ S to see that

f ′(t)≤ f (n+1)(1)
n!

tn (t ∈ [0,1]),

then integrate both sides from 0 to x to conclude.

Now for f ∈ S, we have 0≤ f (1)≤ f (n)(1)
n! for all n≥ 0.

On the other hand, by Taylor’s theorem with remainder,

f (x)≥
n

∑
k=0

f (k)(1)
k!

(x−1)k (x≥ 1).

Applying this with x = 2, we obtain f (2)≥∑
n
k=0

f (k)(1)
k!

for all n; this implies that limn→∞
f (n)(1)

n! = 0. Since

f (1)≤ f (n)(1)
n! , we must have f (1) = 0.

For f ∈ S, we proved earlier that f (x) = 0 for all x≤ 0,
as well as for x = 1. Since the function g(x) = f (cx) is
also ultraconvex for c > 0, we also have f (x) = 0 for all
x > 0; hence f is identically zero.

To sum up, if f : R → R is infinitely differentiable,
f (0) = 0, and f (1) = 1, then f cannot be ultraconvex.
This implies the desired result.

Variant. (by Yakov Berchenko-Kogan) Another way to
show that any f ∈ S is identically zero is to show that
for f ∈ S and k a positive integer,

f (x)≤ x
k

f ′(x) (x≥ 0).

We prove this by induction on k. For the base case k= 1,
note that f ′′(x)≥ 0 implies that f ′ is nondecreasing. For
x≥ 0, we thus have

f (x) =
∫ x

0
f ′(t)dt ≤

∫ x

0
f ′(x)dt = x f ′(x).

To pass from k to k+1, apply the induction hypothesis
to f ′ and integrate by parts to obtain

k f (x) =
∫ x

0
k f ′(t)dt

≤
∫ x

0
t f ′′(t)dt

= x f ′(x)−
∫ x

0
f ′(t)dt = x f ′(x)− f (x).

Remark. Noam Elkies points out that one can refine
the argument to show that if f is ultraconvex, then it is
analytic (i.e., it is represented by an entire Taylor series
about any point, as opposed to a function like f (x) =
e−1/x2

whose Taylor series at 0 is identically zero); he
attributes the following argument to Peter Shalen. Let
gn(x) = ∑

n
k=0

1
k! f (k)(0)xk be the n-th order Taylor poly-

nomial of f . By Taylor’s theorem with remainder (a/k/a
Lagrange’s theorem), f (x)− gn(x) is everywhere non-
negative; consequently, for all x ≥ 0, the Taylor series
∑

∞
n=0

1
n! f (n)(0)xn converges and is bounded above by f .

But since f (n+1)(x) is nondecreasing, Lagrange’s the-
orem also implies that f (x)− gn(x) ≤ 1

(n+1)! f (n+1)(x);
for fixed x≥ 0, the right side tends to 0 as n→∞. Hence
f is represented by its Taylor series for x≥ 0, and so is
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analytic for x > 0; by replacing f (x) with f (x− c), we
may conclude that f is everywhere analytic.

Remark. We record some properties of the class of
ultraconvex functions.

– Any nonnegative constant function is ultraconvex.
The exponential function is ultraconvex.

– If f is ultraconvex, then f ′ is ultracon-
vex. Conversely, if f ′ is ultraconvex and
liminfx→−∞ f (x)≥ 0, then f is ultraconvex.

– The class of ultraconvex functions is closed under
addition, multiplication, and composition.

Second solution. (by Zachary Chase) In this solution,
we use Bernstein’s theorem on monotone functions. To
state this result, we say that a function f : [0,∞)→ R is
totally monotone if f is continuous, f is infinitely differ-
entiable on (0,∞), and (−1)n f (n)(x) is nonnegative for
all positive integers n and all x > 0. For such a function,
Bernstein’s theorem asserts that there is a nonnegative
finite Borel measure µ on [0,∞) such that

f (x) =
∫

∞

0
e−txdµ(t) (x≥ 0).

For f as in the problem statement, for any M > 0, the
restriction of f (M − x) to [0,∞) is totally monotone,
so Bernstein’s theorem provides a Borel measure µ for
which f (M− x) =

∫
∞

0 e−txdµ(t) for all x ≥ 0. Taking
x = M, we see that

∫
∞

0 e−Mtdµ(t) = f (0) = 0; since µ

is a nonnegative measure, it must be identically zero.
Hence f (x) is identically zero for x ≤M; varying over
all M, we deduce the desired result.

Third solution. (from Art of Problem Solving user
chronondecay) In this solution, we only consider the
behavior of f on [0,1]. We first establish the following
result. Let f : (0,1)→ R be a function such that for
each positive integer n, f (n)(x) is nonnegative on (0,1),
tends to 0 as x→ 0+, and tends to some limit as x→ 1−.
Then for each nonnegative integer n, f (x)x−n is nonde-
creasing on (0,1).

To prove the claimed result, we proceed by induction on
n, the case n = 0 being a consequence of the assump-
tion that f ′(x) is nonnegative on (0,1). Given the claim
for some n ≥ 0, note that since f ′ also satisfies the hy-
potheses of the problem, f ′(x)x−n is also nondecreasing
on (0,1). Choose c ∈ (0,1) and consider the function

g(x) =
f ′(c)
cn xn (x ∈ [0,1)).

For x ∈ (0,c), f ′(x)x−n ≤ f ′(c)c−n, so f ′(x) ≤ g(x);
similarly, for x ∈ (c,1), f ′(x) ≥ g(x). It follows that
if f ′(c)> 0, then∫ 1

c f ′(x)dx∫ c
0 f ′(x)dx

≥
∫ 1

c g(x)dx∫ c
0 g(x)dx

⇒
∫ c

0 f ′(x)dx∫ 1
0 f ′(x)dx

≤
∫ c

0 g(x)dx∫ 1
0 g(x)dx

and so f (c)/ f (1) ≤ cn+1. (Here for convenience, we
extend f continuously to [0,1].) That is, f (c)/cn+1 ≤
f (1) for all c ∈ (0,1). For any b ∈ (0,1), we may apply
the same logic to the function f (bx) to deduce that if
f ′(c)> 0, then f (bc)/cn+1 ≤ f (b), or equivalently

f (bc)
(bc)n+1 ≤

f (b)
bn+1 .

This yields the claim unless f ′ is identically 0 on (0,1),
but in that case the claim is obvious anyway.

We now apply the claim to show that for f as in the
problem statement, it cannot be the case that f (n)(x) is
nonnegative on (0,1) for all n. Suppose the contrary;
then for any fixed x ∈ (0,1), we may apply the previous
claim with arbitrarily large n to deduce that f (x) = 0.
By continuity, we also then have f (1) = 0, a contradic-
tion.

Fourth solution. (by Alexander Karabegov) As in the
first solution, we may see that f (n)(0)= 0 for all n. Con-
sequently, for all n we have

f (x) =
1

(n−1)!

∫ x

0
(x− t)n−1 f (n)(t)dt (x ∈ R)

and hence∫ 1

0
f (x)dx =

1
n!

∫ 1

0
(1− t)n f (n)(t)dt.

Suppose now that f is infinitely differentiable, f (1) =
1, and f (n)(x)≥ 0 for all n and all x ∈ [0,1]. Then∫ 1

0
f (x)dx =

1
n
· 1
(n−1)!

∫ 1

0
(1− t)n f (n)(t)dt

≤ 1
n
· 1
(n−1)!

∫ 1

0
(1− t)n−1 f (n)(t)dt

=
1
n

f (1) =
1
n
.

Since this holds for all n, we have
∫ 1

0 f (x)dx = 0, and
so f (x) = 0 for x ∈ [0,1]; this yields the desired contra-
diction.

A6 First solution. Choose a Cartesian coordinate sys-
tem with origin at the midpoint of AB and positive x-
axis containing A. By the condition on AB, we have
A = (

√
a,0), B = (−

√
a,0) for some positive rational

number a. Let (x1,y1) and (x2,y2) be the respective co-
ordinates of C and D; by computing the lengths of the
segments AC,BC,AD,BD,CD, we see that the quanti-
ties

(x1−
√

a)2 + y2
1, (x1 +

√
a)2 + y2

1,

(x2−
√

a)2 + y2
2, (x2 +

√
a)2 + y2

2,

(x1− x2)
2 +(y1− y2)

2
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are all rational numbers. By adding and subtracting the
first two quantities, and similarly for the next two, we
see that the quantities

x2
1 + y2

1, x1
√

a, x2
2 + y2

2, x2
√

a

are rational numbers. Since a is a rational number, so
then are

x2
1 =

(x1
√

a)2

a

x2
2 =

(x2
√

a)2

a

x1x2 =
(x1
√

a)(x2
√

a)
a

y2
1 = (x2

1 + y2
1)− x2

1

y2
2 = (x2

2 + y2
2)− x2

2.

Now note that the quantity

(x1− x2)
2 +(y1− y2)

2 = x2
1−2x1x2 + x2

2 + y2
1−2y1y2 + y2

2

is known to be rational, as is every summand on the
right except −2y1y2; thus y1y2 is also rational. Since y2

1
is also rational, so then is y1/y2 = (y1y2)/(y2

1); since

area(4ABC) =
√

ay1, area(4ABD) =
√

ay2,

this yields the desired result.

Second solution. (by Manjul Bhargava) Let b,c,d be
the vectors AB,AC,AD viewed as column vectors. The
desired ratio is given by

det(b,c)
det(b,d)

=
det(b,c)T det(b,c)
det(b,c)T det(b,d)

= det

(
b ·b b · c
c ·b c · c

)
det

(
b ·b b ·d
c ·b c ·d

)−1

.

The square of the length of AB is b ·b, so this quantity is
rational. The square of the lengths of AC and BC are c ·c
and (c−b) · (c−b) = b ·b+c ·c−2b ·c, so b ·c = c ·b
is rational. Similarly, using AD and BD, we deduce that
d ·d and b ·d is rational; then using CD, we deduce that
c ·d is rational.

Third solution. (by David Rusin) Recall that Heron’s
formula (for the area of a triangle in terms of its side
length) admits the following three-dimensional ana-
logue due to Piero della Francesca: if V denotes the
volume of a tetrahedron with vertices A,B,C,D ∈ R3,
then

288V 2 = det


0 AB2 AC2 AD2 1

AB2 0 BC2 BD2 1
AC2 BC2 0 CD2 1
AD2 BD2 CD2 0 1

1 1 1 1 0



In particular, the determinant vanishes if and only if
A,B,C,D are coplanar. From the identity

64(4Area(4ABC)2Area(4ABD)2−9AB2V 2)

= (AB4−AB2(AC2 +AD2 +BC2 +BD2−2CD2)

+(AC2−BC2)(AD2−BD2))2

we see that Area(4ABC)Area(4ABD) is rational;
since each of the areas has rational square, we deduce
the claim.

Fourth solution. (by Greg Martin) Define the signed
angles α = ∠BAC,β = ∠BAD,γ = ∠CAD, so that α +
γ = β . By the Law of Cosines,

2AB ·AC cosα = AB2 +AC2−BC2 ∈Q
2AB ·ADcosβ = AB2 +AD2−BD2 ∈Q
2AC ·ADcosγ = AC2 +AD2−CD2 ∈Q.

In particular, (2AB ·AC cosα)2 ∈Q, and so cos2 α ∈Q
and sin2

α = 1−cos2 α ∈Q, and similarly for the other
two angles.

Applying the addition formula to cosβ , we deduce that

2AB ·ADcosα cosγ−2AB ·ADsinα sinγ ∈Q.

The first of these terms equals

(2AB ·AC cosα)(2AB ·AC cosα)

AC2 ∈Q,

so the second term must also be rational. But now

Area(4ABC)

Area(4ACD)
=

AB ·AC sinα

AC ·ADsinγ

=
2AB ·ADsinα sinγ

2AD2 sin2
γ

∈Q

as desired.

Remark. Derek Smith observes that this result is
Proposition 1 of: M. Knopf, J. Milzman, D. Smith, D.
Zhu and D. Zirlin, Lattice embeddings of planar point
sets, Discrete and Computational Geometry 56 (2016),
693–710.

Remark. It is worth pointing out that it is indeed possi-
ble to choose points A,B,C,D satisfying the conditions
of the problem; one can even ensure that the lengths
of all four segments are themselves rational. For ex-
ample, it was originally observed by Euler that one can
find an infinite set of points on the unit circle whose
pairwise distances are all rational numbers. One way to
see this is to apply the linear fractional transformation
f (z) = z+i

z−i to the Riemann sphere to carry the real axis
(plus ∞) to the unit circle, then compute that

| f (z1)− f (z2)|=
2|z1− z2||

|(z1− i)(z2− i)|
.
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Let S be the set of rational numbers z for which 2(z2+1)
is a perfect square; the set f (S) has the desired property
provided that it is infinite. That can be checked in var-
ious ways; for instance, the equation 2(x2 +1) = (2y)2

equates to x2 − 2y2 = −1 (a modified Brahmagupta-
Pell equation), which has infinitely many solutions even
over the integers:

x+ y
√

2 = (1+
√

2)2n+1.

B1 The answer is the collection of vectors (1,b) where 0≤
b ≤ 100 and b is even. (For ease of typography, we
write tuples instead of column vectors.)

First we show that if P \ {v} can be partitioned into
subsets S1 and S2 of equal size and equal sum, then v
must be of the form (1,b) where b is even. For a finite
nonempty set S of vectors in Z2, let Σ(S) denote the
sum of the vectors in S. Since the average x- and y-
coordinates in P are 1 and 50, respectively, and there
are 3 ·101 elements in P , we have

Σ(P) = 303 · (1,50) = (303,15150).

On the other hand,

Σ(P) = v+Σ(S1)+Σ(S2) = v+2Σ(S1).

By parity considerations, the entries of v must be odd
and even, respectively, and thus v is of the claimed
form.

Next suppose v = (1,b) where b is even. Note that
P \{(1,50)} can be partitioned into 151 pairs of (dis-
tinct) vectors (x,y) and (2− x,100− y), each sum-
ming to (2,100). If b 6= 50 then three of these
pairs are {(1,b),(1,100−b)},{(2,b),(0,100−b)}, and
{(2,25 + b/2),(0,75− b/2)}. Of the remaining 148
pairs, assign half of them to S1 and half to S2, and
then complete the partition of P \ {v} by assign-
ing (0,100− b), (2,25 + b/2), and (1,50) to S1 and
(1,100− b), (2,b), and (0,75− b/2) to S2. (Note that
the three vectors assigned to each of S1 and S2 have the
same sum (3,175− b/2).) By construction, S1 and S2
have the same number of elements, and Σ(S1) = Σ(S2).

For b = 50, this construction does not work be-
cause (1,b) = (100 − b), but a slight variation can
be made. In this case, three of the pairs in P \
{(1,50)} are {(2,50),(0,50)}, {(1,51),(1,49)}, and
{(0,49),(2,51)}. Assign half of the other 148 pairs
to S1 and half to S2, and complete the partition of
P \ {(1,50)} by assigning (2,50), (1,51), and (0,49)
to S1 and (0,50), (1,49), and (2,51) to S2.

B2 First solution. Note first that fn(1) > 0, so 1 is not a
root of fn. Next, note that

(z−1) fn(z) = zn + · · ·+ z−n;

however, for |z| ≤ 1, we have |zn + · · ·+ z| ≤ n by the
triangle inequality; equality can only occur if z, . . . ,zn

have norm 1 and the same argument, which only hap-
pens for z = 1. Thus there can be no root of fn with
|z| ≤ 1.

Second solution. (by Karl Mahlburg) Define the poly-
nomial

gn(z) = nzn−1 + · · ·+2z+1

and note that zn−1gn(z−1) = fn(z). Since fn(0) 6= 0, to
prove the claim it is equivalent to show that gn has no
roots in the region |z| ≥ 1.

Now note that gn(z) = h′n(z) for

hn(z) = zn + · · ·+ z+1,

a polynomial with roots e2πi j/(n+1) for j = 0, . . . ,n. By
the Gauss-Lucas theorem, the roots of gn lie in the con-
vex hull of the roots of hn, and moreover cannot be
vertices of the convex hull because hn has no repeated
roots. This implies the claim.

Remark. Yet another approach is to use the Eneström-
Kakeya theorem: if Pn(z) = a0 + · · ·+anzn is a polyno-
mial with real coefficients satisfying |an| ≥ · · · ≥ |a0|>
0, then the roots of Pn(z) all satisfy |z| ≤ 1. Namely, ap-
plying this to the polynomial gn(z/c) for c = n/(n−1)
shows that the roots of gn all satisfy |z| ≤ 1/c.

Remark. For a related problem, see problem A5 from
the 2014 Putnam competition.

B3 The values of n with this property are 22` for ` =
1,2,4,8. First, note that n divides 2n if and only if n
is itself a power of 2; we may thus write n = 2m and
note that if n < 10100, then

2m = n < 10100 < (103)34 < (210)34 = 2340.

Moreover, the case m = 0 does not lead to a solution
because for n = 1, n−1 = 0 does not divide 2n−1 = 1;
we may thus assume 1≤ m≤ 340.

Next, note that modulo n− 1 = 2m− 1, the powers of
2 cycle with period m (the terms 20, . . . ,2m−1 remain
the same upon reduction, and then the next term repeats
the initial 1); consequently, n− 1 divides 2n− 1 if and
only if m divides n, which happens if and only if m is a
power of 2. Write m = 2` and note that 2` < 340 < 512,
so ` < 9. The case ` = 0 does not lead to a solution
because for n = 2, n−2 = 0 does not divide 2n−2 = 2;
we may thus assume 1≤ `≤ 8.

Finally, note that n− 2 = 2m− 2 divides 2n− 2 if and
only if 2m−1− 1 divides 2n−1− 1. By the same logic
as the previous paragraph, this happens if and only if
m− 1 divides n− 1, that is, if 2` − 1 divides 2m − 1.
This in turn happens if and only if ` divides m = 2`,
which happens if and only if ` is a power of 2. The
values allowed by the bound ` < 9 are `= 1,2,4,8; for
these values, m≤ 28 = 256 and

n = 2m ≤ 2256 ≤ (23)86 < 1086 < 10100,

so the solutions listed do satisfy the original inequality.
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B4 We first rule out the case |a|> 1. In this case, we prove
that |xn+1| ≥ |xn| for all n, meaning that we cannot have
xn = 0. We proceed by induction; the claim is true for
n = 0,1 by hypothesis. To prove the claim for n ≥ 2,
write

|xn+1|= |2xnxn−1− xn−2|
≥ 2|xn||xn−1|− |xn−2|
≥ |xn|(2|xn−1|−1)≥ |xn|,

where the last step follows from |xn−1| ≥ |xn−2| ≥ · · · ≥
|x0|= 1.

We may thus assume hereafter that |a| ≤ 1. We can
then write a = cosb for some b∈ [0,π]. Let {Fn} be the
Fibonacci sequence, defined as usual by F1 = F2 = 1
and Fn+1 = Fn +Fn−1. We show by induction that

xn = cos(Fnb) (n≥ 0).

Indeed, this is true for n = 0,1,2; given that it is true for
n≤ m, then

2xmxm−1 = 2cos(Fmb)cos(Fm−1b)
= cos((Fm−Fm−1)b)+ cos((Fm +Fm−1)b)
= cos(Fm−2b)+ cos(Fm+1b)

and so xm+1 = 2xmxm−1 − xm−2 = cos(Fm+1b). This
completes the induction.

Since xn = cos(Fnb), if xn = 0 for some n then Fnb =
k
2 π for some odd integer k. In particular, we can write
b = c

d (2π) where c = k and d = 4Fn are integers.

Let xn denote the pair (Fn,Fn+1), where each entry in
this pair is viewed as an element of Z/dZ. Since there
are only finitely many possibilities for xn, there must
be some n2 > n1 such that xn1 = xn2 . Now xn uniquely
determines both xn+1 and xn−1, and it follows that the
sequence {xn} is periodic: for ` = n2− n1, xn+` = xn
for all n≥ 0. In particular, Fn+` ≡ Fn (mod d) for all n.
But then Fn+`c

d − Fnc
d is an integer, and so

xn+` = cos
(

Fn+`c
d

(2π)

)
= cos

(
Fnc
d

(2π)

)
= xn

for all n. Thus the sequence {xn} is periodic, as desired.

Remark. Karl Mahlburg points out that one can moti-
vate the previous solution by computing the terms

x2 = 2a2−1,x3 = 4a3−3a,x4 = 16a5−20a3 +5a

and recognizing these as the Chebyshev polynomials
T2,T3,T5. (Note that T3 was used in the solution of prob-
lem A3.)

Remark. It is not necessary to handle the case |a| > 1
separately; the cosine function extends to a surjective
analytic function on C and continues to satisfy the addi-
tion formula, so one can write a = cosb for some b ∈C
and then proceed as above.

B5 Let (a1,a2) and (a′1,a
′
2) be distinct points in R2;

we want to show that f (a1,a2) 6= f (a′1,a
′
2). Write

(v1,v2) = (a′1,a
′
2)− (a1,a2), and let γ(t) = (a1,a2) +

t(v1,v2), t ∈ [0,1], be the path between (a1,a2) and
(a′1,a

′
2). Define a real-valued function g by g(t) =

(v1,v2) · f (γ(t)). By the Chain Rule,

f ′(γ(t)) =

(
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

)(
v1

v2

)
.

Abbreviate ∂ fi/∂x j by fi j; then

g′(t) =
(

v1 v2

)( f11 f12

f21 f22

)(
v1

v2

)
= f11v2

1 +( f12 + f21)v1v2 + f22v2
2

= f11

(
v1 +

f12 + f21

2 f11
v2

)2

+
4 f11 f22− ( f12 + f21)

2

4 f11
v2

2

≥ 0

since f11 and f11 f22− ( f12 + f21)
2/4 are positive by as-

sumption. Since the only way that equality could hold
is if v1 and v2 are both 0, we in fact have g′(t) > 0 for
all t. But if f (a1,a2) = f (a′1,a

′
2), then g(0) = g(1), a

contradiction.

Remark. A similar argument shows more generally
that f : Rn → Rn is injective if at all points in Rn, the
Jacobian matrix D f satisfies the following property: the
quadratic form associated to the bilinear form with ma-
trix D f (or the symmetrized bilinear form with matrix
(D f +(D f )T )/2) is positive definite. In the setting of
the problem, the symmetrized matrix is(

f11 ( f12 + f21)/2
( f12 + f21)/2 f22

)
,

and this is positive definite if and only if f11 and the
determinant of the matrix are both positive (Sylvester’s
criterion). Note that the assumptions that f12, f21 > 0
are unnecessary for the argument; it is also easy to
see that the hypotheses f11, f12 > 0 are also superflu-
ous. (The assumption f11 f22− ( f12 + f21)

2 > 0 implies
f11 f22 > 0, so both are nonzero and of the same sign;
by continuity, this common sign must be constant over
all of R2. If it is negative, then apply the same logic to
(− f1,− f2).)

B6 (by Manjul Bhargava) Let a(k,n) denote the num-
ber of sequences of length k taken from the set
{1,2,3,4,5,6,10} and having sum n. We prove that

a(k,n)< 2n
(

2018
2048

)k

by double induction on n+ k and n− k. The claim is
clearly true when n− k ≤ 0 and in particular when n =
k = 1, the smallest case for n+ k.
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We categorize the sequences counted by a(k,n) by
whether they end in 1,2,3,4,5,6,10; removing the last
term of such a sequence yields a sequence counted
by a(k− 1,n− 1),a(k− 1,n− 2),a(k− 1,n− 3),a(k−
1,n−4),a(k−1,n−5),a(k−1,n−6),a(k−1,n−10),
respectively. Therefore,

a(k,n) = a(k−1,n−1)+ · · ·
+a(k−1,n−6)+a(k−1,n−10)

< (2n−1 + · · ·+2n−6 +2n−10)

(
2018
2048

)k−1

= 2n
(

1
2
+ · · ·+ 1

64
+

1
1024

)(
2018
2048

)k−1

= 2n
(

1009
1024

)(
2018
2048

)k−1

= 2n
(

2018
2048

)k

where we used directly the induction hypothesis to ob-
tain the inequality on the second line. The case k =
2018,n = 3860 yields the desired result.

Remark. K. Soundararajan suggests the following rein-
terpretation of this argument. The quantity a(k,n) can
be interpreted as the coefficient of xn in (x+ x2 + · · ·+
x6 +x10)k. Since this polynomial has nonnegative coef-
ficients, for any x, we have

a(k,n)xn < (x+ x2 + · · ·+ x6 + x10)k.

Substituting x = 1
2 yields the bound stated above.

On a related note, Alexander Givental suggests that the
value n = 3860 (which is otherwise irrelevant to the
problem) may have been chosen for the following rea-
son: as a function of x, the upper bound x−n(x+ x2 +
· · ·+ x6 + x10)k is minimized when

x(1+2x+ · · ·+6x5 + x9)

x+ x2 + · · ·+ x6 + x10 =
n
k
.

In order for this to hold for x = 1/2, k = 2018, one must
take n = 3860.

Remark. For purposes of comparison, the stated bound
is about 101149, while the trivial upper bound given by
counting all sequences of length 2018 of positive inte-
gers that sum to 3860 is(

3859
2017

)
∼ 101158.

The latter can be easily derived by a “stars and bars”
argument: visualize each sequence of this form by rep-
resenting the value n by n stars and inserting a bar be-
tween adjacent terms of the sequence. The resulting
string of symbols consists of one star at the beginning,
2017 bar-star combinations, and 3860-2018 more stars.
Using a computer, it is practical to compute the exact
cardinality of S by finding the coefficient of x3860 in (x+
x2+ · · ·+x6+x10)2018. For example, this can be done in
Sage in a couple of seconds as follows. (The truncation
is truncated modulo x4000 for efficiency.)

sage: P.<x> = PowerSeriesRing(ZZ, 4000)
sage: f = (x + x^2 + x^3 + x^4 + \
....: x^5 + x^6 + x^10)^2018
sage: m = list(f)[3860]
sage: N(m)
8.04809122940636e1146

This computation shows that the upper bound of the
problem differs from the true value by a factor of about
150.



The 80th William Lowell Putnam Mathematical Competition
Saturday, December 7, 2019

A1 Determine all possible values of the expression

A3 +B3 +C3−3ABC

where A,B, and C are nonnegative integers.

A2 In the triangle 4ABC, let G be the centroid, and let I
be the center of the inscribed circle. Let α and β be
the angles at the vertices A and B, respectively. Sup-
pose that the segment IG is parallel to AB and that
β = 2tan−1(1/3). Find α .

A3 Given real numbers b0,b1, . . . ,b2019 with b2019 6= 0, let
z1,z2, . . . ,z2019 be the roots in the complex plane of the
polynomial

P(z) =
2019

∑
k=0

bkzk.

Let µ = (|z1|+ · · ·+ |z2019|)/2019 be the average of the
distances from z1,z2, . . . ,z2019 to the origin. Determine
the largest constant M such that µ ≥M for all choices
of b0,b1, . . . ,b2019 that satisfy

1≤ b0 < b1 < b2 < · · ·< b2019 ≤ 2019.

A4 Let f be a continuous real-valued function on R3. Sup-
pose that for every sphere S of radius 1, the integral of
f (x,y,z) over the surface of S equals 0. Must f (x,y,z)
be identically 0?

A5 Let p be an odd prime number, and let Fp denote the
field of integers modulo p. Let Fp[x] be the ring of poly-
nomials over Fp, and let q(x) ∈ Fp[x] be given by

q(x) =
p−1

∑
k=1

akxk,

where

ak = k(p−1)/2 mod p.

Find the greatest nonnegative integer n such that (x−
1)n divides q(x) in Fp[x].

A6 Let g be a real-valued function that is continuous on
the closed interval [0,1] and twice differentiable on the
open interval (0,1). Suppose that for some real number
r > 1,

lim
x→0+

g(x)
xr = 0.

Prove that either

lim
x→0+

g′(x) = 0 or limsup
x→0+

xr|g′′(x)|= ∞.

B1 Denote by Z2 the set of all points (x,y) in the plane with
integer coordinates. For each integer n≥ 0, let Pn be the
subset of Z2 consisting of the point (0,0) together with
all points (x,y) such that x2 + y2 = 2k for some integer
k ≤ n. Determine, as a function of n, the number of
four-point subsets of Pn whose elements are the vertices
of a square.

B2 For all n≥ 1, let

an =
n−1

∑
k=1

sin
(
(2k−1)π

2n

)
cos2

(
(k−1)π

2n

)
cos2

( kπ

2n

) .
Determine

lim
n→∞

an

n3 .

B3 Let Q be an n-by-n real orthogonal matrix, and let
u ∈ Rn be a unit column vector (that is, uT u = 1). Let
P = I − 2uuT , where I is the n-by-n identity matrix.
Show that if 1 is not an eigenvalue of Q, then 1 is an
eigenvalue of PQ.

B4 Let F be the set of functions f (x,y) that are twice con-
tinuously differentiable for x≥ 1, y≥ 1 and that satisfy
the following two equations (where subscripts denote
partial derivatives):

x fx + y fy = xy ln(xy),

x2 fxx + y2 fyy = xy.

For each f ∈F , let

m( f )=min
s≥1

( f (s+1,s+1)− f (s+1,s)− f (s,s+1)+ f (s,s)) .

Determine m( f ), and show that it is independent of the
choice of f .

B5 Let Fm be the mth Fibonacci number, defined by F1 =
F2 = 1 and Fm = Fm−1+Fm−2 for all m≥ 3. Let p(x) be
the polynomial of degree 1008 such that p(2n+ 1) =
F2n+1 for n = 0,1,2, . . . ,1008. Find integers j and k
such that p(2019) = Fj−Fk.

B6 Let Zn be the integer lattice in Rn. Two points in Zn

are called neighbors if they differ by exactly 1 in one
coordinate and are equal in all other coordinates. For
which integers n ≥ 1 does there exist a set of points
S⊂ Zn satisfying the following two conditions?

(1) If p is in S, then none of the neighbors of p is in S.

(2) If p∈Zn is not in S, then exactly one of the neigh-
bors of p is in S.



Solutions to the 80th William Lowell Putnam Mathematical Competition
Saturday, December 7, 2019

Kiran Kedlaya and Lenny Ng

A1 The answer is all nonnegative integers not congruent to
3 or 6 (mod 9). Let X denote the given expression;
we first show that we can make X equal to each of the
claimed values. Write B = A+b and C = A+ c, so that

X = (b2−bc+ c2)(3A+b+ c).

By taking (b,c) = (0,1) or (b,c) = (1,1), we obtain re-
spectively X = 3A+ 1 and X = 3A+ 2; consequently,
as A varies, we achieve every nonnegative integer not
divisible by 3. By taking (b,c) = (1,2), we obtain
X = 9A+ 9; consequently, as A varies, we achieve ev-
ery positive integer divisible by 9. We may also achieve
X = 0 by taking (b,c) = (0,0).

In the other direction, X is always nonnegative: either
apply the arithmetic mean-geometric mean inequality,
or write b2−bc+ c2 = (b− c/2)2 +3c2/4 to see that it
is nonnegative. It thus only remains to show that if X
is a multiple of 3, then it is a multiple of 9. Note that
3A+b+c≡ b+c (mod 3) and b2−bc+c2 ≡ (b+c)2

(mod 3); consequently, if X is divisible by 3, then b+c
must be divisible by 3, so each factor in X = (b2−bc+
c2)(3A+b+c) is divisible by 3. This proves the claim.

Remark. The factorization of X used above can be
written more symmetrically as

X = (A+B+C)(A2 +B2 +C2−AB−BC−CA).

One interpretation of the factorization is that X is the
determinant of the circulant matrixA B C

C A B
B C A


which has the vector (1,1,1) as an eigenvector (on ei-
ther side) with eigenvalue A+B+C. The other eigen-
values are A+ ζ B+ ζ 2C where ζ is a primitive cube
root of unity; in fact, X is the norm form for the ring
Z[T ]/(T 3− 1), from which it follows directly that the
image of X is closed under multiplication. (This is
similar to the fact that the image of A2 +B2, which is
the norm form for the ring Z[i] of Gaussian integers, is
closed under multiplication.)

One can also the unique factorization property of the
ring Z[ζ ] of Eisenstein integers as follows. The three
factors of X over Z[ζ3] are pairwise congruent modulo
1−ζ3; consequently, if X is divisible by 3, then it is di-
visible by (1−ζ3)

3 =−3ζ3(1−ζ3) and hence (because
it is a rational integer) by 32.

A2 Solution 1. Let M and D denote the midpoint of AB
and the foot of the altitude from C to AB, respectively,

and let r be the inradius of 4ABC. Since C,G,M are
collinear with CM = 3GM, the distance from C to line
AB is 3 times the distance from G to AB, and the latter is
r since IG ‖AB; hence the altitude CD has length 3r. By
the double angle formula for tangent, CD

DB = tanβ = 3
4 ,

and so DB = 4r. Let E be the point where the incircle
meets AB; then EB = r/ tan(β

2 ) = 3r. It follows that
ED = r, whence the incircle is tangent to the altitude
CD. This implies that D = A, ABC is a right triangle,
and α = π

2 .

Remark. One can obtain a similar solution by fixing a
coordinate system with B at the origin and A on the pos-
itive x-axis. Since tan β

2 = 1
3 , we may assume without

loss of generality that I = (3,1). Then C lies on the in-
tersection of the line y = 3 (because CD = 3r as above)
with the line y = 3

4 x (because tanβ = 3
4 as above), forc-

ing C = (4,3) and so forth.

Solution 2. Let a,b,c be the lengths of BC,CA,AB,
respectively. Let r, s, and K denote the inradius,
semiperimeter, and area of 4ABC. By Heron’s For-
mula,

r2s2 = K2 = s(s−a)(s−b)(s− c).

If IG is parallel to AB, then

1
2

rc = area(4ABI) = area(4ABG) =
1
3

K =
1
3

rs

and so c = a+b
2 . Since s = 3(a+b)

4 and s− c = a+b
4 , we

have 3r2 = (s− a)(s− b). Let E be the point at which
the incircle meets AB; then s−b = EB = r/ tan(β

2 ) and
s−a= EA= r/ tan(α

2 ). It follows that tan(α

2 ) tan(β

2 ) =
1
3 and so tan(α

2 ) = 1. This implies that α = π

2 .

Remark. The equality c = a+b
2 can also be derived

from the vector representations

G =
A+B+C

3
, I =

aA+bB+ cC
a+b+ c

.

Solution 3. (by Catalin Zara) It is straightforward to
check that a right triangle with AC = 3,AB = 4,BC = 5
works. For example, in a coordinate system with A =
(0,0),B = (4,0),C = (0,3), we have

G =

(
4
3
,1
)
, I = (1,1)

and for D = (1,0),

tan
β

2
=

ID
BD

=
1
3
.
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It thus suffices to suggest that this example is unique up
to similarity.

Let C′ be the foot of the angle bisector at C. Then

CI
IC′

=
CA+CB

AB

and so IG is parallel to AB if and only if CA+CB =
2AB. We may assume without loss of generality that A
and B are fixed, in which case this condition restricts C
to an ellipse with foci at A and B. Since the angle β

is also fixed, up to symmetry C is further restricted to
a half-line starting at B; this intersects the ellipse in a
unique point.

Remark. Given that CA+CB = 2AB, one can also re-
cover the ratio of side lengths using the law of cosines.

A3 The answer is M = 2019−1/2019. For any choices of
b0, . . . ,b2019 as specified, AM-GM gives

µ ≥ |z1 · · ·z2019|1/2019 = |b0/b2019|1/2019 ≥ 2019−1/2019.

To see that this is best possible, consider b0, . . . ,b2019
given by bk = 2019k/2019 for all k. Then

P(z/20191/2019) =
2019

∑
k=0

zk =
z2020−1

z−1

has all of its roots on the unit circle. It follows that all
of the roots of P(z) have modulus 2019−1/2019, and so
µ = 2019−1/2019 in this case.

A4 The answer is no. Let g : R→ R be any continuous
function with g(t +2) = g(t) for all t and

∫ 2
0 g(t)dt = 0

(for instance, g(t) = sin(πt)). Define f (x,y,z) = g(z).
We claim that for any sphere S of radius 1,

∫∫
S f dS = 0.

Indeed, let S be the unit sphere centered at (x0,y0,z0).
We can parametrize S by S(φ ,θ) = (x0,y0,z0) +
(sinφ cosθ ,sinφ sinθ ,cosφ) for φ ∈ [0,π] and θ ∈
[0,2π]. Then we have

∫∫
S

f (x,y,z)dS =
∫

π

0

∫ 2π

0
f (S(φ ,θ))

∥∥∥∥ ∂S
∂φ
× ∂S

∂θ

∥∥∥∥ dθ dφ

=
∫

π

0

∫ 2π

0
g(z0 + cosφ)sinφ dθ dφ

= 2π

∫ 1

−1
g(z0 + t)dt,

where we have used the substitution t = cosφ ; but this
last integral is 0 for any z0 by construction.

Remark. The solution recovers the famous observation
of Archimedes that the surface area of a spherical cap
is linear in the height of the cap. In place of spheri-
cal coordinates, one may also compute

∫∫
S f (x,y,z)dS

by computing the integral over a ball of radius r, then
computing the derivative with respect to r and evaluat-
ing at r = 1.

Noam Elkies points out that a similar result holds in Rn

for any n. Also, there exist nonzero continuous func-
tions on Rn whose integral over any unit ball vanishes;
this implies certain negative results about image recon-
struction.

A5 The answer is p−1
2 . Define the operator D = x d

dx ,
where d

dx indicates formal differentiation of polyno-
mials. For n as in the problem statement, we have
q(x) = (x−1)nr(x) for some polynomial r(x) in Fp not
divisible by x−1. For m = 0, . . . ,n, by the product rule
we have

(Dmq)(x)≡ nmxm(x−1)n−mr(x) (mod (x−1)n−m+1).

Since r(1) 6= 0 and n 6≡ 0 (mod p) (because n ≤
deg(q) = p−1), we may identify n as the smallest non-
negative integer for which (Dnq)(1) 6= 0.

Now note that q = D(p−1)/2s for

s(x) = 1+ x+ · · ·+ xp−1 =
xp−1
x−1

= (x−1)p−1

since (x− 1)p = xp − 1 in Fp[x]. By the same logic
as above, (Dns)(1) = 0 for n = 0, . . . , p− 2 but not for
n = p−1. This implies the claimed result.

Remark. One may also finish by checking directly that
for any positive integer m,

p−1

∑
k=1

km ≡

{
−1 (mod p) if (p−1)|m
0 (mod p) otherwise.

If (p−1)|m, then km ≡ 1 (mod p) by the little Fermat
theorem, and so the sum is congruent to p− 1 ≡ −1
(mod p). Otherwise, for any primitive root ` mod p,
multiplying the sum by `m permutes the terms modulo
p and hence does not change the sum modulo p; since
`n 6≡ 1 (mod p), this is only possible if the sum is zero
modulo p.

A6 Solution 1. (by Harm Derksen) We assume
that limsupx→0+ xr|g′′(x)| < ∞ and deduce that
limx→0+ g′(x) = 0. Note that

limsup
x→0+

xr sup{|g′′(ξ )| : ξ ∈ [x/2,x]}< ∞.

Suppose for the moment that there exists a function h
on (0,1) which is positive, nondecreasing, and satisfies

lim
x→0+

g(x)
h(x)

= lim
x→0+

h(x)
xr = 0.

For some c> 0, h(x)< xr < x for x∈ (0,c). By Taylor’s
theorem with remainder, we can find a function ξ on
(0,c) such that ξ (x) ∈ [x−h(x),x] and

g(x−h(x)) = g(x)−g′(x)h(x)+
1
2

g′′(ξ (x))h(x)2.
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We can thus express g′(x) as

g(x)
h(x)

+
1
2

xrg′′(ξ (x))
h(x)
xr −

g(x−h(x))
h(x−h(x))

h(x−h(x))
h(x)

.

As x → 0+, g(x)/h(x), g(x− h(x))/h(x− h(x)), and
h(x)/xr tend to 0, while xrg′′(ξ (x)) remains bounded
(because ξ (x) ≥ x− h(x) ≥ x− xr ≥ x/2 for x small)
and h(x − h(x))/h(x) is bounded in (0,1]. Hence
limx→0+ g′(x) = 0 as desired.

It thus only remains to produce a function h with the
desired properties; this amounts to “inserting” a func-
tion between g(x) and xr while taking care to ensure the
positive and nondecreasing properties. One of many op-
tions is h(x) = xr

√
f (x) where

f (x) = sup{|z−rg(z)| : z ∈ (0,x)},

so that

h(x)
xr =

√
f (x),

g(x)
h(x)

=
√

f (x)x−rg(x).

Solution 2. We argue by contradiction. Assume that
limsupx→0+ xr|g′′(x)| < ∞, so that there is an M such
that |g′′(x)|<Mx−r for all x; and that limx→0+ g′(x) 6= 0,
so that there is an ε0 > 0 and a sequence xn → 0 with
|g′(xn)|> ε0 for all n.

Now let ε > 0 be arbitrary. Since limx→0+ g(x)x−r = 0,
there is a δ > 0 for which |g(x)| < εxr for all x < δ .
Choose n sufficiently large that ε0xr

n
2M < xn and xn < δ/2;

then xn+
ε0xr

n
2M < 2xn < δ . In addition, we have |g′(x)|>

ε0/2 for all x ∈ [xn,xn +
ε0xr

n
2M ] since |g′(xn)| > ε0 and

|g′′(x)|< Mx−r ≤Mx−r
n in this range. It follows that

ε2
0
2

xr
n

2M
< |g(xn +

ε0xr
n

2M
)−g(xn)|

≤ |g(xn +
ε0xr

n

2M
)|+ |g(xn)|

< ε

(
(xn +

ε0xr
n

2M
)r + xr

n

)
< ε(1+2r)xr

n,

whence 4M(1+2r)ε > ε2
0 . Since ε > 0 is arbitrary and

M,r,ε0 are fixed, this gives the desired contradiction.

Remark. Harm Derksen points out that the “or” in the
problem need not be exclusive. For example, take

g(x) =

{
x5 sin(x−3) x ∈ (0,1]
0 x = 0.

Then for x ∈ (0,1),

g′(x) = 5x4 sin(x−3)−3xcos(x−3)

g′′(x) = (20x3−9x−3)sin(x−3)−18cos(x−3).

For r = 2, limx→0+ x−rg(x) = limx→0+ x3 sin(x−3) = 0,
limx→0+ g′(x) = 0 and xrg′′(x) = (20x5 −
9x−1)sin(x−3) − 18x2 cos(x−3) is unbounded as
x→ 0+. (Note that g′(x) is not differentiable at x = 0.)

B1 The answer is 5n+1.

We first determine the set Pn. Let Qn be the set of points
in Z2 of the form (0,±2k) or (±2k,0) for some k ≤ n.
Let Rn be the set of points in Z2 of the form (±2k,±2k)
for some k ≤ n (the two signs being chosen indepen-
dently). We prove by induction on n that

Pn = {(0,0)}∪Qbn/2c∪Rb(n−1)/2c.

We take as base cases the straightforward computations

P0 = {(0,0),(±1,0),(0,±1)}
P1 = P0∪{(±1,±1)}.

For n≥ 2, it is clear that {(0,0)}∪Qbn/2c∪Rb(n−1)/2c ⊆
Pn, so it remains to prove the reverse inclusion. For
(x,y) ∈ Pn, note that x2 + y2 ≡ 0 (mod 4); since every
perfect square is congruent to either 0 or 1 modulo 4,
x and y must both be even. Consequently, (x/2,y/2) ∈
Pn−2, so we may appeal to the induction hypothesis to
conclude.

We next identify all of the squares with vertices in Pn.
In the following discussion, let (a,b) and (c,d) be two
opposite vertices of a square, so that the other two ver-
tices are(

a−b+ c+d
2

,
a+b− c+d

2

)
and (

a+b+ c−d
2

,
−a+b+ c+d

2

)
.

– Suppose that (a,b) = (0,0). Then (c,d) may be
any element of Pn not contained in P0. The number
of such squares is 4n.

– Suppose that (a,b),(c,d) ∈ Qk for some k. There
is one such square with vertices

{(0,2k),(0,2−k),(2k,0),(2−k,0)}

for k = 0, . . . ,b n
2c, for a total of b n

2c+ 1. To
show that there are no others, by symmetry it suf-
fices to rule out the existence of a square with
opposite vertices (a,0) and (c,0) where a > |c|.
The other two vertices of this square would be
((a+c)/2,(a−c)/2) and ((a+c)/2,(−a+c)/2).
These cannot belong to any Qk, or be equal to
(0,0), because |a+ c|, |a− c| ≥ a−|c|> 0 by the
triangle inequality. These also cannot belong to
any Rk because (a+ |c|)/2> (a−|c|)/2. (One can
also phrase this argument in geometric terms.)

– Suppose that (a,b),(c,d) ∈ Rk for some k. There
is one such square with vertices

{(2k,2k),(2k,−2k),(−2k,2k),(−2k,−2k)}

for k = 0, . . . ,b n−1
2 c, for a total of b n+1

2 c. To show
that there are no others, we may reduce to the pre-
vious case: rotating by an angle of π

4 and then
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rescaling by a factor of
√

2 would yield a square
with two opposite vertices in some Qk not cen-
tered at (0,0), which we have already ruled out.

– It remains to show that we cannot have (a,b) ∈
Qk and (c,d) ∈ Rk for some k. By symmetry, we
may reduce to the case where (a,b) = (0,2k) and
(c,d) = (2`,±2`). If d > 0, then the third vertex
(2k−1,2k−1 +2`) is impossible. If d < 0, then the
third vertex (−2k−1,2k−1−2`) is impossible.

Summing up, we obtain

4n+
⌊n

2

⌋
+1+

⌊
n+1

2

⌋
= 5n+1

squares, proving the claim.

Remark. Given the computation of Pn, we can alter-
natively show that the number of squares with vertices
in Pn is 5n+ 1 as follows. Since this is clearly true for
n = 1, it suffices to show that for n ≥ 2, there are ex-
actly 5 squares with vertices in Pn, at least one of which
is not in Pn−1. Note that the convex hull of Pn is a square
S whose four vertices are the four points in Pn \Pn−1. If
v is one of these points, then a square with a vertex at
v can only lie in S if its two sides containing v are in
line with the two sides of S containing v. It follows that
there are exactly two squares with a vertex at v and all
vertices in Pn: the square corresponding to S itself, and a
square whose vertex diagonally opposite to v is the ori-
gin. Taking the union over the four points in Pn \Pn−1
gives a total of 5 squares, as desired.

B2 The answer is 8
π3 .

Solution 1. By the double angle and sum-product iden-
tities for cosine, we have

2cos2
(
(k−1)π

2n

)
−2cos2

(
kπ

2n

)
= cos

(
(k−1)π

n

)
− cos

(
kπ

n

)
= 2sin

(
(2k−1)π

2n

)
sin
(

π

2n

)
,

and it follows that the summand in an can be written as

1
sin
(

π

2n

)
− 1

cos2
(
(k−1)π

2n

) +
1

cos2
( kπ

2n

)
 .

Thus the sum telescopes and we find that

an =
1

sin
(

π

2n

)
−1+

1

cos2
(
(n−1)π

2n

)
=− 1

sin
(

π

2n

)+ 1
sin3 ( π

2n

) .
Finally, since limx→0

sinx
x = 1, we have

limn→∞

(
nsin π

2n

)
= π

2 , and thus limn→∞
an
n3 = 8

π3 .

Solution 2. We first substitute n− k for k to obtain

an =
n−1

∑
k=1

sin
(
(2k+1)π

2n

)
sin2

(
(k+1)π

2n

)
sin2 ( kπ

2n

) .

We then use the estimate

sinx
x

= 1+O(x2) (x ∈ [0,π])

to rewrite the summand as(
(2k−1)π

2n

)
(
(k+1)π

2n

)2 ( kπ

2n

)2

(
1+O

(
k2

n2

))

which simplifies to

8(2k−1)n3

k2(k+1)2π3 +O
(n

k

)
.

Consequently,

an

n3 =
n−1

∑
k=1

(
8(2k−1)

k2(k+1)2π3 +O
(

1
kn2

))
=

8
π3

n−1

∑
k=1

(2k−1)
k2(k+1)2 +O

(
logn
n2

)
.

Finally, note that

n−1

∑
k=1

(2k−1)
k2(k+1)2 =

n−1

∑
k=1

(
1
k2 −

1
(k+1)2

)
= 1− 1

n2

converges to 1, and so limn→∞
an
n3 = 8

π3 .

B3 Solution 1. We first note that P corresponds to the lin-
ear transformation on Rn given by reflection in the hy-
perplane perpendicular to u: P(u) = −u, and for any v
with 〈u,v〉= 0, P(v) = v. In particular, P is an orthogo-
nal matrix of determinant −1.

We next claim that if Q is an n× n orthogonal matrix
that does not have 1 as an eigenvalue, then detQ =
(−1)n. To see this, recall that the roots of the char-
acteristic polynomial p(t) = det(tI−Q) all lie on the
unit circle in C, and all non-real roots occur in conju-
gate pairs (p(t) has real coefficients, and orthogonality
implies that p(t) = ±tn p(t−1)). The product of each
conjugate pair of roots is 1; thus detQ = (−1)k where
k is the multiplicity of −1 as a root of p(t). Since 1 is
not a root and all other roots appear in conjugate pairs,
k and n have the same parity, and so detQ = (−1)n.

Finally, if neither of the orthogonal matrices Q nor PQ
has 1 as an eigenvalue, then detQ = det(PQ) = (−1)n,
contradicting the fact that detP = −1. The result fol-
lows.

Remark. It can be shown that any n× n orthogonal
matrix Q can be written as a product of at most n hy-
perplane reflections (Householder matrices). If equality
occurs, then det(Q) = (−1)n; if equality does not occur,
then Q has 1 as an eigenvalue. Consequently, equality
fails for one of Q and PQ, and that matrix has 1 as an
eigenvalue.
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Sucharit Sarkar suggests the following topological in-
terpretation: an orthogonal matrix without 1 as an
eigenvalue induces a fixed-point-free map from the
(n− 1)-sphere to itself, and the degree of such a map
must be (−1)n.

Solution 2. This solution uses the (reverse) Cayley
transform: if Q is an orthogonal matrix not having 1
as an eigenvalue, then

A = (I−Q)(I +Q)−1

is a skew-symmetric matrix (that is, AT =−A).

Suppose then that Q does not have 1 as an eigenvalue.
Let V be the orthogonal complement of u in Rn. On one
hand, for v ∈V ,

(I−Q)−1(I−QP)v = (I−Q)−1(I−Q)v = v.

On the other hand,

(I−Q)−1(I−QP)u = (I−Q)−1(I +Q)u = Au

and 〈u,Au〉 = 〈AT u,u〉 = 〈−Au,u〉, so Au ∈ V . Put
w = (1−A)u; then (1−QP)w = 0, so QP has 1 as an
eigenvalue, and the same for PQ because PQ and QP
have the same characteristic polynomial.

Remark. The Cayley transform is the following con-
struction: if A is a skew-symmetric matrix, then I+A is
invertible and

Q = (I−A)(I +A)−1

is an orthogonal matrix.

Remark. (by Steven Klee) A related argument is
to compute det(PQ− I) using the matrix determinant
lemma: if A is an invertible n× n matrix and v,w are
1×n column vectors, then

det(A+ vwT ) = det(A)(1+wT A−1v).

This reduces to the case A = I, in which case it again
comes down to the fact that the product of two square
matrices (in this case, obtained from v and w by padding
with zeroes) retains the same characteristic polynomial
when the factors are reversed.

B4 Solution 1. We compute that m( f ) = 2ln2− 1
2 . La-

bel the given differential equations by (1) and (2). If
we write, e.g., x ∂

∂x (1) for the result of differentiat-
ing (1) by x and multiplying the resulting equation by
x, then the combination x ∂

∂x (1) + y ∂

∂y (1)− (1)− (2)
gives the equation 2xy fxy = xy ln(xy)+xy, whence fxy =
1
2 (ln(x)+ ln(y)+1).

Now we observe that

f (s+1,s+1)− f (s+1,s)− f (s,s+1)+ f (s,s)

=
∫ s+1

s

∫ s+1

s
fxy dydx

=
1
2

∫ s+1

s

∫ s+1

s
(ln(x)+ ln(y)+1)dydx

=
1
2
+
∫ s+1

s
ln(x)dx.

Since ln(x) is increasing,
∫ s+1

s ln(x)dx is an increasing
function of s, and so it is minimized over s ∈ [1,∞)
when s = 1. We conclude that

m( f ) =
1
2
+
∫ 2

1
ln(x)dx = 2ln2− 1

2

independent of f .

Remark. The phrasing of the question suggests that
solvers were not expected to prove that F is nonempty,
even though this is necessary to make the definition of
m( f ) logically meaningful. Existence will be explicitly
established in the next solution.

Solution 2. We first verify that

f (x,y) =
1
2
(xy ln(xy)− xy)

is an element of F , by computing that

x fx = y fy =
1
2

xy ln(xy)

x2 fxx = y2 fyy = xy.

(See the following remark for motivation for this guess.)

We next show that the only elements of F are f +
a ln(x/y) + b where a,b are constants. Suppose that
f + g is a second element of F . As in the first solu-
tion, we deduce that gxy = 0; this implies that g(x,y) =
u(x)+ v(y) for some twice continuously differentiable
functions u and v. We also have xgx + ygy = 0, which
now asserts that xgx = −ygy is equal to some constant
a. This yields that g = a ln(x/y)+b as desired.

We next observe that

g(s+1,s+1)−g(s+1,s)−g(s,s+1)+g(s,s) = 0,

so m( f ) = m( f +g). It thus remains to compute m( f ).
To do this, we verify that

f (s+1,s+1)− f (s+1,s)− f (s,s+1)+ f (s,s)

is nondecreasing in s by computing its derivative to be
ln(s + 1)− ln(s) (either directly or using the integral
representation from the first solution). We thus mini-
mize by taking s = 1 as in the first solution.

Remark. One way to make a correct guess for f is to
notice that the given equations are both symmetric in x
and y and posit that f should also be symmetric. Any
symmetric function of x and y can be written in terms
of the variables u = x+y and v = xy, so in principle we
could translate the equations into those variables and
solve. However, before trying this, we observe that xy
appears explicitly in the equations, so it is reasonable to
make a first guess of the form f (x,y) = h(xy). For such
a choice, we have

x fx + y fy = 2xyh′ = xy ln(xy)

which forces us to set h(t) = 1
2 (t ln(t)− t).
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B5 Solution 1. We prove that ( j,k) = (2019,1010) is a
valid solution. More generally, let p(x) be the polyno-
mial of degree N such that p(2n+ 1) = F2n+1 for 0 ≤
n≤ N. We will show that p(2N +3) = F2N+3−FN+2.

Define a sequence of polynomials p0(x), . . . , pN(x) by
p0(x) = p(x) and pk(x) = pk−1(x)− pk−1(x+2) for k≥
1. Then by induction on k, it is the case that pk(2n+
1) = F2n+1+k for 0 ≤ n ≤ N − k, and also that pk has
degree (at most) N− k for k ≥ 1. Thus pN(x) = FN+1
since pN(1) = FN+1 and pN is constant.

We now claim that for 0 ≤ k ≤ N, pN−k(2k + 3) =
∑

k
j=0 FN+1+ j. We prove this again by induction on k:

for the induction step, we have

pN−k(2k+3) = pN−k(2k+1)+ pN−k+1(2k+1)

= FN+1+k +
k−1

∑
j=0

FN+1+ j.

Thus we have p(2N+3) = p0(2N+3) = ∑
N
j=0 FN+1+ j.

Now one final induction shows that ∑
m
j=1 Fj =Fm+2−1,

and so p(2N + 3) = F2N+3−FN+2, as claimed. In the
case N = 1008, we thus have p(2019) = F2019−F1010.

Solution 2. This solution uses the Lagrange interpola-
tion formula: given x0, . . . ,xn and y0, . . . ,yn, the unique
polynomial P of degree at most n satisfying P(xi) = yi
for i = 0, . . . ,n is

n

∑
i=0

P(xi)∏
j 6=i

x− x j

xi− x j
=

Write

Fn =
1√
5
(αn−β

−n), α =
1+
√

5
2

,β =
1−
√

5
2

.

For γ ∈R, let pγ(x) be the unique polynomial of degree
at most 1008 satisfying

p1(2n+1) = γ
2n+1, p2(2n+1) = γ

2n+1 (n = 0, . . . ,1008);

then p(x) = 1√
5
(pα(x)− pβ (x)).

By Lagrange interpolation,

pγ(2019) =
1008

∑
n=0

γ
2n+1

∏
0≤ j≤1008, j 6=n

2019− (2 j+1)
(2n+1)− (2 j+1)

=
1008

∑
n=0

γ
2n+1

∏
0≤ j≤1008, j 6=n

1009− j
n− j

=
1008

∑
n=0

γ
2n+1(−1)1008−n

(
1009

n

)
=−γ((γ2−1)1009− (γ2)1009).

For γ ∈ {α,β} we have γ2 = γ +1 and so

pγ(2019) = γ
2019− γ

1010.

We thus deduce that p(x) = F2019−F1010 as claimed.

Remark. Karl Mahlburg suggests the following variant
of this. As above, use Lagrange interpolation to write

p(2019) =
1008

∑
j=0

(
1009

j

)
Fj;

it will thus suffice to verify (by substiting j 7→ 1009− j)
that

1009

∑
j=0

(
1009

j

)
Fj+1 = F2019.

This identity has the following combinatorial interpre-
tation. Recall that Fn+1 counts the number of ways to
tile a 1×n rectangle with 1×1 squares and 1×2 domi-
noes (see below). In any such tiling with n = 2018, let
j be the number of squares among the first 1009 tiles.
These can be ordered in

(1009
j

)
ways, and the remaining

2018− j−2(1009− j) = j squares can be tiled in Fj+1
ways.

As an aside, this interpretation of Fn+1 is the oldest
known interpretation of the Fibonacci sequence, long
predating Fibonacci himself. In ancient Sanskrit, sylla-
bles were classified as long or short, and a long syllable
was considered to be twice as long as a short syllable;
consequently, the number of syllable patterns of total
length n equals Fn+1.

Remark. It is not difficult to show that the solution
( j,k) = (2019,2010) is unique (in positive integers).
First, note that to have Fj−Fk > 0, we must have k < j.
If j < 2019, then

F2019−F1010 = F2018 +F2017−F1010 > Fj > Fj−Fk.

If j > 2020, then

Fj−Fk ≥ Fj−Fj−1 = Fj−2 ≥ F2019 > F2019−F1010.

Since j = 2019 obviously forces k = 1010, the only
other possible solution would be with j = 2020. But
then

(Fj−Fk)− (F2019−F1010) = (F2018−Fk)+F1010

which is negative for k = 2019 (it equals F1010−F2017)
and positive for k ≤ 2018.

B6 Such a set exists for every n. To construct an example,
define the function f : Zn→ Z/(2n+1)Z by

f (x1, . . . ,xn) = x1 +2x2 + · · ·+nxn (mod 2n+1),

then let S be the preimage of 0.

To check condition (1), note that if p ∈ S and q is a
neighbor of p differing only in coordinate i, then

f (q) = f (p)± i≡±i (mod 2n+1)
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and so q /∈ S.

To check condition (2), note that if p ∈ Zn is not in S,
then there exists a unique choice of i ∈ {1, . . . ,n} such
that f (p) is congruent to one of +i or −i modulo 2n+
1. The unique neighbor q of p in S is then obtained
by either subtracting 1 from, or adding 1 to, the i-th
coordinate of p.

Remark. According to Art of Problem Solving (thread
c6h366290), this problem was a 1985 IMO submission
from Czechoslovakia. For an application to steganog-
raphy, see: J. Fridrich and P. Lisoněk, Grid colorings in
steganography, IEEE Transactions on Information The-
ory 53 (2007), 1547–1549.
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A1 How many positive integers N satisfy all of the follow-
ing three conditions?

(i) N is divisible by 2020.

(ii) N has at most 2020 decimal digits.

(iii) The decimal digits of N are a string of consecutive
ones followed by a string of consecutive zeros.

A2 Let k be a nonnegative integer. Evaluate

k

∑
j=0

2k− j
(

k+ j
j

)
.

A3 Let a0 = π/2, and let an = sin(an−1) for n ≥ 1. Deter-
mine whether

∞

∑
n=1

a2
n

converges.

A4 Consider a horizontal strip of N+2 squares in which the
first and the last square are black and the remaining N
squares are all white. Choose a white square uniformly
at random, choose one of its two neighbors with equal
probability, and color this neighboring square black if it
is not already black. Repeat this process until all the re-
maining white squares have only black neighbors. Let
w(N) be the expected number of white squares remain-
ing. Find

lim
N→∞

w(N)

N
.

A5 Let an be the number of sets S of positive integers for
which

∑
k∈S

Fk = n,

where the Fibonacci sequence (Fk)k≥1 satisfies Fk+2 =
Fk+1+Fk and begins F1 = 1,F2 = 1,F3 = 2,F4 = 3. Find
the largest integer n such that an = 2020.

A6 For a positive integer N, let fN
1 be the function defined

by

fN(x) =
N

∑
n=0

N +1/2−n
(N +1)(2n+1)

sin((2n+1)x).

Determine the smallest constant M such that fN(x)≤M
for all N and all real x.

B1 For a positive integer n, define d(n) to be the sum of the
digits of n when written in binary (for example, d(13)=
1+1+0+1 = 3). Let

S =
2020

∑
k=1

(−1)d(k)k3.

Determine S modulo 2020.

B2 Let k and n be integers with 1 ≤ k < n. Alice and Bob
play a game with k pegs in a line of n holes. At the
beginning of the game, the pegs occupy the k leftmost
holes. A legal move consists of moving a single peg to
any vacant hole that is further to the right. The play-
ers alternate moves, with Alice playing first. The game
ends when the pegs are in the k rightmost holes, so who-
ever is next to play cannot move and therefore loses.
For what values of n and k does Alice have a winning
strategy?

B3 Let x0 = 1, and let δ be some constant satisfying 0 <
δ < 1. Iteratively, for n = 0,1,2, . . . , a point xn+1 is
chosen uniformly from the interval [0,xn]. Let Z be the
smallest value of n for which xn < δ . Find the expected
value of Z, as a function of δ .

B4 Let n be a positive integer, and let Vn be the set of inte-
ger (2n+1)-tuples v = (s0,s1, · · · ,s2n−1,s2n) for which
s0 = s2n = 0 and |s j−s j−1|= 1 for j = 1,2, · · · ,2n. De-
fine

q(v) = 1+
2n−1

∑
j=1

3s j ,

and let M(n) be the average of 1
q(v) over all v∈Vn. Eval-

uate M(2020).

B5 For j ∈ {1,2,3,4}, let z j be a complex number with
|z j|= 1 and z j 6= 1. Prove that

3− z1− z2− z3− z4 + z1z2z3z4 6= 0.

B6 Let n be a positive integer. Prove that

n

∑
k=1

(−1)bk(
√

2−1)c ≥ 0.

(As usual, bxc denotes the greatest integer less than or
equal to x.)

1 Corrected from FN in the source.
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A1 The values of N that satisfy (ii) and (iii) are precisely the
numbers of the form N = (10a−10b)/9 for 0≤ b< a≤
2020; this expression represents the integer with a digits
beginning with a string of 1’s and ending with b 0’s. A
value N of this form is divisible by 2020 = 22 ·5 ·101 if
and only if 10b(10a−b−1) is divisible by each of 32, 22 ·
5, and 101. Divisibility by 32 is a trivial condition since
10≡ 1 (mod 9). Since 10a−b−1 is odd, divisibility by
22 ·5 occurs if and only if b≥ 2. Finally, since 102≡−1
(mod 101), we see that 10a−b is congruent to 10, −1,
−10, or 1 (mod 101) depending on whether a− b is
congruent to 1, 2, 3, or 0 (mod 4); thus 10a−b− 1 is
divisible by 101 if and only if a−b is divisible by 4.

It follows that we need to count the number of (a,b)
with 2≤ b < a≤ 2020 with 4 |a−b. For given b, there
are b 2020−b

4 c possible values of a. Thus the answer is

504+504+504+503+503+503+503+ · · ·+1+1+1+1
= 4(504+503+ · · ·+1)−504 = 504 ·1009 = 508536.

A2 The answer is 4k.

First solution. Let Sk denote the given sum. Then, with
the convention that

( n
−1

)
= 0 for any n≥ 0, we have for

k ≥ 1,

Sk =
k

∑
j=0

2k− j
[(

k−1+ j
j

)
+

(
k−1+ j

j−1

)]

= 2
k−1

∑
j=0

2k−1− j
(

k−1+ j
j

)
+

(
2k−1

k

)
+

k

∑
j=1

2k− j
(

k−1+ j
j−1

)

= 2Sk−1 +

(
2k−1

k

)
+

k−1

∑
j=0

2k− j−1
(

k+ j
j

)
= 2Sk−1 +Sk/2

and so Sk = 4Sk−1. Since S0 = 1, it follows that Sk = 4k

for all k.

Second solution. Consider a sequence of fair coin flips
a1,a2, . . . and define the random variable X to be the
index of the (k+1)-st occurrence of heads. Then

P[X = n] =
(

n−1
k

)
2−n;

writing n = k + j + 1, we may thus rewrite the given
sum as

22k+1P[X ≤ 2k+1].

It now suffices to observe that P[X ≤ 2k+ 1] = 1
2 : we

have X ≤ 2k+ 1 if and only if there are at least k+ 1

heads among the first 2k+1 flips, and there are exactly
as many outcomes with at most k heads.

Third solution. (by Pankaj Sinha) The sum in question
in the coefficient of xk in the formal power series

k

∑
j=0

2k− j(1+ x)k+ j = 2k(1+ x)k
k

∑
j=0

2− j(1+ x) j

= 2k(1+ x)k 1− (1+ x)k+1/2k+1

1− (1+ x)/2

=
2k+1(1+ x)k− (1+ x)2k+1

1− x
= (2k+1(1+ x)k− (1+ x)2k+1)(1+ x+ · · ·).

This evidently equals

2k+1
k

∑
j=0

(
k
j

)
−

k

∑
j=0

(
2k+1

j

)
= 2k+1(2k)− 1

2
22k+1

= 22k+1−22k = 22k = 4k.

Remark. This sum belongs to a general class that
can be evaluated mechanically using the WZ method.
See for example the book A = B by Petvoksek–Wilf–
Zeilberger.

A3 The series diverges. First note that since sin(x) < x for
all x > 0, the sequence {an} is positive and decreas-
ing, with a1 = 1. Next, we observe that for x ∈ [0,1],
sin(x) ≥ x− x3/6: this follows from Taylor’s theorem
with remainder, since sin(x) = x− x3/6+(sinc)x4/24
for some c between 0 and x.

We now claim that an ≥ 1/
√

n for all n ≥ 1; it follows
that ∑a2

n diverges since ∑1/n diverges. To prove the
claim, we induct on n, with n = 1 being trivial. Sup-
pose that an ≥ 1/

√
n. To prove sin(an) ≥ 1/

√
n+1,

note that since sin(an)≥ sin(1/
√

n), it suffices to prove
that x− x3/6 ≥ (n+ 1)−1/2 where x = 1/

√
n. Squar-

ing both sides and clearing denominators, we find that
this is equivalent to (n+1)(6n−1)2 ≥ 36n3, or 24n2−
11n + 1 ≥ 0. But this last inequality is true since
24n2− 11n+ 1 = (3n− 1)(8n− 1), and the induction
is complete.

A4 The answer is 1/e. We first establish a recurrence for
w(N). Number the squares 1 to N +2 from left to right.
There are 2(N− 1) equally likely events leading to the
first new square being colored black: either we choose
one of squares 3, . . . ,N + 1 and color the square to its
left, or we choose one of squares 2, . . . ,N and color the
square to its right. Thus the probability of square i being
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the first new square colored black is 1
2(N−1) if i = 2 or

i = N +1 and 1
N−1 if 3≤ i≤ N. Once we have changed

the first square i from white to black, then the strip di-
vides into two separate systems, squares 1 through i and
squares i through N +2, each with first and last square
black and the rest white, and we can view the remain-
ing process as continuing independently for each sys-
tem. Thus if square i is the first square to change color,
the expected number of white squares at the end of the
process is w(i−2)+w(N +1− i). It follows that

w(N) =
1

2(N−1)
(w(0)+w(N−1))+

1
N−1

(
N

∑
i=3

(w(i−2)+w(N +1− i))

)

+
1

2(N−1)
(w(N−1)+w(0))

and so

(N−1)w(N) = 2(w(1)+ · · ·+w(N−2))+w(N−1).

If we replace N by N− 1 in this equation and subtract
from the original equation, then we obtain the recur-
rence

w(N) = w(N−1)+
w(N−2)

N−1
.

We now claim that w(N) = (N +1)∑
N+1
k=0

(−1)k

k! for N ≥
0. To prove this, we induct on N. The formula holds for
N = 0 and N = 1 by inspection: w(0) = 0 and w(1) = 1.

Now suppose that N ≥ 2 and w(N−1) = N ∑
N
k=0

(−1)k

k! ,

w(N−2) = (N−1)∑
N−1
k=0

(−1)k

k! . Then

w(N) = w(N−1)+
w(N−2)

N−1

= N
N

∑
k=0

(−1)k

k!
+

N−1

∑
k=0

(−1)k

k!

= (N +1)
N−1

∑
k=0

(−1)k

k!
+

N(−1)N

N!

= (N +1)
N+1

∑
k=0

(−1)k

k!

and the induction is complete.

Finally, we compute that

lim
N→∞

w(N)

N
= lim

N→∞

w(N)

N +1

=
∞

∑
k=0

(−1)k

k!
=

1
e
.

Remark. AoPS user pieater314159 suggests the fol-
lowing alternate description of w(N). Consider the

numbers {1, . . . ,N + 1} all originally colored white.
Choose a permutation π ∈ SN+1 uniformly at random.
For i = 1, . . . ,N + 1 in succession, color π(i) black in
case π(i+ 1) is currently white (regarding i+ 1 mod-
ulo N + 1). After this, the expected number of white
squares remaining is w(N).

Remark. Andrew Bernoff reports that this problem
was inspired by a similar question of Jordan Ellenberg
(disseminated via Twitter), which in turn was inspired
by the final question of the 2017 MATHCOUNTS
competition. See http://bit-player.org/2017/
counting-your-chickens-before-theyre-pecked
for more discussion.

A5 The answer is n = F4040− 1. In both solutions, we use
freely the identity

F1 +F2 + · · ·+Fm−2 = Fm−1 (1)

which follows by a straightforward induction on m. We
also use the directly computed values

a1 = a2 = 2,a3 = a4 = 3. (2)

First solution. (by George Gilbert)

We extend the definition of an by setting a0 = 1.

Lemma 1. For m > 0 and Fm ≤ n < Fm+1,

an = an−Fm +aFm+1−n−1. (3)

Proof. Consider a set S for which ∑k∈S Fk = n. If m ∈ S then
S\{m} gives a representation of n−Fm, and this construction
is reversible because n− Fm < Fm−1 ≤ Fm. If m /∈ S, then
{1, . . . ,m−1}\S gives a representation of Fm+1−n−1, and
this construction is also reversible. This implies the desired
equality.

Lemma 2. For m≥ 2,

aFm = aFm+1−1 =

⌊
m+2

2

⌋
.

Proof. By (2), this holds for m = 2,3,4. We now proceed by
induction; for m ≥ 5, given all preceding cases, we have by
Lemma 1 that

aFm = a0 +aFm−1−1 = 1+
⌊m

2

⌋
=

⌊
m+2

2

⌋
aFm+1−1 = aFm−1−1 +a0 = aFm .

Using Lemma 2, we see that an = 2020 for n = F4040−
1.

Lemma 3. For Fm ≤ n < Fm+1, an ≥ aFm .

Proof. We again induct on m. By Lemma 2, we may assume
that

1≤ n−Fm ≤ (Fm+1−2)−Fm = Fm−1−2. (4)
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By (2), we may also assume n ≥ 6, so that m ≥ 5. We apply
Lemma 1, keeping in mind that

(n−Fm)+(Fm+1−n−1) = Fm−1−1.

If max{n−Fm,Fm+1− n− 1} ≥ Fm−2, then one of the sum-
mands in (5) is at least aFm−2 (by the induction hypothesis)
and the other is at least 2 (by (4) and the induction hypothe-
sis), so

an ≥ aFm−2 +2 =

⌊
m+4

2

⌋
.

Otherwise, min{n−Fm,Fm+1− n− 1} ≥ Fm−3 and so by the
induction hypothesis again,

an ≥ 2aFm−3 = 2
⌊

m−1
2

⌋
≥ 2

m−2
2
≥
⌊

m+2
2

⌋
.

Combining Lemma 2 and Lemma 3, we deduce that for
n > F4040− 1, we have an ≥ aF4040 = 2021. This com-
pletes the proof.

Second solution. We again start with a computation of
some special values of an.

Lemma 1. For all m≥ 1,

aFm−1 =

⌊
m+1

2

⌋
Proof. We proceed by induction on m. The result holds for
m = 1 and m = 2 by (2). For m > 2, among the sets S counted
by aFm−1, by (1) the only one not containing m− 1 is S =
{1,2, . . . ,m−2}, and there are aFm−Fm−1−1 others. Therefore,

aFm−1 = aFm−Fm−1−1 +1

= aFm−2−1 +1 =

⌊
m−1

2

⌋
+1 =

⌊
m+1

2

⌋
.

Given an arbitrary positive integer n, define the set S0
as follows: start with the largest k1 for which Fk1 ≤ n,
then add the largest k2 for which Fk1 +Fk2 ≤ n, and so
on, stopping once ∑k∈S0

Fk = n. Then form the bitstring

sn = · · ·e1e0, ek =

{
1 k ∈ S0

0 k /∈ S0;

note that no two 1s in this string are consecutive. We
can thus divide sn into segments

tk1,`1 · · · tkr ,`r (ki, `i ≥ 1)

where the bitstring tk,` is given by

tk,` = (10)k(0)`

(that is, k repetitions of 10 followed by ` repetitions of
0). Note that `r ≥ 1 because e1 = e0 = 0.

For a = 1, . . . ,k and b = 0, . . . ,b(`− 1)/2c, we can re-
place tk,` with the string of the same length

(10)k−a(0)(1)2a−1(01)b10`−2b

to obtain a new bitstring corresponding to a set S with
∑k∈S Fk = n. Consequently,

an ≥
r

∏
i=1

(
1+ ki

⌊
`i +1

2

⌋)
. (5)

For integers k, `≥ 1, we have

1+ k
⌊
`+1

2

⌋
≥ k+

⌊
`+1

2

⌋
≥ 2.

Combining this with repeated use of the inequality

xy≥ x+ y (x,y≥ 2),

we deduce that

an ≥
r

∑
i=1

(
ki +

⌊
`i +1

2

⌋)
≥
⌊

1+∑
r
i=1(2ki + `i)

2

⌋
.

In particular, for any even m ≥ 2, we have an > m
2 for

all n≥ Fm. Taking m = 4040 yields the desired result.

Remark. It can be shown with a bit more work that
the set S0 gives the unique representation of n as a sum
of distinct Virahanka–Fibonacci numbers, no two con-
secutive; this is commonly called the Zeckendorf repre-
sentation of n, but was first described by Lekkerkerker.
Using this property, one can show that the lower bound
in (5) is sharp.

A6 The smallest constant M is π/4.

We start from the expression

fN(x) =
N

∑
n=0

1
2

(
2

2n+1
− 1

N +1

)
sin((2n+1)x). (6)

Note that if sin(x)> 0, then

N

∑
n=0

sin((2n+1)x) =
1
2i

N

∑
n=0

(ei(2n+1)x− e−i(2n+1)x)

=
1
2i

(
ei(2N+3)x− eix

e2ix−1
− e−i(2N+3)x− e−ix

e−2ix−1

)

=
1
2i

(
ei(2N+2)x−1

eix− e−ix − e−i(2N+2)x−1
e−ix− eix

)

=
1
2i

ei(2N+2)x + e−i(2N+2)x−2
eix− e−ix

=
2cos((2N +2)x)−2

2i(2isin(x))

=
1− cos((2N +2)x)

2sin(x)
≥ 0.
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We use this to compare the expressions of fN(x) and
fN+1(x) given by (6). For x ∈ (0,π) with sin((2N +
3)x) ≥ 0, we may omit the summand n = N + 1 from
fN+1(x) to obtain

fN+1(x)− fN(x)

≥ 1
2

(
1

N +1
− 1

N +2

) N

∑
n=0

sin((2n+1)x)≥ 0.

For x ∈ (0,π) with sin((2N + 3)x) ≤ 0, we may insert
the summand n = N +1 into fN+1(x) to obtain

fN+1(x)− fN(x)

≥ 1
2

(
1

N +1
− 1

N +2

)N+1

∑
n=0

sin((2n+1)x)≥ 0.

In either case, we deduce that for x ∈ (0,π), the se-
quence { fN(x)}N is nondecreasing.

Now rewrite (6) as

fN(x) =
N

∑
n=0

sin((2n+1)x)
2n+1

− 1− cos((2N +2)x)
4(N +1)sin(x)

(7)

and note that the last term tends to 0 as N→ ∞. Conse-
quently, limN→∞ fN(x) equals the sum of the series

∞

∑
n=0

1
2n+1

sin((2n+1)x),

which is the Fourier series for the “square wave” func-
tion defined on (−π,π] by

x 7→


−π

4 x ∈ (−π,0)
π

4 x ∈ (0,π)
0 x = 0,π

and extended periodically. Since this function is contin-
uous on (0,π), we deduce that the Fourier series con-
verges to the value of the function; that is,

lim
N→∞

fN(x) =
π

4
(x ∈ (0,π)).

This is enough to deduce the desired result as follows.
Since

fN(x+2π) = fN(x), fN(−x) =− fN(x),

it suffices to check the bound fN(x)≤ π for x∈ (−π,π].
For x = 0,π we have fN(x) = 0 for all N. For x ∈
(−π,0), the previous arguments imply that

0≥ f0(x)≥ f1(x)≥ ·· ·

For x ∈ (0,π), the previous arguments imply that

0≤ f0(x)≤ f1(x)≤ ·· · ≤
π

4

and the limit is equal to π/4. We conclude that fN(x)≤
M holds for M = π/4 but not for any smaller M, as
desired.

Remark. It is also possible to replace the use of the
convergence of the Fourier series with a more direct ar-
gument; it is sufficient to do this for x in a dense subset
of (0,π), such as the rational multiples of π .

Another alternative (described at https:
//how-did-i-get-here.com/2020-putnam-a6/)
is to deduce from (7) and a second geometric series
computation (omitted here) that

f ′N(x) =
N

∑
n=0

cos((2n+1)x)− d
dx

(
1− cos((2N +2)x)

4(N +1)sin(x)

)
=

sin((2N +2)x)
2sin(x)

− (2N +2)sin((2N +2)x)− cos(x)(1− cos((N +2)x)
4(N +1)sin(x)2

=
cos(x)(1− cos((N +2)x)

4(N +1)sin(x)2 ,

which is nonnegative for x ∈ (0,π/2] and nonpositive
for x ∈ [π/2,π). This implies that fN(x) always has a
global maximum at x = π/2, so it suffices to check the
convergence of the Fourier series for the square wave
at that point. This reduces to the Madhava–Gregory–
Newton series evaluation

1− 1
3
+

1
5
− 1

7
+ · · ·= arctan(1) =

π

4
.

B1 Note that

(1− x)(1− x2)(1− x4) · · ·(1− x1024) =
2047

∑
k=0

(−1)d(k)xk

and

x2016(1− x)(1− x2) · · ·(1− x16) =
2047

∑
k=2016

(−1)d(k)xk.

Applying x d
dx to both sides of each of these two equa-

tions three times, and then setting x = 1, shows that

2047

∑
k=0

(−1)d(k)k3 =
2047

∑
k=2016

(−1)d(k)k3 = 0,

and therefore

2015

∑
k=1

(−1)d(k)k3 = 0.
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Hence we may write

S =
2020

∑
k=2016

(−1)d(k)k3

=
4

∑
k=0

(−1)d(k)(k+2016)3

≡ (−4)3 +(−1)(−3)3 +(−1)(−2)3 +(1)(−1)3

=−64+27+8−1
≡−30≡ 1990 (mod 2020).

Remark. The function d(n) appears in the OEIS as
sequence A000120.

B2 We refer to this two-player game, with n holes and k
pegs, as the (n,k)-game. We will show that Alice has
a winning strategy for the (n,k)-game if and only if at
least one of n and k is odd; otherwise Bob has a winning
strategy.

We reduce the first claim to the second as follows. If
n and k are both odd, then Alice can move the k-th peg
to the last hole; this renders the last hole, and the peg
in it, totally out of play, thus reducing the (n,k)-game
to the (n− 1,k− 1)-game, for which Alice now has a
winning strategy by the second claim. Similarly, if n is
odd but k is even, then Alice may move the first peg to
the (k+1)-st hole, removing the first hole from play and
reducing the (n,k)-game to the (n−1,k) game. Finally,
if n is even but k is odd, then Alice can move the first
peg to the last hole, taking the first and last holes, and
the peg in the last hole, out of play, and reducing the
(n,k)-game to the (n−2,k−1)-game.

We now assume n and k are both even and describe a
winning strategy for the (n,k)-game for Bob. Subdivide
the n holes into n/2 disjoint pairs of adjacent holes. Call
a configuration of k pegs good if for each pair of holes,
both or neither is occupied by pegs, and note that the
starting position is good. Bob can ensure that after each
of his moves, he leaves Alice with a good configuration:
presented with a good configuration, Alice must move
a peg from a pair of occupied holes to a hole in an un-
occupied pair; then Bob can move the other peg from
the first pair to the remaining hole in the second pair,
resulting in another good configuration. In particular,
this ensures that Bob always has a move to make. Since
the game must terminate, this is a winning strategy for
Bob.

B3 Let f (δ ) denote the desired expected value of Z as a
function of δ . We prove that f (δ ) = 1− log(δ ), where
log denotes natural logarithm.

For c ∈ [0,1], let g(δ ,c) denote the expected value of
Z given that x1 = c, and note that f (δ ) =

∫ 1
0 g(δ ,c)dc.

Clearly g(δ ,c) = 1 if c < δ . On the other hand, if c ≥
δ , then g(δ ,c) is 1 more than the expected value of Z
would be if we used the initial condition x0 = c rather
than x0 = 1. By rescaling the interval [0,c] linearly to

[0,1] and noting that this sends δ to δ/c, we see that
this latter expected value is equal to f (δ/c). That is,
for c≥ δ , g(δ ,c) = 1+ f (δ/c). It follows that we have

f (δ ) =
∫ 1

0
g(δ ,c)dc

= δ +
∫ 1

δ

(1+ f (δ/c))dc = 1+
∫ 1

δ

f (δ/c)dc.

Now define h : [1,∞)→ R by h(x) = f (1/x); then we
have

h(x) = 1+
∫ 1

1/x
h(cx)dc = 1+

1
x

∫ x

1
h(c)dc.

Rewriting this as xh(x)− x =
∫ x

1 h(c)dc and differenti-
ating with respect to x gives h(x)+ xh′(x)− 1 = h(x),
whence h′(x) = 1/x and so h(x) = log(x)+C for some
constant C. Since h(1) = f (1) = 1, we conclude that
C = 1, h(x) = 1+ log(x), and finally f (δ ) = 1− log(δ ).
This gives the claimed answer.

B4 The answer is 1
4040 . We will show the following more

general fact. Let a be any nonzero number and define
q(v) = 1+∑

2n−1
j=1 as j ; then the average of 1

q(v) over all

v ∈Vn is equal to 1
2n , independent of a.

Let Wn denote the set of (2n)-tuples w = (w1, . . . ,w2n)
such that n of the wi’s are equal to +1 and the other
n are equal to −1. Define a map φ : Wn → Wn by
φ(w1,w2, . . . ,w2n) = (w2, . . . ,w2n,w1); that is, φ moves
the first entry to the end. For w ∈Wn, define the orbit
of w to be the collection of elements of Wn of the form
φ k(w), k ≥ 1, where φ k denotes the k-th iterate of φ ,
and note that φ 2n(w) = w. Then Wn is a disjoint union
of orbits. For a given w ∈Wn, the orbit of w consists
of w,φ(w), . . . ,φ m−1(w), where m is the smallest posi-
tive integer with φ m(w) = w; the list φ(w), . . . ,φ 2n(w)
runs through the orbit of w completely 2n/m times, with
each element of the orbit appearing the same number of
times.

Now define the map f : Wn → Vn by f (w) = v =

(s0, . . . ,s2n) with s j = ∑
j
i=1 wi; this is a one-to-one cor-

respondence between Wn and Vn, with the inverse map
given by w j = s j− s j−1 for j = 1, . . . ,2n. We claim that
for any w ∈Wn, the average of 1

q(v) , where v runs over
vectors in the image of the orbit of w under f , is equal
to 1

2n . Since Wn is a disjoint union of orbits, Vn is a dis-
joint union of the images of these orbits under f , and it
then follows that the overall average of 1

q(v) over v ∈Vn

is 1
2n .

To prove the claim, we compute the average of
1

q( f (φ k(w)))
over k = 1, . . . ,2n; since φ k(w) for k =

1, . . . ,2n runs over the orbit of w with each element in
the orbit appearing equally, this is equal to the desired
average. Now if we adopt the convention that the in-
dices in wi are considered mod 2n, so that w2n+i = wi
for all i, then the i-th entry of φ k(w) is wi+k; we can
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then define s j = ∑
j
i=1 wi for all j ≥ 1, and s2n+i = si for

all i since ∑
2n
i=1 wi = 0. We now have

q( f (φ k(w))) =
2n

∑
j=1

a∑
j
i=1 wi+k =

2n

∑
j=1

as j+k−sk = a−sk
2n

∑
j=1

as j .

Thus

2n

∑
k=1

1
q( f (φ k(w)))

=
2n

∑
k=1

ask

∑
2n
j=1 as j

= 1,

and the average of 1
q( f (φ k(w)))

over k = 1, . . . ,2n is 1
2n ,

as desired.

B5 First solution. (by Mitja Mastnak) It will suffice to
show that for any z1,z2,z3,z4 ∈ C of modulus 1 such
that |3− z1− z2− z3− z4| = |z1z2z3z4|, at least one of
z1,z2,z3 is equal to 1.

To this end, let z1 = eαi,z2 = eβ i,z3 = eγi and

f (α,β ,γ) = |3− z1− z2− z3|2−|1− z1z2z3|2.

A routine calculation shows that

f (α,β ,γ) = 10−6cos(α)−6cos(β )−6cos(γ)
+2cos(α +β + γ)+2cos(α−β )

+2cos(β − γ)+2cos(γ−α).

Since the function f is continuously differentiable, and
periodic in each variable, f has a maximum and a min-
imum and it attains these values only at points where
∇ f = (0,0,0). A routine calculation now shows that

∂ f
∂α

+
∂ f
∂β

+
∂ f
∂γ

= 6(sin(α)+ sin(β )+ sin(γ)− sin(α +β + γ))

= 24sin
(

α +β

2

)
sin
(

β + γ

2

)
sin
(

γ +α

2

)
.

Hence every critical point of f must satisfy one of
z1z2 = 1, z2z3 = 1, or z3z1 = 1. By symmetry, let us
assume that z1z2 = 1. Then

f = |3−2Re(z1)− z3|2−|1− z3|2;

since 3−2Re(z1)≥ 1, f is nonnegative and can be zero
only if the real part of z1, and hence also z1 itself, is
equal to 1.

Remark. If z1 = 1, we may then apply the same logic to
deduce that one of z2,z3,z4 is equal to 1. If z1 = z2 = 1,
we may factor the expression

3− z1− z2− z3− z4 + z1z2z3z4

as (1 − z3)(1 − z4) to deduce that at least three of
z1, . . . ,z4 are equal to 1.

Second solution. We begin with an “unsmoothing”
construction.

Lemma 1. Let z1,z2,z3 be three distinct complex numbers
with |z j| = 1 and z1 + z2 + z3 ∈ [0,+∞). Then there exist an-
other three complex numbers z′1,z

′
2,z
′
3, not all distinct, with

|z′j|= 1 and

z′1 + z′2 + z′3 ∈ (z1 + z2 + z3,+∞), z1z2z3 = z′1z′2z′3.

Proof. Write z j = eiθ j for j = 1,2,3. We are then trying to
maximize the target function

cosθ1 + cosθ2 + cosθ3

given the constraints

0 = sinθ1 + sinθ2 + sinθ3

∗= θ1 +θ2 +θ3

Since z1,z2,z3 run over a compact region without boundary,
the maximum must be achieved at a point where the matrixsinθ1 sinθ2 sinθ3

cosθ1 cosθ2 cosθ3
1 1 1


is singular. Since the determinant of this matrix computes (up
to a sign and a factor of 2) the area of the triangle with ver-
tices z1,z2,z3, it cannot vanish unless some two of z1,z2,z3 are
equal. This proves the claim.

For n a positive integer, let Hn be the hypocycloid curve
in C given by

Hn = {(n−1)z+ z−n+1 : z ∈ C, |z|= 1}.

In geometric terms, Hn is the curve traced out by a
marked point on a circle of radius 1 rolling one full cir-
cuit along the interior of a circle of radius 1, starting
from the point z = 1. Note that the interior of Hn is not
convex, but it is star-shaped: it is closed under multi-
plication by any number in [0,1].

Lemma 2. For n a positive integer, let Sn be the set of complex
numbers of the form w1 + · · ·+wn for some w1, . . . ,wn ∈ C
with |w j| = 1 and w1 · · ·wn = 1. Then for n ≤ 4, Sn is the
closed interior of Hn (i.e., including the boundary).

Proof. By considering n-tuples of the form (z, . . . ,z,z−n+1),
we see that Hn ⊆ Sn. It thus remains to check that Sn lies
in the closed interior of Hn. We ignore the easy cases n = 1
(where H1 = S1 = {1}) and n = 2 (where H2 = S2 = [−2,2])
and assume hereafter that n≥ 3.

By Lemma 1, for each ray emanating from the the origin, the
extreme intersection point of Sn with this ray (which exists be-
cause Sn is compact) is achieved by some tuple (w1, . . . ,wn)
with at most two distinct values. For n = 3, this immediately
implies that this point lies on Hn. For n = 4, we must also
consider tuples consisting of two pairs of equal values; how-
ever, these only give rise to points in [−4,4], which are indeed
contained in H4.
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Turning to the original problem, consider z1, . . . ,z4 ∈C
with |z j|= 1 and

3− z1− z2− z3− z4 + z1z2z3z4 = 0;

we must prove that at least one z j is equal to 1. Let z
be any fourth root of z1z2z3z4, put w j = z j/z, and put
s = w1 + · · ·+w4. In this notation, we have

s = z3 +3z−1,

where s ∈ S4 and z3 +3z−1 ∈ H4. That is, s is a bound-
ary point of S4, so in particular it is the extremal point
of S4 on the ray emanating from the origin through s.
By Lemma 1, this implies that w1, . . . ,w4 take at most
two distinct values. As in the proof of Lemma 2, we
distinguish two cases.

– If w1 = w2 = w3, then

w−3
1 +3w1 = z3 +3z−1.

From the geometric description of Hn, we see that
this forces w−1

1 = z and hence z1 = 1.

– If w1 =w2 and w3 =w4, then s∈ [−4,4] and hence
s =±4. This can only be achieved by taking w1 =
· · · = w4 = ±1; since s = z3 + 3z−1 we must also
have z =±1, yielding z1 = · · ·= z4 = 1.

Remark. With slightly more work, one can show that
Lemma 2 remains true for all positive integers n. The
missing extra step is to check that for m = 1, . . . ,n−1,
the hypocycloid curve

{mzn−m +(n−m)z−m : z ∈ C, |z|= 1}

is contained in the filled interior of Hn. In fact, this
curve only touches Hn at points where they both touch
the unit circle (i.e., at d-th roots of unity for d =
gcd(m,n)); this can be used to formulate a correspond-
ing version of the original problem, which we leave to
the reader.

B6 First solution. Define the sequence {ak}∞
k=0 by ak =

bk(
√

2 − 1)c. The first few terms of the sequence
{(−1)ak} are

1,1,1,−1,−1,1,1,1,−1,−1,1,1,1, . . . .

Define a new sequence {ci}∞
i=0 given by 3,2,3,2,3, . . .,

whose members alternately are the lengths of the clus-
ters of consecutive 1’s and the lengths of the clusters of
consecutive −1’s in the sequence {(−1)ak}. Then for
any i, c0 + · · ·+ ci is the number of nonnegative inte-
gers k such that bk(

√
2− 1)c is strictly less than i+ 1,

i.e., such that k(
√

2− 1) < i+ 1. This last condition is
equivalent to k < (i+1)(

√
2+1), and we conclude that

c0 + · · ·+ ci = b(i+1)(
√

2+1)c+1

= 2i+3+ b(i+1)(
√

2−1)c.

Thus for i > 0,

ci = 2+ b(i+1)(
√

2−1)c−bi(
√

2−1)c. (8)

Now note that b(i+1)(
√

2−1)c−bi(
√

2−1)c is either
1 or 0 depending on whether or not there is an integer j
between i(

√
2− 1) and (i+ 1)(

√
2− 1): this condition

is equivalent to i < j(
√

2+1)< i+1. That is, for i > 0,

ci =

{
3 if i = b j(

√
2+1)c for some integer j,

2 otherwise;
(9)

by inspection, this also holds for i = 0.

Now we are asked to prove that

n

∑
k=0

(−1)ak ≥ 1 (10)

for all n ≥ 1. We will prove that if (10) holds for all
n≤ N, then (10) holds for all n≤ 4N; since (10) clearly
holds for n = 1, this will imply the desired result.

Suppose that (10) holds for n ≤ N. To prove that (10)
holds for n ≤ 4N, it suffices to show that the partial
sums

m

∑
i=0

(−1)ici

of the sequence {(−1)ak} are positive for all m such
that c0 + · · ·+ cm−1 < 4N + 3, since these partial sums
cover all clusters through a4N . Now if c0+ · · ·+cm−1 <
4N + 3, then since each ci is at least 2, we must have
m < 2N +2. From (9), we see that if m is odd, then

m

∑
i=0

(−1)ici =
m

∑
i=0

(−1)i(ci−2)

= ∑
j
(−1)b j(

√
2+1)c = ∑

j
(−1)a j

where the sum in j is over nonnegative integers j with
j(
√

2+1)< m, i.e., j < m(
√

2−1); since m(
√

2−1)<
m/2 < N+1, ∑ j(−1)a j is positive by the induction hy-
pothesis. Similarly, if m is even, then ∑

m
i=0(−1)ici =

cm +∑ j(−1)a j and this is again positive by the induc-
tion hypothesis. This concludes the induction step and
the proof.

Remark. More generally, using the same proof we can
establish the result with

√
2−1 replaced by

√
n2 +1−n

for any positive integer n.

Second solution. For n≥ 0, define the function

f (n) =
n

∑
k=1

(−1)bk(
√

2−1)c

with the convention that f (0) = 0.

Define the sequence q0,q1, . . . by the initial conditions

q0 = 0,q1 = 1
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and the recurrence relation

q j = 2q j−1 +q j−2.

This is OEIS sequence A000129; its first few terms are

0,1,2,5,12,29,70, . . . .

Note that q j ≡ j (mod 2).

We now observe that the fractions q j−1/q j are the con-
vergents of the continued fraction expansion of

√
2−1.

This implies the following additional properties of the
sequence.

– For all j ≥ 0,

q2 j

q2 j+1
<
√

2−1 <
q2 j+1

q2 j+2
.

– There is no fraction r/s with s < q j + q j+1 such
that r

s separates
√

2−1 from q j/q j−1. In particu-
lar, for k < q j +q j+1,

bk(
√

2−1)c=
⌊

kq j−1

q j

⌋
except when j is even and k ∈ {q j,2q j}, in which
case they differ by 1.

We use this to deduce a “self-similarity” property of
f (n).

Lemma 1. Let n, j be nonnegative integers with q j ≤ n< q j+
q j+1.

(a) If j is even, then

f (n) = f (q j)− f (n−q j).

(b) If j is odd, then

f (n) = f (n−q j)+1.

Proof. If j is even, then

f (n) = f (q j)+
n

∑
k=q j+1

(−1)bk(
√

2−1)c

= f (q j)+
n

∑
k=q j+1

(−1)bkq j−1/q jc+∗

where ∗ equals 2 if n≥ 2q j (accounting for the term k = 2q j)
and 0 otherwise. Continuing,

f (n) = f (q j)+
n−q j

∑
1

(−1)q j−1+bkq j−1/q jc+∗

= f (q j)−
n−q j

∑
1

(−1)q j−1+bk(
√

2−1)c

= f (q j)− f (n−q j).

If j is odd, then

f (n) = f (n−q j)+
n

∑
k=n−q j+1

(−1)bk(
√

2−1)c

= f (n−q j)−2+
n

∑
k=n−q j+1

(−1)bkq j−1/q jc.

Since

b(k+q j)q j−1/q jc ≡ bkq j−1/q jc (mod 2),

we also have

f (n) = f (n−q j)+
q j

∑
k=1

(−1)bkq j−1/q jc.

In this sum, the summand indexed by q j contributes 1, and the
summands indexed by k and q j− k cancel each other out for
k = 1, . . . ,q j−1. We thus have

f (n) = f (n−q j)+1

as claimed.

From Lemma 1, we have

f (q2 j) = f (q2 j−2q2 j−1)+2 = f (q2 j−2)+2.

By induction on j, f (q2 j) = 2 j for all j ≥ 0; by simi-
lar logic, we have f (n) ≤ f (q2 j) = 2 j for all n ≤ q2 j.
We can now apply Lemma 1 once more to deduce that
f (n)≥ 0 for all j.

Remark. As a byproduct of the first solution, we con-
firm the equality of two sequences that were entered
separately in the OEIS but conjectured to be equal:
A097509 (indexed from 0) matches the definition of
{ci}, while A276862 (indexed from 1) matches the
characterization of {ci−1} given by (8).

Remark. We can confirm an additional conjecture
from the OEIS by showing that in the notation of the
first solution, the sequence a(n) = cn+1 indexed from
1 equals A082844: “Start with 3,2 and apply the rule
a(a(1) + a(2) + · · ·+ a(n)) = a(n), fill in any unde-
fined terms with a(t) = 2 if a(t−1) = 3 and a(t) = 3 if
a(t−1) = 2.” We first verify the recursion. By (10),

a(1)+ · · ·+a(n) = c0 + · · ·+ cn+1− c0− c1

= b(n+2)(
√

2+1)c−4.

From (9), we see that a(a(1) + · · ·+ a(n) + 3) = 3.
Consequently, exactly one of a(a(1) + · · ·+ a(n)) or
a(a(1)+ · · ·+ a(n)+ 1) equals 3, and it is the former
if and only if

b(n+2)(
√

2+1)c−3 = b(n+1)(
√

2+1)c,

i.e., if and only if a(n) = cn+1 = 3.
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We next check that the definition correctly fills in val-
ues not determined by the recursion. If a(n) = 3, then
a(a(1)+ · · ·+a(n)+1) = 2 because no two consecutive
values can both equal 3; by the same token, a(n+1) = 2
and so there are no further values to fill in. If a(n) = 2,
then a(a(1)+ · · ·+a(n)+1) = 3 by the previous para-
graph; this in turn implies a(a(1)+ · · ·+a(n)+2) = 2,
at which point there are no further values to fill in.

Remark. We can confirm an additional conjecture from
the OEIS by showing that in the notation of the first
solution, the sequence {ci} equals A245219. This de-
pends on some additional lemmas.

Lemma 2. Let k be a positive integer. Then{
i(
√

2−1)
}
<
{

k(
√

2−1)
}

(i = 0, . . . ,k−1)

if and only if k = q2 j or k = q2 j +q2 j−1 for some j > 0.

Proof. For each j > 0, we have

q2 j−2

q2 j−1
<

q2 j

q2 j+1
=

q2 j−1 +2q2 j−2

q2 j +2q2 j−1
<
√

2−1<
q2 j+1

q2 j+2
<

q2 j−1

q2 j
.

We also have

q2 j−2

q2 j−1
<

q2 j

q2 j+1
=

q2 j−1 +2q2 j−2

q2 j +2q2 j−1
<

q2 j−1 +q2 j−2

q2 j +q2 j−1
<

q2 j−1

q2 j
.

Moreover, q2 j−1+q2 j−2
q2 j+q2 j−1

cannot be less than
√

2− 1, or else it

would be a better approximation to
√

2− 1 than the conver-
gent q2 j/q2 j+1 with q2 j+1 > q2 j +q2 j−1. By the same token,
q2 j−1+q2 j−2

q2 j+q2 j−1
cannot be a better approximation to

√
2− 1 than

q2 j+1/q2 j+2. We thus have

q2 j

q2 j+1
<
√

2−1 <
q2 j+1

q2 j+2
<

q2 j−1 +q2 j−2

q2 j +q2 j−1
<

q2 j−1

q2 j
.

From this, we see that

{q2 j(
√

2−1)}< {(q2 j+q2 j−1)(
√

2−1)}< {q2 j+2(
√

2−1)}.

It will now suffice to show that for q2 j < k < q2 j +q2 j−1,

{k(
√

2−1)}< {q2 j(
√

2−1)}

while for q2 j +q2 j−1 < k < q2 j+2,

{k(
√

2−1)}< {(q2 j +q2 j−1)(
√

2−1)}.

The first of these assertion is an immediate consequence of the
“best approximation” property of the convergent q2 j−1/q2 j.
As for the second assertion, note that for k in this range, no
fraction with denominator k can lie strictly between q2 j

q2 j+1
and

q2 j−1+q2 j−2
q2 j+q2 j−1

because these fractions are consecutive terms in a
Farey sequence (that is, their difference has numerator 1 in
lowest terms); in particular, such a fraction cannot be a better
upper approximation to

√
2−1 than q2 j−1+q2 j−2

q2 j+q2 j−1
.

Lemma 3. For j > 0, the sequence c0, . . . ,c j−1 is palindromic
if and only if

j = q2i+1 or j = q2i+1 +q2i+2

for some nonnegative integer i. (That is, j must belong to one
of the sequences A001653 or A001541.) In particular, j must
be odd.

Proof. Let j be an index for which {c0, . . . ,c j−1} is palin-
dromic. In particular, c j−1 = c0 = 3, so from (9), we see that
j− 1 = bk(

√
2+ 1)c for some k. Given this, the sequence is

palindromic if and only if

bi(
√

2+1)c+b(k−i)(
√

2+1)c= bk(
√

2+1)c (i= 0, . . . ,k),

or equivalently{
i(
√

2−1)
}
+
{
(k− i)(

√
2−1)

}
=
{

k(
√

2−1)
}

(i= 0, . . . ,k)

where the braces denote fractional parts. This holds if and
only if{

i(
√

2−1)
}
<
{

k(
√

2−1)
}

(i = 0, . . . ,k−1),

so we may apply Lemma 2 to identify k and hence j.

Lemma 4. For j > 0, if there exists a positive integer k such
that

(c0, . . . ,c j−2) = (ck, . . . ,ck+ j−2) but c j−1 6= ck+ j−1,

then

j = q2i+1 or j = q2i+1 +q2i+2

for some nonnegative integer i. In particular, j is odd and (by
Lemma 3) the sequence (c0, . . . ,c j−1) is palindromic.

Proof. Since the sequence {ci} consists of 2s and 3s, we
must have {c j−1,ck+ j−1} = {2,3}. Since each pair of 3s is
separated by either one or two 2s, we must have c j−2 = 2,
c j−3 = 3. In particular, by (9) there is an integer i for which
j−3 = b(i−1)(

√
2+1)c; there is also an integer l such that

k = bl(
√

2+1)c. By hypothesis, we have

b(h+ l)(
√

2+1)c= bh(
√

2+1)c+ bl(
√

2+1)c

for h = 0, . . . , i−1 but not for h = i. In other words,{
(h+ l)(

√
2−1)

}
=
{

h(
√

2−1)
}
+
{

l(
√

2−1)
}

for h = 0, . . . , i− 1 but not for h = i. That is, {h(
√

2− 1)}
belongs to the interval (0,1−{l(

√
2−1)}) for h = 0, . . . , i−1

but not for h = i; in particular,{
h(
√

2−1)
}
<
{

i(
√

2−1)
}

(h = 0, . . . , i−1),

so we may apply Lemma 2 to identify i and hence j.
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The sequence A245219 is defined as the sequence of
coefficients of the continued fraction of sup{bi} where
b1 = 1 and for i > 1,

bi+1 =

{
bi +1 if i = b j

√
2c for some integer j;

1/bi otherwise.

It is equivalent to take the supremum over values of i
for which bi+1 = 1/bi; by Beatty’s theorem, this occurs
precisely when i = b j(2+

√
2)c for some integer j. In

this case, bi has continued fraction

[c j−1, . . . ,c0].

Let K be the real number with continued fraction
[c0,c1, . . . ]; we must show that K = sup{bi}. In one
direction, by Lemma 3, there are infinitely many values
of i for which [c j−1, . . . ,c0] = [c0, . . . ,c j−1]; the corre-
sponding values bi accumulate at K, so K ≤ sup{bi}.
In the other direction, we show that K ≥ sup{bi} as

follows. It is enough to prove that K ≥ bi when i =
b j(2+

√
2)c for some integer j.

– If c0, . . . ,c j−1 is palindromic, then Lemma 3 im-
plies that j is odd; that is, the continued fraction
[c j−1, . . . ,c0] has odd length. In this case, replac-
ing the final term c0 = c j−1 by the larger quantity
[c j−1,c j, . . . ] increases the value of the continued
fraction.

– If c0, . . . ,c j−1 is not palindromic, then there is
a least integer k ∈ {0, . . . , j− 1} such that ck 6=
c j−1−k. By Lemma 3, the sequence c0,c1, . . .
has arbitrarily long palindromic initial segments,
so the sequence (c j−1, . . . ,c j−1−k) also occurs as
ch, . . . ,ch+k for some h > 0. By Lemma 4, k is
even and ck = 3 > 2 = c j−1−k; hence in the con-
tinued fraction for bi, replacing the final segment
c j−1−k, . . . ,c0 by ck,ck+1, . . . increases the value.



The 82nd William Lowell Putnam Mathematical Competition
Saturday, December 4, 2021

A1 A grasshopper starts at the origin in the coordinate plane
and makes a sequence of hops. Each hop has length 5,
and after each hop the grasshopper is at a point whose
coordinates are both integers; thus, there are 12 possible
locations for the grasshopper after the first hop. What is
the smallest number of hops needed for the grasshopper
to reach the point (2021,2021)?

A2 For every positive real number x, let

g(x) = lim
r→0

((x+1)r+1− xr+1)
1
r .

Find limx→∞
g(x)

x .

A3 Determine all positive integers N for which the sphere

x2 + y2 + z2 = N

has an inscribed regular tetrahedron whose vertices
have integer coordinates.

A4 Let

I(R)=
∫∫

x2+y2≤R2

(
1+2x2

1+ x4 +6x2y2 + y4 −
1+ y2

2+ x4 + y4

)
dxdy.

Find

lim
R→∞

I(R),

or show that this limit does not exist.

A5 Let A be the set of all integers n such that 1≤ n≤ 2021
and gcd(n,2021) = 1. For every nonnegative integer j,
let

S( j) = ∑
n∈A

n j.

Determine all values of j such that S( j) is a multiple of
2021.

A6 Let P(x) be a polynomial whose coefficients are all ei-
ther 0 or 1. Suppose that P(x) can be written as a prod-
uct of two nonconstant polynomials with integer coeffi-
cients. Does it follow that P(2) is a composite integer?

B1 Suppose that the plane is tiled with an infinite checker-
board of unit squares. If another unit square is dropped
on the plane at random with position and orientation in-
dependent of the checkerboard tiling, what is the prob-
ability that it does not cover any of the corners of the
squares of the checkerboard?

B2 Determine the maximum value of the sum

S =
∞

∑
n=1

n
2n (a1a2 · · ·an)

1/n

over all sequences a1,a2,a3, · · · of nonnegative real
numbers satisfying

∞

∑
k=1

ak = 1.

B3 Let h(x,y) be a real-valued function that is twice con-
tinuously differentiable throughout R2, and define

ρ(x,y) = yhx− xhy.

Prove or disprove: For any positive constants d and r
with d > r, there is a circle S of radius r whose cen-
ter is a distance d away from the origin such that the
integral of ρ over the interior of S is zero.

B4 Let F0,F1, . . . be the sequence of Fibonacci numbers,
with F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for n ≥ 2.
For m > 2, let Rm be the remainder when the product
∏

Fm−1
k=1 kk is divided by Fm. Prove that Rm is also a Fi-

bonacci number.

B5 Say that an n-by-n matrix A = (ai j)1≤i, j≤n with integer
entries is very odd if, for every nonempty subset S of
{1,2, . . . ,n}, the |S|-by-|S| submatrix (ai j)i, j∈S has odd
determinant. Prove that if A is very odd, then Ak is very
odd for every k ≥ 1.

B6 Given an ordered list of 3N real numbers, we can trim
it to form a list of N numbers as follows: We divide
the list into N groups of 3 consecutive numbers, and
within each group, discard the highest and lowest num-
bers, keeping only the median.

Consider generating a random number X by the follow-
ing procedure: Start with a list of 32021 numbers, drawn
independently and uniformly at random between 0 and
1. Then trim this list as defined above, leaving a list
of 32020 numbers. Then trim again repeatedly until just
one number remains; let X be this number. Let µ be the
expected value of |X− 1

2 |. Show that

µ ≥ 1
4

(
2
3

)2021

.
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Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A1 The answer is 578.
Each hop corresponds to adding one of the 12 vectors
(0,±5), (±5,0), (±3,±4), (±4,±3) to the position
of the grasshopper. Since (2021,2021) = 288(3,4) +
288(4,3) + (0,5) + (5,0), the grasshopper can reach
(2021,2021) in 288+288+1+1 = 578 hops.
On the other hand, let z = x+ y denote the sum of the x
and y coordinates of the grasshopper, so that it starts at
z = 0 and ends at z = 4042. Each hop changes the sum
of the x and y coordinates of the grasshopper by at most
7, and 4042 > 577× 7; it follows immediately that the
grasshopper must take more than 577 hops to get from
(0,0) to (2021,2021).
Remark. This solution implicitly uses the distance
function

d((x1,y1),(x2,y2)) = |x1− x2|+ |y1− y2|

on the plane, variously called the taxicab metric, the
Manhattan metric, or the L1-norm (or `1-norm).

A2 The limit is e.
First solution. By l’Hôpital’s Rule, we have

lim
r→0

log((x+1)r+1− xr+1)

r

= lim
r→0

d
dr

log((x+1)r+1− xr+1)

= lim
r→0

(x+1)r+1 log(x+1)− xr+1 logx
(x+1)r+1− xr+1

= (x+1) log(x+1)− x logx,

where log denotes natural logarithm. It follows that
g(x) = e(x+1) log(x+1)−x logx = (x+1)x+1

xx . Thus

lim
x→∞

g(x)
x

=

(
lim
x→∞

x+1
x

)
·
(

lim
x→∞

(
1+

1
x

)x)
= 1 · e = e.

Second solution. We first write

lim
x→∞

g(x)
x

= lim
x→∞

lim
r→0

((x+1)r+1− xr+1)1/r

x

= lim
x→∞

lim
r→0

((r+1)xr +O(xr−1))1/r

x
.

We would like to interchange the order of the limits, but
this requires some justification. Using Taylor’s theorem
with remainder, for x≥ 1, r ≤ 1 we can bound the error
term O(xr−1) in absolute value by (r + 1)rxr−1. This
means that if we continue to rewrite the orginial limit as

lim
r→0

lim
x→∞

(r+1+O(x−1))1/r,

the error term O(x−1) is bounded in absolute value by
(r + 1)r/x. For x ≥ 1, r ≤ 1 this quantity is bounded
in absolute value by (r+ 1)r, independently of x. This
allows us to continue by interchanging the order of the
limits, obtaining

lim
r→0

lim
x→∞

(r+1+O(x−1))1/r

= lim
r→0

(r+1)1/r

= lim
s→∞

(1+1/s)s = e,

where in the last step we take s = 1/r.

A3 The integers N with this property are those of the form
3m2 for some positive integer m.

In one direction, for N = 3m2, the points

(m,m,m),(m,−m,−m),(−m,m,−m),(−m,−m,m)

form the vertices of a regular tetrahedron inscribed in
the sphere x2 + y2 + z2 = N.

Conversely, suppose that Pi = (xi,yi,zi) for i = 1, . . . ,4
are the vertices of an inscribed regular tetrahedron.
Then the center of this tetrahedron must equal the cen-
ter of the sphere, namely (0,0,0). Consequently, these
four vertices together with Qi = (−xi,−yi,−zi) for i =
1, . . . ,4 form the vertices of an inscribed cube in the
sphere. The side length of this cube is (N/3)1/2, so its
volume is (N/3)3/2; on the other hand, this volume also
equals the determinant of the matrix with row vectors
Q2−Q1,Q3−Q1,Q4−Q1, which is an integer. Hence
(N/3)3 is a perfect square, as then is N/3.

A4 The limit exists and equals
√

2
2 π log2.

We first note that we can interchange x and y to obtain

I(R)=
∫∫

x2+y2≤R2

(
1+2y2

1+ x4 +6x2y2 + y4 −
1+ x2

2+ x4 + y4

)
dxdy.

Averaging the two expressions for I(R) yields

I(R) =
∫∫

x2+y2≤R2
( f (x,y)−g(x,y))dxdy

where

f (x,y) =
1+ x2 + y2

1+ x4 +6x2y2 + y4

g(x,y) =
1+ x2/2+ y2/2

2+ x4 + y4 .
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Now note that

f (x,y) = 2g(x+ y,x− y).

We can thus write

I(R) =
∫∫

R2≤x2+y2≤2R2
g(x,y)dxdy.

To compute this integral, we switch to polar coordi-
nates:

I(R) =
∫ R
√

2

R

∫ 2π

0
g(r cosθ ,r sinθ)r dr dθ

=
∫ R
√

2

R

∫ 2π

0

1+ r2/2
2+ r4(1− (sin2 2θ)/2)

r dr dθ .

We rescale r to remove the factor of R from the limits
of integration:

I(R) =
∫ √2

1

∫ 2π

0

1+R2r2/2
2+R4r4(1− (sin2 2θ)/2)

R2r dr dθ .

Since the integrand is uniformly bounded for R� 0, we
may take the limit over R through the integrals to obtain

lim
R→∞

I(R) =
∫ √2

1

∫ 2π

0

r2/2
r4(1− (sin2 2θ)/2)

r dr dθ

=
∫ √2

1

dr
r

∫ 2π

0

1
2− sin2 2θ

dθ

= log
√

2
∫ 2π

0

1
1+ cos2 2θ

dθ

=
1
2

log2
∫ 2π

0

2
3+ cos4θ

dθ .

It thus remains to evaluate∫ 2π

0

2
3+ cos4θ

dθ = 2
∫

π

0

2
3+ cosθ

dθ .

One option for this is to use the half-angle substitution
t = tan(θ/2) to get∫

∞

−∞

4
3(1+ t2)+(1− t2)

dt =
∫

∞

−∞

2
2+ t2 dt

=
√

2arctan
(

x√
2

)∞

−∞

=
√

2π.

Putting this together yields the claimed result.

A5 The values of j in question are those not divisible by
either 42 or 46.

We first check that for p prime,

p−1

∑
n=1

n j ≡ 0 (mod p)⇔ j 6≡ 0 (mod p−1).

If j ≡ 0 (mod p− 1), then n j ≡ 1 (mod p) for each
n, so ∑

p−1
n=1 n j ≡ p−1 (mod p). If j 6≡ 0 (mod p−1),

we can pick a primitive root m modulo p, observe that
m j 6≡ 1 (mod p), and then note that

p−1

∑
n=1

n j ≡
p−1

∑
n=1

(mn) j = m j
p−1

∑
n=1

n j (mod p),

which is only possible if ∑
p−1
n=1 n j ≡ 0 (mod p).

We now note that the prime factorization of 2021 is 43×
47, so it suffices to determine when S( j) is divisible by
each of 43 and 47. We have

S( j)≡ 46
42

∑
n=1

n j (mod 43)

S( j)≡ 42
46

∑
n=1

n j (mod 47).

Since 46 and 42 are coprime to 43 and 47, respectively,
we have

S( j)≡ 0 (mod 43)⇔ j 6≡ 0 (mod 42)
S( j)≡ 0 (mod 47)⇔ j 6≡ 0 (mod 46).

This yields the claimed result.

A6 Yes, it follows that P(2) is a composite integer. (Note:
1 is neither prime nor composite.)

Write P(x) = a0 +a1x+ · · ·+anxn with ai ∈ {0,1} and
an = 1. Let α be an arbitrary root of P. Since P(α) = 0,
α cannot be a positive real number. In addition, if α 6= 0
then

|1+an−1α
−1|= |an−2α

−2 + · · ·+a0α
−n|

≤ |α|−2 + · · ·+ |α|−n.

If α 6= 0 and Re(α)≥ 0, then Re(1+an−1α−1)≥ 1 and

1≤ |α|−2 + · · ·+ |α|−n <
|α|−2

1−|α|−1 ;

this yields |α|< (1+
√

5)/2.

By the same token, if α 6= 0 then

|1+an−1α
−1 +an−2α

−2| ≤ |α|−3 + · · ·+ |α|−n.

We deduce from this that Re(α)≤ 3/2 as follows.

– There is nothing to check if Re(α)≤ 0.

– If the argument of α belongs to [−π/4,π/4], then
Re(α−1),Re(α−2)≥ 0, so

1≤ |α|−3 + · · ·+ |α|−n <
|α|−3

1−|α|−1 .

Hence |α|−1 is greater than the unique positive
root of x3 + x−1, which is greater than 2/3.
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– Otherwise, α has argument in (−π/2,π/4) ∪
(π/4,π/2), so the bound |α| < (1+

√
5)/2 im-

plies that Re(α)< (1+
√

5)/(2
√

2)< 3/2.

By hypothesis, there exists a factorization P(x) =
Q(x)R(x) into two nonconstant integer polynomials,
which we may assume are monic. Q(x+3/2) is a prod-
uct of polynomials, each of the form x−α where α is a
real root of P or of the form(

x+
3
2
−α

)(
x+

3
2
−α

)
= x2 +2Re

(
3
2
−α

)
x+
∣∣∣∣32 −α

∣∣∣∣2
where α is a nonreal root of P. It follows that Q(x+
3/2) has positive coefficients; comparing its values at
x = 1/2 and x = −1/2 yields Q(2) > Q(1). We can-
not have Q(1)≤ 0, as otherwise the intermediate value
theorem would imply that Q has a real root in [1,∞);
hence Q(1) ≥ 1 and so Q(2) ≥ 2. Similarly R(2) ≥ 2,
so P(2) = Q(2)R(2) is composite.

Remark. A theorem of Brillhart, Filaseta, and Odlyzko
from 1981 states that if a prime p is written as ∑i aibi

in any base b≥ 2, the polynomial ∑i aixi is irreducible.
(The case b = 10 is an older result of Cohn.) The solu-
tion given above is taken from: Ram Murty, Prime num-
bers and irreducible polynomials, Amer. Math. Monthly
109 (2002), 452–458). The final step is due to Pólya and
Szegő.

B1 The probability is 2− 6
π

.

Set coordinates so that the original tiling includes the
(filled) square S = {(x,y) : 0 ≤ x,y ≤ 1}. It is then
equivalent to choose the second square by first choosing
a point uniformly at random in S to be the center of the
square, then choosing an angle of rotation uniformly at
random from the interval [0,π/2].

For each θ ∈ [0,π/2], circumscribe a square Sθ around
S with angle of rotation θ relative to S; this square has
side length sinθ + cosθ . Inside Sθ , draw the smaller
square S′

θ
consisting of points at distance greater than

1/2 from each side of Sθ ; this square has side length
sinθ + cosθ −1.

We now verify that a unit square with angle of rotation
θ fails to cover any corners of S if and only if its center
lies in the interior of S′

θ
. In one direction, if one of the

corners of S is covered, then that corner lies on a side of
Sθ which meets the dropped square, so the center of the
dropped square is at distance less than 1/2 from that
side of Sθ . To check the converse, note that there are
two ways to dissect the square Sθ into the square S′

θ
plus

four sinθ × cosθ rectangles. If θ 6= 0,π/4, then one of
these dissections has the property that each corner P of
S appears as an interior point of a side (not a corner) of
one of the rectangles R. It will suffice to check that if the
center of the dropped square is in R, then the dropped

square covers P; this follows from the fact that sinθ and
cosθ are both at most 1.

It follows that the conditional probability, given that the
angle of rotation is chosen to be θ , that the dropped
square does not cover any corners of S is (sinθ +
cosθ − 1)2. We then compute the original probability
as the integral

2
π

∫
π/2

0
(sinθ + cosθ −1)2 dθ

=
2
π

∫
π/2

0
(2+ sin2θ −2sinθ −2cosθ)dθ

=
2
π

(
2θ − 1

2
cos2θ +2cosθ −2sinθ

)π/2

0

=
2
π
(π +1−2−2) = 2− 6

π
.

Remark: Noam Elkies has some pictures illustrating
this problem: image 1, image 2.

B2 The answer is 2/3.

By AM-GM, we have

2n+1(a1 · · ·an)
1/n =

(
(4a1)(42a2) · · ·(4nan)

)1/n

≤ ∑
n
k=1(4

kak)

n
.

Thus

2S≤
∞

∑
n=1

∑
n
k=1(4

kak)

4n

=
∞

∑
n=1

n

∑
k=1

(4k−nak) =
∞

∑
k=1

∞

∑
n=k

(4k−nak)

=
∞

∑
k=1

4ak

3
=

4
3

and S ≤ 2/3. Equality is achieved when ak =
3
4k for all

k, since in this case 4a1 = 42a2 = · · ·= 4nan for all n.

B3 We prove the given statement.

For any circle S of radius r whose center is at distance
d from the origin, express the integral in polar coordi-
nates s,θ :∫∫
S

ρ =
∫ s2

s1

∫
θ2(s)

θ1(s)
(yhx− xhy)(ssinθ ,scosθ)sdθ ds.

For fixed s, the integral over θ is a line integral of gradh,
which evaluates to h(P2)− h(P1) where P1,P2 are the
endpoints of the endpoints of the arc of the circle of ra-
dius s centered at the origin lying within S . If we now
fix r and d and integrate

∫∫
S ρ over all choices of S

(this amounts to a single integral over an angle in the
range [0,2π]), we may interchange the order of integra-
tion to first integrate over θ , then over the choice of S ,

https://abel.math.harvard.edu/~elkies/putnam_b1a.pdf
https://abel.math.harvard.edu/~elkies/putnam_b1.pdf
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and at this point we get 0 for every s. We conclude that
the integral of

∫∫
S over all choices of S vanishes; since

the given integral varies continuously in S , by the in-
termediate value theorem there must be some S where
the given integral is 0.

B4 We can check directly that R3 = R4 = 1 are Virahanka–
Fibonacci numbers; henceforth we will assume m≥ 5.
Denote the product ∏

Fm−1
k=1 kk by A. Note that if Fm is

composite, say Fm = ab for a,b > 1 integers, then A is
divisible by aabb and thus by Fm = ab; it follows that
Rm = 0 = F0 when Fm is composite.
Now suppose that Fm is prime. Since F2n = Fn(Fn+1 +
Fn−1) for all n, Fm is composite if m > 4 is even; thus
we must have that m is odd. Write p = Fm, and use ≡
to denote congruence (mod p). Then we have

A =
p−1

∏
k=1

(p− k)p−k ≡
p−1

∏
k=1

(−k)p−k = (−1)p(p−1)/2
p−1

∏
k=1

kp−k

and consequently

A2 ≡ (−1)p(p−1)/2
p−1

∏
k=1

(kkkp−k)

= (−1)p(p−1)/2((p−1)!)p

≡ (−1)p(p+1)/2,

where the final congruence follows from Wilson’s The-
orem. Now observe that when m is odd, p = Fm must be
congruent to either 1 or 2 (mod 4): this follows from
inspection of the Virahanka–Fibonacci sequence mod
4, which has period 6: 1,1,2,3,1,0,1,1, . . .. It follows
that A2 ≡ (−1)p(p+1)/2 =−1.
On the other hand, by the Kepler–Cassini identity

F2
n = (−1)n+1 +Fn−1Fn+1

with n = m− 1, we have F2
m−1 ≡ (−1)m = −1. Thus

we have 0≡ A2−F2
m−1 ≡ (A−Fm−1)(A−Fm−2). Since

p is prime, it must be the case that either A = Fm−1 or
A = Fm−2, and we are done.
Remark. The Kepler–Cassini identity first appears in a
letter of Kepler from 1608. Noam Elkies has scanned
the relevant page of Kepler’s collected works (slightly
NSFW if your boss can read Latin).

B5 For convenience, throughout we work with matrices
over the field of 2 elements. In this language, if there
exists a permutation matrix P such that P−1AP is unipo-
tent (i.e., has 1s on the main diagonal and 0s below
it), then A is very odd: any principal submatrix of A is
conjugate to a principal submatrix of P−1AP, which is
again unipotent and in particular nonsingular. We will
solve the problem by showing that conversely, for any
very odd matrix A, there exists a permutation matrix P
such that P−1AP is unipotent. Since the latter condi-
tion is preserved by taking powers, this will prove the
desired result.

To begin, we may take S = {i} to see that aii = 1. We
next form a (loopless) directed graph on the vertex set
{1, . . . ,n} with an edge from i to j whenever ai j = 1,
and claim that this graph has no cycles. To see this,
suppose the contrary, choose a cycle of minimal length
m ≥ 2, and let i1, . . . , im be the vertices in order. The
minimality of the cycle implies that

ai j ik =

{
1 if k− j ≡ 0 or 1 (mod m)

0 otherwise.

The submatrix corresponding to S = {i1, . . . , im} has
row sum 0 and hence is singular, a contradiction.

We now proceed by induction on n. Since the directed
graph has no cycles, there must be some vertex which
is not the starting point of any edge (e.g., the endpoint
of any path of maximal length). We may conjugate by
a permutation matrix so that this vertex becomes 1. We
now apply the induction hypothesis to the submatrix
corresponding to S = {2, . . . ,n} to conclude.

Remark. A directed graph without cycles, as in our
solution, is commonly called a DAG (directed acyclic
graph). It is a standard fact that a directed graph is a
TAG if and only if there is a linear ordering of its ver-
tices consistent with all edge directions. See for exam-
ple https://en.wikipedia.org/wiki/Directed_
acyclic_graph.

Remark. An n× n matrix A = (ai j) for which the
value of ai j depends only on i− j (mod n) is called
a circulant matrix. The circulant matrix with first row
(1,1,0, . . . ,0) is an example of an n× n matrix whose
determinant is even, but whose other principal minors
are all odd.

B6 First solution. (based on a suggestion of Noam Elkies)
Let fk(x) be the probability distribution of Xk, the last
number remaining when one repeatedly trims a list of
3k random variables chosen with respect to the uniform
distribution on [0,1]; note that f0(x) = 1 for x ∈ [0,1].
Let Fk(x) =

∫ x
0 fk(t)dt be the cumulative distribution

function; by symmetry, Fk(
1
2 ) =

1
2 . Let µk be the ex-

pected value of Xk− 1
2 ; then µ0 =

1
4 , so it will suffice to

prove that µk ≥ 2
3 µk−1 for k > 0.

By integration by parts and symmetry, we have

µk = 2
∫ 1/2

0

(
1
2
− x
)

fk(x)dx = 2
∫ 1/2

0
Fk(x)dx;

that is, µk computes twice the area under the curve
y = Fk(x) for 0 ≤ x ≤ 1

2 . Since Fk is a monotone func-
tion from [0, 1

2 ] with Fk(0) = 0 and Fk(
1
2 ) =

1
2 , we may

transpose the axes to obtain

µk = 2
∫ 1/2

0

(
1
2
−F−1

k (y)
)

dy. (1)

https://people.math.harvard.edu/~elkies/Kepler_XVI_p157.jpg
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Since fk(x) is the probability distribution of the median
of three random variables chosen with respect to the dis-
tribution fk−1(x),

fk(x) = 6 fk−1(x)Fk−1(x)(1−Fk−1(x)) (2)

or equivalently

Fk(x) = 3Fk−1(x)2−2Fk−1(x)3. (3)

By induction, Fk is the k-th iterate of F1(x) = 3x2−2x3,
so

Fk(x) = Fk−1(F1(x)). (4)

Since f1(t) = 6t(1− t)≤ 3
2 for t ∈ [0, 1

2 ],

1
2
−F1(x) =

∫ 1/2

x
6t(1− t)dt ≤ 3

2

(
1
2
− x
)

;

for y ∈ [0, 1
2 ], we may take x = F−1

k (y) to obtain

1
2
−F−1

k (y)≥ 2
3

(
1
2
−F−1

k−1(y)
)
. (5)

Using (4) and (5), we obtain

µk = 2
∫ 1/2

0

(
1
2
−F−1

k (y)
)

dy

≥ 4
3

∫ 1/2

0

(
1
2
−F−1

k−1(y)
)

dy =
2
3

µk−1

as desired.

Second solution. Retain notation as in the first solution.
Again Fk(

1
2 ) =

1
2 , so (2) implies

fk

(
1
2

)
= 6 fk−1

(
1
2

)
× 1

2
× 1

2
.

By induction on k, we deduce that fk(
1
2 ) = ( 3

2 )
k and

fk(x) is nondecreasing on [0, 1
2 ]. (More precisely, be-

sides (2), the second assertion uses that Fk−1(x) in-
creases from 0 to 1/2 and y 7→ y− y2 is nondecreasing
on [0,1/2].)

The expected value of |Xk− 1
2 | equals

µk = 2
∫ 1/2

0

(
1
2
− x
)

fk(x)dx

= 2
∫ 1/2

0
x fk

(
1
2
− x
)

dx.

Define the function

gk(x) =

{( 3
2

)k
x ∈
[
0, 1

2

( 2
3

)k
]

0 otherwise.

Note that for x ∈ [0,1/2] we have

∫ x

0
(gk(t)− fk(1/2− t))dt ≥ 0

with equality at x = 0 or x = 1/2. (On the in-
terval [0,(1/2)(2/3)k] the integrand is nonnegative,
so the function increases from 0; on the interval
[(1/2)(2/3)k,1/2] the integrand is nonpositive, so the
function decreases to 0.) Hence by integration by parts,

µk−2
∫ 1/2

0
xgk(x)dx

=
∫ 1/2

0
2x( fk

(
1
2
− x
)
−gk(x))dx

=
∫ 1/2

0
x2
(∫ x

0
gk(t)−

∫ x

0
fk

(
1
2
− t
)

dt dt
)

dx≥ 0.

(This can also be interpreted as an instance of the rear-
rangement inequality.)

We now see that

µk ≥ 2
∫ 1/2

0
xgk(x)dx

≥ 2
(

3
2

)k ∫ (1/2)(2/3)k

0
xdx

= 2
(

3
2

)k 1
2

x2
∣∣∣∣(1/2)(2/3)k

0

= 2
(

3
2

)k 1
8

(
2
3

)2k

=
1
4

(
2
3

)k

as desired.

Remark. For comparison, if we instead take the me-
dian of a list of n numbers, the probability distribution
is given by

P2n+1(x) =
(2n+1)!

n!n!
xn(1− x)n.

The expected value of the absolute difference between
1/2 and the median is

2
∫ 1/2

0
(1/2− x)P2n+1(x)dx = 2−2n−2

(
2n+1

n

)
.

For n= 32021, using Stirling’s approximation this can be
estimated as 1.13(0.577)2021 < 0.25(0.667)2021. This
shows that the trimming procedure produces a quantity
that is on average further away from 1/2 than the me-
dian.



The 83rd William Lowell Putnam Mathematical Competition
Saturday, December 3, 2022

A1 Determine all ordered pairs of real numbers (a,b) such
that the line y = ax+ b intersects the curve y = ln(1+
x2) in exactly one point.

A2 Let n be an integer with n≥ 2. Over all real polynomials
p(x) of degree n, what is the largest possible number of
negative coefficients of p(x)2?

A3 Let p be a prime number greater than 5. Let f (p) denote
the number of infinite sequences a1,a2,a3, . . . such that
an ∈ {1,2, . . . , p− 1} and anan+2 ≡ 1+ an+1 (mod p)
for all n ≥ 1. Prove that f (p) is congruent to 0 or 2
(mod 5).

A4 Suppose that X1,X2, . . . are real numbers between 0 and
1 that are chosen independently and uniformly at ran-
dom. Let S = ∑

k
i=1 Xi/2i, where k is the least positive

integer such that Xk < Xk+1, or k = ∞ if there is no such
integer. Find the expected value of S.

A5 Alice and Bob play a game on a board consisting of
one row of 2022 consecutive squares. They take turns
placing tiles that cover two adjacent squares, with Alice
going first. By rule, a tile must not cover a square that
is already covered by another tile. The game ends when
no tile can be placed according to this rule. Alice’s goal
is to maximize the number of uncovered squares when
the game ends; Bob’s goal is to minimize it. What is
the greatest number of uncovered squares that Alice can
ensure at the end of the game, no matter how Bob plays?

A6 Let n be a positive integer. Determine, in terms of n,
the largest integer m with the following property: There
exist real numbers x1, . . . ,x2n with −1< x1 < x2 < · · ·<
x2n < 1 such that the sum of the lengths of the n intervals

[x2k−1
1 ,x2k−1

2 ], [x2k−1
3 ,x2k−1

4 ], . . . , [x2k−1
2n−1,x

2k−1
2n ]

is equal to 1 for all integers k with 1 ≤ k ≤ m.

B1 Suppose that P(x) = a1x+ a2x2 + · · ·+ anxn is a poly-
nomial with integer coefficients, with a1 odd. Suppose
that eP(x) = b0 +b1x+b2x2 + · · · for all x. Prove that bk
is nonzero for all k ≥ 0.

B2 Let × represent the cross product in R3. For what posi-
tive integers n does there exist a set S ⊂R3 with exactly
n elements such that

S = {v×w : v,w ∈ S}?

B3 Assign to each positive real number a color, either red
or blue. Let D be the set of all distances d > 0 such
that there are two points of the same color at distance
d apart. Recolor the positive reals so that the numbers
in D are red and the numbers not in D are blue. If we
iterate this recoloring process, will we always end up
with all the numbers red after a finite number of steps?

B4 Find all integers n with n ≥ 4 for which there exists a
sequence of distinct real numbers x1, . . . ,xn such that
each of the sets

{x1,x2,x3},{x2,x3,x4}, . . . ,
{xn−2,xn−1,xn},{xn−1,xn,x1}, and {xn,x1,x2}

forms a 3-term arithmetic progression when arranged in
increasing order.

B5 For 0 ≤ p ≤ 1/2, let X1,X2, . . . be independent random
variables such that

Xi =


1 with probability p,
−1 with probability p,
0 with probability 1−2p,

for all i ≥ 1. Given a positive integer n and integers
b,a1, . . . ,an, let P(b,a1, . . . ,an) denote the probability
that a1X1 + · · ·+ anXn = b. For which values of p is it
the case that

P(0,a1, . . . ,an)≥ P(b,a1, . . . ,an)

for all positive integers n and all integers b,a1, . . . ,an?

B6 Find all continuous functions f : R+ → R+ such that

f (x f (y))+ f (y f (x)) = 1+ f (x+ y)

for all x,y > 0.



Solutions to the 83rd William Lowell Putnam Mathematical Competition
Saturday, December 3, 2022

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A1 Write f (x) = ln(1+x2). We show that y = ax+b inter-
sects y = f (x) in exactly one point if and only if (a,b)
lies in one of the following groups:

– a = b = 0
– |a| ≥ 1, arbitrary b
– 0 < |a| < 1, and b < ln(1− r−)2 − |a|r− or b >

ln(1− r+)2 −|a|r+, where

r± =
1±

√
1−a2

a
.

Since the graph of y = f (x) is symmetric under re-
flection in the y-axis, it suffices to consider the case
a ≥ 0: y = ax+b and y =−ax+b intersect y = f (x) the
same number of times. For a = 0, by the symmetry of
y = f (x) and the fact that f (x)> 0 for all x ̸= 0 implies
that the only line y = b that intersects y = f (x) exactly
once is the line y = 0.

We next observe that on [0,∞), f ′(x) = 2x
1+x2 increases

on [0,1] from f ′(0) = 0 to a maximum at f ′(1) = 1, and
then decreases on [1,∞) with limx→∞ f ′(x) = 0. In par-
ticular, f ′(x) ≤ 1 for all x (including x < 0 since then
f ′(x) < 0) and f ′(x) achieves each value in (0,1) ex-
actly twice on [0,∞).

For a ≥ 1, we claim that any line y = ax + b inter-
sects y = f (x) exactly once. They must intersect at
least once by the intermediate value theorem: for x≪ 0,
ax+b < 0 < f (x), while for x ≫ 0, ax+b > f (x) since

limx→∞
ln(1+x2)

x = 0. On the other hand, they cannot
intersect more than once: for a > 1, this follows from
the mean value theorem, since f ′(x) < a for all x. For
a = 1, suppose that they intersect at two points (x0,y0)
and (x1,y1). Then

1 =
y1 − y0

x1 − x0
=

∫ x1
x0

f ′(x)dx

x1 − x0
< 1

since f ′(x) is continuous and f ′(x) ≤ 1 with equality
only at one point.

Finally we consider 0 < a < 1. The equation f ′(x) =
a has exactly two solutions, at x = r− and x = r+ for
r± as defined above. If we define g(x) = f (x)− ax,
then g′(r±) = 0; g′ is strictly decreasing on (−∞,r−),
strictly increasing on (r−,r+), and strictly decreasing
on (r+,∞); and limx→−∞ g(x) = ∞ while limx→∞ g(x) =
−∞. It follows that g(x) = b has exactly one solution
for b < g(r−) or b > g(r+), exactly three solutions for
g(r−) < b < g(r+), and exactly two solutions for b =
g(r±). That is, y = ax+b intersects y = f (x) in exactly
one point if and only if b < g(r−) or b > g(r+).

A2 The answer is 2n−2. Write p(x) = anxn+ · · ·+a1x+a0
and p(x)2 = b2nx2n + · · ·+ b1x+ b0. Note that b0 = a2

0
and b2n = a2

n. We claim that not all of the remain-
ing 2n − 1 coefficients b1, . . . ,b2n−1 can be negative,
whence the largest possible number of negative coef-
ficients is ≤ 2n−2. Indeed, suppose bi < 0 for 1 ≤ i ≤
2n− 1. Since b1 = 2a0a1, we have a0 ̸= 0. Assume
a0 > 0 (or else replace p(x) by −p(x)). We claim by
induction on i that ai < 0 for 1 ≤ i ≤ n. For i = 1, this
follows from 2a0a1 = b1 < 0. If ai < 0 for 1≤ i≤ k−1,
then

2a0ak = bk −
k−1

∑
i=1

aiak−i < bk < 0

and thus ak < 0, completing the induction step. But now
b2n−1 = 2an−1an > 0, contradiction.

It remains to show that there is a polynomial p(x) such
that p(x)2 has 2n−2 negative coefficients. For example,
we may take

p(x) = n(xn +1)−2(xn−1 + · · ·+ x),

so that

p(x)2 = n2(x2n + xn +1)−2n(xn +1)(xn−1 + · · ·+ x)

+(xn−1 + · · ·+ x)2.

For i ∈ {1, . . . ,n−1,n+1, . . . ,n−1}, the coefficient of
xi in p(x)2 is at most −2n (coming from the cross term)
plus −2n+ 2 (from expanding (xn−1 + · · ·+ x)2), and
hence negative.

A3 First solution. We view the sequence a1,a2, . . . as
lying in F×

p ⊂ Fp. Then the sequence is determined
by the values of a1 and a2, via the recurrence an+2 =
(1+an+1)/an. Using this recurrence, we compute

a3 =
1+a2

a1
, a4 =

1+a1 +a2

a1a2
,

a5 =
1+a1

a2
, a6 = a1, a7 = a2

and thus the sequence is periodic with period 5. The
values for a1 and a2 may thus be any values in F×

p pro-
vided that a1 ̸= p−1, a2 ̸= p−1, and a1 +a2 ̸= p−1.
The number of choices for a1,a2 ∈ {1, . . . , p−2} such
that a1 + a2 ̸= p− 1 is thus (p− 2)2 − (p− 2) = (p−
2)(p−3).

Since p is not a multiple of 5, (p−2)(p−3) is a prod-
uct of two consecutive integers a,a+ 1, where a ̸≡ 2
(mod 5). Now 0 · 1 ≡ 0, 1 · 2 ≡ 2, 3 · 4 ≡ 2, and
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4 · 0 ≡ 0 (mod 5). Thus the number of possible se-
quences a1,a2, . . . is 0 or 2 (mod 5), as desired.
Second solution. Say that a sequence is admissible if
it satisfies the given conditions. As in the first solution,
any admissible sequence is 5-periodic.
Now consider the collection S of possible 5-tuples of
numbers mod p given by (a1,a2,a3,a4,a5) for admis-
sible sequences {an}. Each of these 5-tuples in S
comes from a unique admissible sequence, and there
is a 5-periodic action on S given by cyclic permutation:
(a,b,c,d,e)→ (b,c,d,e,a). This action divides S into
finitely many orbits, and each orbit either consists of 5
distinct tuples (if a,b,c,d,e are not all the same) or 1
tuple (a,a,a,a,a). It follows that the number of admis-
sible sequences is a multiple of 5 plus the number of
constant admissible sequences.
Constant admissible sequences correspond to nonzero
numbers a (mod p) such that a2 ≡ 1 + a (mod p).
Since the quadratic x2 − x− 1 has discriminant 5, for
p > 5 it has either 2 roots (if the discriminant is a
quadratic residue mod p) or 0 roots mod p.

A4 The expected value is 2e1/2 −3.
Extend S to an infinite sum by including zero sum-
mands for i > k. We may then compute the expected
value as the sum of the expected value of the i-th sum-
mand over all i. This summand occurs if and only
if X1, . . . ,Xi−1 ∈ [Xi,1] and X1, . . . ,Xi−1 occur in non-
increasing order. These two events are independent
and occur with respective probabilities (1−Xi)

i−1 and
1

(i−1)! ; the expectation of this summand is therefore

1
2i(i−1)!

∫ 1

0
t(1− t)i−1 dt

=
1

2i(i−1)!

∫ 1

0
((1− t)i−1 − (1− t)i)dt

=
1

2i(i−1)!

(
1
i
− 1

i+1

)
=

1
2i(i+1)!

.

Summing over i, we obtain
∞

∑
i=1

1
2i(i+1)!

= 2
∞

∑
i=2

1
2ii!

= 2
(

e1/2 −1− 1
2

)
.

A5 We show that the number in question equals 290. More
generally, let a(n) (resp. b(n)) be the optimal final score
for Alice (resp. Bob) moving first in a position with n
consecutive squares. We show that

a(n) =
⌊n

7

⌋
+a
(

n−7
⌊n

7

⌋)
,

b(n) =
⌊n

7

⌋
+b
(

n−7
⌊n

7

⌋)
,

and that the values for n ≤ 6 are as follows:

n 0 1 2 3 4 5 6
a(n) 0 1 0 1 2 1 2
b(n) 0 1 0 1 0 1 0

Since 2022 ≡ 6 (mod 7), this will yield a(2022) = 2+
⌊ 2022

7 ⌋= 290.

We proceed by induction, starting with the base cases
n ≤ 6. Since the number of odd intervals never de-
creases, we have a(n),b(n) ≥ n− 2⌊ n

2⌋; by looking at
the possible final positions, we see that equality holds
for n = 0,1,2,3,5. For n = 4,6, Alice moving first can
split the original interval into two odd intervals, guar-
anteeing at least two odd intervals in the final position;
whereas Bob can move to leave behind one or two in-
tervals of length 2, guaranteeing no odd intervals in the
final position.

We now proceed to the induction step. Suppose that
n≥ 7 and the claim is known for all m< n. In particular,
this means that a(m) ≥ b(m); consequently, it does not
change the analysis to allow a player to pass their turn
after the first move, as both players will still have an
optimal strategy which involves never passing.

It will suffice to check that

a(n) = a(n−7)+1, b(n) = b(n−7)+1.

Moving first, Alice can leave behind two intervals of
length 1 and n−3. This shows that

a(n)≥ 1+b(n−3) = a(n−7)+1.

On the other hand, if Alice leaves behind intervals of
length i and n − 2 − i, Bob can choose to play in ei-
ther one of these intervals and then follow Alice’s lead
thereafter (exercising the pass option if Alice makes the
last legal move in one of the intervals). This shows that

a(n)≤ max{min{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= a(n−7)+1.

Moving first, Bob can leave behind two intervals of
lengths 2 and n−4. This shows that

b(n)≤ a(n−4) = b(n−7)+1.

On the other hand, if Bob leaves behind intervals of
length i and n− 2− i, Alice can choose to play in ei-
ther one of these intervals and then follow Bob’s lead
thereafter (again passing as needed). This shows that

b(n)≥ min{max{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= b(n−7)+1.

This completes the induction.

A6 First solution. The largest such m is n. To show that
m ≥ n, we take

x j = cos
(2n+1− j)π

2n+1
( j = 1, . . . ,2n).
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It is apparent that −1 < x1 < · · ·< x2n < 1. The sum of
the lengths of the intervals can be interpreted as

−
2n

∑
j=1

((−1)2n+1− jx j)
2k−1

=−
2n

∑
j=1

(
cos(2n+1− j)

(
π +

π

2n+1

))2k−1

=−
2n

∑
j=1

(
cos

2π(n+1) j
2n+1

)2k−1

.

For ζ = e2πi(n+1)/(2n+1), this becomes

=−
2n

∑
j=1

(
ζ j +ζ− j

2

)2k−1

=− 1
22k−1

2n

∑
j=1

2k−1

∑
l=0

(
2k−1

l

)
ζ

j(2k−1−2l)

=− 1
22k−1

2k−1

∑
l=0

(
2k−1

l

) 2n

∑
j=1

ζ
j(2k−1−2l)

=− 1
22k−1

2k−1

∑
l=0

(
2k−1

l

)
(−1) = 1,

using the fact that ζ 2k−1−2l is a nontrivial root of unity
of order dividing 2n+1.

To show that m ≤ n, we use the following lemma. We
say that a multiset {x1, . . . ,xm} of complex numbers is
inverse-free if there are no two indices 1 ≤ i ≤ j ≤ m
such that xi + x j = 0; this implies in particular that 0
does not occur.

Lemma. Let {x1, . . . ,xm},{y1, . . . ,yn} be two inverse-free
multisets of complex numbers such that

m

∑
i=1

x2k−1
i =

n

∑
i=1

y2k−1
i (k = 1, . . . ,max{m,n}).

Then these two multisets are equal.

Proof. We may assume without loss of generality that m ≤ n.
Form the rational functions

f (z) =
m

∑
i=1

xiz
1− x2

i z2 , g(z) =
n

∑
i=1

yiz
1− y2

i z2 ;

both f (z) and g(z) have total pole order at most 2n. Mean-
while, by expanding in power series around z = 0, we see that
f (z)−g(z) is divisible by z2n+1. Consequently, the two series
are equal.

However, we can uniquely recover the multiset {x1, . . . ,xm}
from f (z): f has poles at {1/x2

1, . . . ,1/x2
m} and the residue of

the pole at z = 1/x2
i uniquely determines both xi (i.e., its sign)

and its multiplicity. Similarly, we may recover {y1, . . . ,yn}
from g(z), so the two multisets must coincide.

Now suppose by way of contradiction that we have an
example showing that m ≥ n+1. We then have

12k−1 +
n

∑
i=1

x2k−1
2i−1 =

n

∑
i=1

x2k−1
2i (k = 1, . . . ,n+1).

By the lemma, this means that the multisets
{1,x1,x3, . . . ,x2n−1} and {x2,x4, . . . ,x2n} become equal
after removing pairs of inverses until this becomes im-
possible. However, of the resulting two multisets, the
first contains 1 and the second does not, yielding the
desired contradiction.

Remark. One can also prove the lemma using the in-
vertibility of the Vandermonde matrix

(x j
i )i=0,...,n; j=0,...,n

for x0, . . . ,xn pairwise distinct (this matrix has determi-
nant ∏0≤i< j≤n(xi − x j) ̸= 0). For a similar argument,
see Proposition 22 of: M. Bhargava, Galois groups
of random integer polynomials and van der Waerden’s
conjecture, arXiv:2111.06507.

Remark. The solution for m = n given above is not
unique (see below). However, it does become unique
if we add the assumption that xi = −x2n+1−i for i =
1, . . . ,2n (i.e., the set of intervals is symmetric around
0).

Second solution. (by Evan Dummit) Define the poly-
nomial

p(x) = (x− x1)(x+ x2) · · ·(x− x2n−1)(x+ x2n)(x+1);

by hypothesis, p(x) has 2n+1 distinct real roots in the
interval [−1,1). Let sk denote the k-th power sum of
p(x); then for any given m, the desired condition is that
s2k−1 = 0 for k = 1, . . . ,m. Let ek denote the k-th ele-
mentary symmetric function of the roots of p(x); that
is,

p(x) = x2n+1 +
2n+1

∑
i=k

(−1)kekx2n+1−k.

By the Girard–Newton identities,

(2k−1)e2k−1 = s1e2k−2 − s2e2k−2 + · · ·− s2ke1;

hence the desired condition implies that e2k−1 = 0 for
k = 1, . . . ,m.

If we had a solution with m = n+1, then the vanishing
of e1, . . . ,e2k+1 would imply that p(x) is an odd poly-
nomial (that is, p(x) = −p(x) for all x), which in turn
would imply that x= 1 is also a root of p. Since we have
already identified 2n+ 1 other roots of p, this yields a
contradiction.

By the same token, a solution with m= n corresponds to
a polynomial p(x) of the form xq(x2)+a for some poly-
nomial q(x) of degree n and some real number a (neces-
sarily equal to q(1)). It will thus suffice to choose q(x)
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so that the resulting polynomial p(x) has roots consist-
ing of −1 plus 2n distinct values in (−1,1). To do this,
start with any polynomial r(x) of degree n with n dis-
tinct positive roots (e.g., r(x) = (x−1) · · ·(x−n)). The
polynomial xr(x2) then has 2n+ 1 distinct real roots;
consequently, for ε > 0 sufficiently small, xr(x2) + ε

also has 2n + 1 distinct real roots. Let −α be the
smallest of these roots (so that α > 0); we then take
q(x) = r(x

√
α) to achieve the desired result.

Remark. Brian Lawrence points out that one can also
produce solutions for m = n by starting with the degen-
erate solution

−an−1, . . . ,−a1,0,a1, . . . ,an−1,1

(where 0 < a1 < · · ·< an−1 < 1 but no other conditions
are imposed) and deforming it using the implicit func-
tion theorem. More precisely, there exists a differen-
tiable parametric solution x1(t), . . . ,x2n(t) with xi(t) =
x2n−i(t) for i = 1, . . . ,n−1 specializing to the previous
solution at t = 0, such that x′i(0) ̸= 0 for i = n, . . . ,2n;
this is because the Jacobian matrix

J = ((2k−1)xi(0)2k−2)i=n,...,2n;k=1,...,n

(interpreting 00 as 1) has the property that every maxi-
mal minor is nonzero (these being scaled Vandermonde
matrices). In particular we may normalize so that
x′2n(0)< 0, and then evaluating at a small positive value
of t gives the desired example.

In the proof that m = n+1 cannot occur, one can simi-
larly use the implicit function theorem (with some care)
to reduce to the case where {|x1|, . . . , |x2n|} has cardi-
nality n+ 1. This can be extended to a complete solu-
tion, but the details are rather involved.

B1 We prove that bkk! is an odd integer for all k ≥ 0.

First solution. Since eP(x) = ∑
∞
n=0

(P(x))n

n! , the number
k!bk is the coefficient of xk in

(P(x))k +
k−1

∑
n=0

k!
n!
(P(x))n.

In particular, b0 = 1 and b1 = a1 are both odd.

Now suppose k ≥ 2; we want to show that bk is odd.
The coefficient of xk in (P(x))k is ak

1. It suffices to show
that the coefficient of xk in k!

n! (P(x))
n is an even integer

for any n < k. For k even or n ≤ k − 2, this follows
immediately from the fact that k!

n! is an even integer. For
k odd and n = k−1, we have

k!
(k−1)!

(P(x))k−1 = k(a1x+a2x2 + · · ·)k−1

= k(ak−1
1 xk−1 +(k−1)ak−2

1 a2xk + · · ·)

and the coefficient of xk is k(k − 1)ak−2
1 a2, which is

again an even integer.

Second solution. Let G be the set of power series of
the form ∑

∞
n=0 cn

xn
n! with c0 = 1,cn ∈ Z; then G forms a

group under formal series multiplication because(
∞

∑
n=0

cn
xn

n!

)(
∞

∑
n=0

dn
xn

n!

)
=

∞

∑
n=0

en
xn

n!

with

en =
n

∑
m=0

(
n
m

)
cmdn−m.

By the same calculation, the subset H of series with
cn ∈ 2Z for all n ≥ 1 is a subgroup of G.

We have e2x ∈ H because 2n

n! ∈ 2Z for all n ≥ 1: the
exponent of 2 in the prime factorization of n! is

∞

∑
i=1

⌊ n
2i

⌋
<

∞

∑
i=1

n
2i = n.

For any integer k ≥ 2, we have exk ∈ H because (nk)!
n! ∈

2Z for all n ≥ 1: this is clear if k = 2,n = 1, and in all
other cases the ratio is divisible by (n+1)(n+2).

We deduce that eP(x)−x ∈ H. By writing eP(x) as ex =
∑

∞
n=0

xn

n! times an element of H, we deduce that k!bk is
odd for all k ≥ 0.

Third solution. (by David Feldman) We interpret eP(x)

using the exponential formula for generating functions.
For each j, choose a set S j consisting of |a j| col-
ors. Then bk is a weighted count over set partitions of
{1, . . . ,k}, with each part of size j assigned a color in
S j, and the weight being (−1)i where i is the number of
parts of any size j for which a j < 0.

Since we are only looking for the parity of bk, we may
dispense with the signs; that is, we may assume a j ≥ 0
for all j and forget about the weights.

Choose an involution on each S j with at most one fixed
point; this induces an involution on the partitions, so to
find the parity of bk we may instead count fixed points
of the involution. That is, we may assume that a j ∈
{0,1}.

Let Tk be the set of set partitions in question with the all-
singletons partition removed; it now suffices to exhibit
a fixed-point-free involution of Tk. To wit, for each par-
tition in Tk, there is a smallest index i ∈ {1, . . . ,k− 1}
for which i and i+1 are not both singletons; we define
an involution by swapping the positions of i and i+1.

B2 The possible values of n are 1 and 7.

Clearly the set S = {0} works. Suppose that S ̸= {0}
is a finite set satisfying the given condition; in par-
ticular, S does not consist of a collection of collinear
vectors, since otherwise {v×w : v,w ∈ S} = {0}. We
claim that S cannot contain any nonzero vector v with
∥v∥ ̸= 1. Suppose otherwise, and let w ∈ S be a vector
not collinear with v. Then S must contain the nonzero
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vector u1 = v × w, as well as the sequence of vec-
tors un defined inductively by un = v × un−1. Since
each un is orthogonal to v by construction, we have
∥un∥= ∥v∥∥un−1∥ and so ∥un∥= ∥v∥n−1∥u1∥. The se-
quence ∥un∥ consists of all distinct numbers and thus S
is infinite, a contradiction. This proves the claim, and
so every nonzero vector in S is a unit vector.

Next note that any pair of vectors v,w∈ S must either be
collinear or orthogonal: by the claim, v,w are both unit
vectors, and if v,w are not collinear then v×w ∈ S must
be a unit vector, whence v ⊥ w. Now choose any pair of
non-collinear vectors v1,v2 ∈ S, and write v3 = v1 × v2.
Then {v1,v2,v3} is an orthonormal basis of R3, and it
follows that all of these vectors are in S: 0, v1, v2, v3,
−v1 = v3×v2, −v2 = v1×v3, and −v3 = v2×v1. On the
other hand, S cannot contain any vector besides these
seven, since any other vector w in S would have to be
simultaneously orthogonal to all of v1,v2,v3.

Thus any set S ̸= {0} satisfying the given condi-
tion must be of the form {0,±v1,±v2,±v3} where
{v1,v2,v3} is an orthonormal basis of R3. It is clear that
any set of this form does satisfy the given condition. We
conclude that the answer is n = 1 or n = 7.

B3 The answer is yes. Let R0,B0 ⊂R+ be the set of red and
blue numbers at the start of the process, and let Rn,Bn
be the set of red and blue numbers after n steps. We
claim that R2 = R+.

We first note that if y ∈ B1, then y/2 ∈ R1. Namely,
the numbers y and 2y must be of opposite colors in the
original coloring, and then 3y/2 must be of the same
color as one of y or 2y.

Now suppose by way of contradiction that x ∈ B2. Then
of the four numbers x,2x,3x,4x, every other number
must be in R1 and the other two must be in B1. By
the previous observation, 2x and 4x cannot both be in
B1; it follows that 2x,4x ∈ R1 and x,3x ∈ B1. By the
previous observation again, x/2 and 3x/2 must both be
in R1, but then x = 3x/2− x/2 is in R2, contradiction.
We conclude that R2 = R+, as desired.

B4 The values of n in question are the multiples of 3 start-
ing with 9. Note that we interpret “distinct” in the prob-
lem statement to mean “pairwise distinct” (i.e., no two
equal). See the remark below.

We first show that such a sequence can only oc-
cur when n is divisible by 3. If d1 and d2 are
the common differences of the arithmetic progressions
{xm,xm+1,xm+2} and {xm+1,xm+2,xm+3} for some m,
then d2 ∈ {d1,2d1,d1/2}. By scaling we may assume
that the smallest common difference that occurs is 1;
in this case, all of the common differences are integers.
By shifting, we may assume that the xi are themselves
all integers. We now observe that any three consecutive
terms in the sequence have pairwise distinct residues
modulo 3, forcing n to be divisible by 3.

We then observe that for any m ≥ 2, we obtain a se-
quence of the desired form of length 3m+ 3 = (2m−
1) + 1 + (m + 1) + 2 by concatenating the arithmetic
progressions

(1,3, . . . ,4m−3,4m−1),
4m−2,(4m,4m−4, . . . ,4,0),2.

We see that no terms are repeated by noting that the
first parenthesized sequence consists of odd numbers;
the second sequence consists of multiples of 4; and the
remaining numbers 2 and 4m− 2 are distinct (because
m ≥ 2) but both congruent to 2 mod 4.

It remains to show that no such sequence occurs with
n = 6. We may assume without loss of generality that
the smallest common difference among the arithmetic
progressions is 1 and occurs for {x1,x2,x3}; by rescal-
ing, shifting, and reversing the sequence as needed, we
may assume that x1 = 0 and (x2,x3) ∈ {(1,2),(2,1)}.
We then have x4 = 3 and

(x5,x6) ∈ {(4,5),(−1,−5),(−1,7),(5,4),(5,7)}.

In none of these cases does {x5,x6,0} form an arith-
metic progression.

Remark. If one interprets “distinct” in the problem
statement to mean “not all equal”, then the problem be-
comes simpler: the same argument as above shows that
n must be a multiple of 3, in which case a suitable rep-
etition of the sequence −1,0,1 works.

B5 First solution. The answer is p ≤ 1/4. We first
show that p > 1/4 does not satisfy the desired con-
dition. For p > 1/3, P(0,1) = 1− 2p < p = P(1,1).
For p = 1/3, it is easily calculated (or follows from
the next calculation) that P(0,1,2) = 1/9 < 2/9 =
P(1,1,2). Now suppose 1/4 < p < 1/3, and consider
(b,a1,a2,a3, . . . ,an) = (1,1,2,4, . . . ,2n−1). The only
solution to

X1 +2X2 + · · ·+2n−1Xn = 0

with X j ∈ {0,±1} is X1 = · · · = Xn = 0; thus
P(0,1,2, . . . ,22n−1) = (1−2p)n. On the other hand, the
solutions to

X1 +2X2 + · · ·+2n−1Xn = 1

with X j ∈ {0,±1} are

(X1,X2, . . . ,Xn) = (1,0, . . . ,0),(−1,1,0, . . . ,0),
(−1,−1,1,0, . . . ,0), . . . ,(−1,−1, . . . ,−1,1),

and so

P(1,1,2, . . . ,2n−1)

= p(1−2p)n−1 + p2(1−2p)n−2 + · · ·+ pn

= p
(1−2p)n − pn

1−3p
.
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It follows that the inequality P(0,1,2, . . . ,2n−1) ≥
P(1,1,2, . . . ,2n−1) is equivalent to

pn+1 ≥ (4p−1)(1−2p)n,

but this is false for sufficiently large n since 4p−1 > 0
and p < 1−2p.

Now suppose p ≤ 1/4; we want to show that
for arbitrary a1, . . . ,an and b ̸= 0, P(0,a1, . . . ,an) ≥
P(b,a1, . . . ,an). Define the polynomial

f (x) = px+ px−1 +1−2p,

and observe that P(b,a1, . . . ,an) is the coefficient of xb

in f (xa1) f (xa2) · · · f (xan). We can write

f (xa1) f (xa2) · · · f (xan) = g(x)g(x−1)

for some real polynomial g: indeed, if we define α =
1−2p+

√
1−4p

2p > 0, then f (x) = p
α
(x+α)(x−1 +α), and

so we can use

g(x) =
( p

α

)n/2
(xa1 +α) · · ·(xan +α).

It now suffices to show that in g(x)g(x−1), the co-
efficient of x0 is at least as large as the coefficient
of xb for any b ̸= 0. Since g(x)g(x−1) is symmetric
upon inverting x, we may assume that b > 0. If we
write g(x) = c0x0 + · · ·+ cmxm, then the coefficients
of x0 and xb in g(x)g(x−1) are c2

0 + c2
1 + · · ·+ c2

m and
c0cb + c1cb+1 + · · ·+ cm−bcm, respectively. But

2(c0cb + c1cb+1 + · · ·+ cm−bcm)

≤ (c2
0 + c2

b)+(c2
1 + c2

b+1)+ · · ·+(c2
m−b + c2

m)

≤ 2(c2
0 + · · ·+ c2

m),

and the result follows.

Second solution. (by Yuval Peres) We check that p ≤
1/4 is necessary as in the first solution. To check that it
is sufficient, we introduce the following concept: for X
a random variable taking finitely many integer values,
define the characteristic function

ϕX (θ) = ∑
ℓ∈Z

P(X = ℓ)eiℓθ

(i.e., the expected value of eiXθ , or the Fourier transform
of the probability measure corresponding to X). We use
two evident properties of these functions:

– If X and Y are independent, then ϕX+Y (θ) =
ϕX (θ)+ϕY (θ).

– For any b ∈ Z,

P(X = b) =
1
2

∫ 2π

0
e−ibθ

ϕX (θ)dθ .

In particular, if ϕX (θ) ≥ 0 for all θ , then P(X =
b)≤ P(X = 0).

For p ≤ 1/4, we have

ϕXk(θ) = (1−2p)+2pcos(θ)≥ 0.

Hence for a1, . . . ,an ∈ Z, the random variable S =
a1X1 + · · ·+anXn satisfies

ϕS(θ) =
n

∏
k=1

ϕakXk(θ) =
n

∏
k=1

ϕXk(akθ)≥ 0.

We may thus conclude that P(S = b)≤ P(S = 0) for any
b ∈ Z, as desired.

B6 The only such functions are the functions f (x) = 1
1+cx

for some c ≥ 0 (the case c = 0 giving the constant func-
tion f (x) = 1). Note that we interpret R+ in the prob-
lem statement to mean the set of positive real numbers,
excluding 0.

For convenience, we reproduce here the given equation:

f (x f (y))+ f (y f (x)) = 1+ f (x+ y) (1)

We first prove that

lim
x→0+

f (x) = 1. (2)

Set

L− = liminf
x→0+

f (x), L+ = limsup
x→0+

f (x).

For any fixed y, we have by (1)

L+ = limsup
x→0+

f (x f (y))

≤ limsup
x→0+

(1+ f (x+ y)) = 1+ f (y)< ∞.

Consequently, x f (x)→ 0 as x → 0+. By (2) with y = x,

2L+ = limsup
x→0+

2 f (x f (x))

= limsup
x→0+

(1+ f (2x)) = 1+L+

2L− = liminf
x→0+

2 f (x f (x))

= liminf
x→0+

(1+ f (2x)) = 1+L−

and so L− = L+ = 1, confirming (2).

We next confirm that

f (x)≥ 1 for all x > 0 =⇒ f (x) = 1 for all x > 0. (3)

Suppose that f (x)≥ 1 for all x > 0. For 0 < c ≤ ∞, put
Sc = sup{ f (x) : 0 < x ≤ c}; for c < ∞, (2) implies that
Sc < ∞. If there exists y > 0 with f (y) > 1, then from
(1) we have f (x+ y)− f (x f (y)) = f (y f (x))− 1 ≥ 0;
hence

Sc = S(c−y) f (y)

(
c ≥ c0 =

y f (y)
f (y)−1

)
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and (since (c−y) f (y)−c0 = f (y)(c−c0)) iterating this
construction shows that S∞ = Sc for any c > c0. In any
case, we deduce that

f (x)≥ 1 for all x > 0 =⇒ S∞ < ∞. (4)

Still assuming that f (x)≥ 1 for all x > 0, note that from
(1) with x = y,

f (x f (x)) =
1
2
(1+ f (2x)).

Since x f (x) → 0 as x → 0+ by (2) and x f (x) → ∞ as
x → ∞, x f (x) takes all positive real values by the inter-
mediate value theorem. We deduce that 2S∞ ≤ 1+ S∞

and hence S∞ = 1; this proves (3).

We may thus assume hereafter that f (x) < 1 for some
x > 0. We next check that

lim
x→∞

f (x) = 0. (5)

Put I = inf{ f (x) : x > 0}< 1, choose ε ∈ (0,(1− I)/2),
and choose y > 0 such that f (y)< I + ε . We then must
have x f (x) ̸= y for all x, or else

1+ I ≤ 1+ f (2x) = 2 f (y)< 2I +2ε,

contradiction. Since x f (x) → 0 as x → 0+ by (2), we
have sup{x f (x) : x > 0} < ∞ by the intermediate value
theorem, yielding (5).

By (2) plus (5), f−1(1/2) is nonempty and compact.
We can now simplify by noting that if f (x) satisfies the
original equation, then so does f (cx) for any c > 0; we
may thus assume that the least element of f−1(1/2) is
1, in which case we must show that f (x) = 1

1+x .

We next show that

lim
x→∞

x f (x) = 1. (6)

For all x > 0, by (1) with y = x,

f (x f (x)) =
1
2
(1+ f (2x))>

1
2
= f (1), (7)

so in particular x f (x) ̸= 1. As in the proof of (5), this
implies that x f (x) < 1 for all x > 0. However, by (5)
and (7) we have f (x f (x))→ 1

2 as x → ∞, yielding (6).

By substituting y 7→ xy in (1),

f (x f (xy))+ f (xy f (x)) = 1+ f (x+ xy).

Taking the limit as x → ∞ and applying (6) yields

f (1/y)+ f (y) = 1. (8)

Combining (1) with (8) yields

f (x f (y)) = f (x+ y)+ f
(

1
y f (x)

)
.

Multiply both sides by x f (y), then take the limit as x →
∞ to obtain

1 = lim
x→∞

x f (y) f (x+ y)+ lim
x→∞

x f (y) f
(

1
y f (x)

)
= f (y)+ lim

x→∞
x f (y)y f (x)

= f (y)+ y f (y)

and solving for f (y) now yields f (y) = 1
1+y , as desired.

Remark. Some variants of the above approach are pos-
sible. For example, once we have (5), we can establish
that f is monotone decreasing as follows. We first check
that

f (x)< 1 for all x > 0. (9)

Suppose by way of contradiction that f (x) = 1 for some
x. By (1),

f (2x)+1 = 2 f (x f (x)) = 2 f (x) = 2

and so f (2x) = 1. It follows that f−1(1) is infinite, con-
tradicting (5).

We next check that

x < y =⇒ f (x)> f (y). (10)

For x < y, by substituting x 7→ y− x in (1) we obtain

1+ f (y) = f (x f (y− x))+ f ((y− x) f (x))
< 1+ f ((y− x) f (x)),

whence f ((y− x) f (x))> f (y). Because (y− x) f (x)→
0 as x → y− and (y−x) f (x)→ y as x → 0+, (y−x) f (x)
takes all values in (0,y) as x varies over (0,y); this
proves (10).
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